
ORIGINAL RESEARCH ARTICLE
published: 11 September 2014
doi: 10.3389/fninf.2014.00076

Limits to high-speed simulations of spiking neural
networks using general-purpose computers
Friedemann Zenke* and Wulfram Gerstner

School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

Edited by:

Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:

Marcel Stimberg, École Normale
Supérieure, France
Susanne Kunkel, Jülich Research
Centre, Germany

*Correspondence:

Friedemann Zenke, Laboratory of
Computational Neuroscience, Ecole
Polytechnique Fédérale de
Lausanne, EPFL - LCN, Bâtiment
AAB, Station 15, CH-1015 Lausanne,
Switzerland
e-mail: friedemann.zenke@epfl.ch

To understand how the central nervous system performs computations using recurrent
neuronal circuitry, simulations have become an indispensable tool for theoretical
neuroscience. To study neuronal circuits and their ability to self-organize, increasing
attention has been directed toward synaptic plasticity. In particular spike-timing-dependent
plasticity (STDP) creates specific demands for simulations of spiking neural networks. On
the one hand a high temporal resolution is required to capture the millisecond timescale
of typical STDP windows. On the other hand network simulations have to evolve over
hours up to days, to capture the timescale of long-term plasticity. To do this efficiently,
fast simulation speed is the crucial ingredient rather than large neuron numbers. Using
different medium-sized network models consisting of several thousands of neurons
and off-the-shelf hardware, we compare the simulation speed of the simulators: Brian,
NEST and Neuron as well as our own simulator Auryn. Our results show that real-time
simulations of different plastic network models are possible in parallel simulations in which
numerical precision is not a primary concern. Even so, the speed-up margin of parallelism
is limited and boosting simulation speeds beyond one tenth of real-time is difficult. By
profiling simulation code we show that the run times of typical plastic network simulations
encounter a hard boundary. This limit is partly due to latencies in the inter-process
communications and thus cannot be overcome by increased parallelism. Overall, these
results show that to study plasticity in medium-sized spiking neural networks, adequate
simulation tools are readily available which run efficiently on small clusters. However, to
run simulations substantially faster than real-time, special hardware is a prerequisite.

Keywords: spiking neural networks, network simulator, synaptic plasticity, STDP, parallel computing,

computational neuroscience

1. INTRODUCTION
Neurons communicate with each other by short electrical pulses,
called action potentials or spikes, which can be considered as uni-
tary events. In simple neuron models of integrate-and-fire type,
such events are generated by a threshold crossing process. The
dynamics of a single neuron, which forms one unit of a large brain
network, are therefore relatively simple.

Nevertheless, the simulation of activity in large neural net-
works, which has been receiving increasing interest over the past
years (Markram, 2006; Ananthanarayanan et al., 2009; Lang et al.,
2011; Koch and Reid, 2012; Waldrop, 2012; Kandel et al., 2013),
poses multiple computational challenges. First, brain networks
consist of billions of neurons (Kandel et al., 2000). Even if each
neuron is described as a relatively simple dynamic processing
unit (e.g., an adaptive integrate-and-fire neuron with two or
three update equations per neuron Izhikevich, 2003; Brette and
Gerstner, 2005; Gerstner et al., 2014), the sheer number of units
suggests that faster than real-time simulation of these equations
will be hard to achieve on a single core. Hence parallelization of
computation is desirable. Second, each unit sends and receives
signals from thousands of others (DeFelipe and Fariñas, 1992;

Kandel et al., 2000), such that connectivity between units is
relatively high compared to classical models in the physical sci-
ences where interactions are mainly between nearest neighbors
in physical space (Anderson, 1995). Therefore, the communi-
cation overhead in a parallel implementation could potentially
be high. Third, the synaptic contact points between two con-
nected units are not fixed but may change (Bliss and Lømo, 1973;
Markram et al., 1997; Bi and Poo, 1998; Zhang et al., 1998; Bi
and Poo, 2001; Markram et al., 2012). Consequently, connec-
tions cannot be described with fixed parameters, but need further
dynamic variables. Moreover, the evolution of these synaptic vari-
ables depends on activity of both the sending and the receiving
neuron so that their treatment requires additional care and readily
available parallelization approaches cannot be used. The changes
in the dynamic values associated with the synaptic contact points
are referred to as synaptic plasticity.

The question therefore arises whether the scaling of paral-
lel implementations of simulated neural networks is dominated
mainly by the inter-process communication or by the dynam-
ics of the connections. This question cannot be answered in a
straightforward manner, because it depends on multiple factors.
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First, the communication between neurons only takes place at the
moment when a spike happens, leading to event-based updating
schemes (Morrison et al., 2007, 2008). Accordingly, the number of
events per unit of time plays a role for the communication load.
Second, changes of synaptic parameters, while induced by spike
events, are relatively small so that they evolve on a slower time
scale. Roughly speaking, a biological neuron sends out spikes that
last each about 1 ms. The rate at which these spike events are gen-
erated is a few per second. The slowest dynamics are those of
synaptic plasticity which typically needs several spike events to
induce a measurable change. Moreover, once changes are induced,
they often persist for many hours. In the field of neuroscience,
the behavioral phenomenon of learning and memory formation
is thought to be intimately linked to the biological rules of synap-
tic plasticity (Bliss and Lømo, 1973; Markram et al., 1997; Bi and
Poo, 1998; Zhang et al., 1998; Bi and Poo, 2001; Markram et al.,
2012). To verify in experiments whether a stable memory has been
formed it is not uncommon to follow a biological substrate for
24 h or more. If we want to simulate learning and memory for-
mation, the simulation software has to cover time scales from
milliseconds to days. To facilitate studies of learning and plas-
ticity in network models it is therefore highly desirable to run
simulations as fast as possible.

While simulation packages for networks with static (i.e.,
non-plastic) connections are readily available (Gewaltig and
Diesmann, 2007; Eliasmith et al., 2012; Hoang et al., 2013), sim-
ulations of plastic brain circuits have received much less attention
(Gewaltig and Diesmann, 2007; Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009). For example, the NEST simu-
lation environment has been released initially for fixed network
connections and models of synaptic plasticity have been added
later on (Gewaltig and Diesmann, 2007; Morrison et al., 2007).
Recently, increasing efforts are being made to enable real-time
simulations by using specialized simulation hardware (Furber and
Temple, 2007; Schemmel et al., 2010) or GPUs (Yudanov et al.,
2010; Hoang et al., 2013).

Here we focus on networks of several thousands of neurons.
These medium-sized networks are of particular practical impor-
tance because they are used in many theory and modeling labs
worldwide. Since not all modeling labs have access to super com-
puters we further limit our study to the use of general purpose
computers, which can be used either individually or as clusters.
In this framework we are interested in strong scaling, i.e., how
fast a given network model of fixed size can be simulated.

To explore what is currently achievable using standard off-
the-shelf hardware and publicly available software, we com-
pare the results and execution times of three typical network
simulations—with and without plasticity. In particular we use the
multi-purpose simulation frameworks NEST, Neuron and Brian
and compare them with our own simulator Auryn. Auryn has
specifically been optimized to study plasticity in large-timescale
simulations (up to days of simulated time). To minimize run
times in such simulations Auryn uses forward Euler integration
and relies on single precision arithmetic.

In this work we first analyze the trade-off between simulation
precision and simulation speed. In particular we focus on a vari-
ant of the classic balanced network model by Vogels and Abbott

(2005) and show that meaningful results can be obtained at high
simulation speed when using numerical integration algorithms
with a comparatively low fidelity (e.g., forward Euler method).
We then turn to parallel simulations and analyze by how much
network simulations can be sped up and how strong scaling is
limited by multiple factors. In particular we identify inter-process
communication and spike propagation as the two major limit-
ing factors which prevent a further speed-up in simulations of
medium-sized spiking neural networks.

In summary we show, by using three examples of standard bal-
anced network models, that real-time simulations are well within
reach with today’s off-the-shelf hardware. However, the increase
of simulation speed well beyond real-time, as required for study-
ing synaptic plasticity and learning, calls for specialized hardware
with low communication latencies.

2. MATERIALS AND METHODS
In this manuscript we compare results from a range of different
neuron, network and plasticity models. However, there are some
underlying similarities. All networks are built from integrate-
and-fire neurons with either current based or conductance based
synaptic input. We have summarized the detailed model descrip-
tion for the neuron models, plasticity rules and network models
in tabular form according to Nordlie et al. (2009) (Supplementary
Material). In the following we only give a short overview of
the simulation code, hardware and network models we used. In
Section 2.5 we comment on general implementation details of
STDP in simulations.

2.1. SIMULATION CODE AND HARDWARE
For all simulations using Auryn (version 0.4), which is publicly
available on the Internet1 , we used forward Euler integration
with a 0.1 ms integration time step and a 0.8 ms synaptic delay
unless mentioned otherwise. Simulations were compiled against
Boost (version 1.41.0) and MPICH2 (version 1.2.1) using the
GNU C++ compiler (version 4.4.7). The code was executed on
either a single node or a small cluster consisting of 4 nodes.
The individual nodes were technically identical and running Red
Hat Enterprise Linux (version 6) on a dual CPU (Intel Xeon
CPU E5-2670 0 @ 2.60 GHz) board with 64 GB of RAM. Nodes
communicated using Ethernet link aggregation over four 1 Gb
connections each via a switch comprised of two Cisco Nexus
Fabric Extenders (N2K-C2248TP) and two Cisco Nexus (N5K-
C5548-UP). All p-values were computed from the two sample
Kolmogorov-Smirnov test from the stats package in SciPy.

2.2. SIMPLE RUN TIME MODEL
To provide a simple model to describe the simulation run time T
as measured in simulations with Auryn, we assume that

T = Tsim + Tsync (1)

where Tsim is the time spent on the actual simulation of neural
variables and Tsync corresponds to the time spent on inter-process
communications.

1http://www.fzenke.net/auryn
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In an ideal parallel implementation Tsim scales as ∝ 1
n where

n is the number of cores that share the work. Auryn uses an
AllGather operation to communicate spikes from one node to
the other, which is generally implemented as either the Ring
Algorithm, Recursive Doubling or the Bruck algorithm (Thakur
et al., 2005). The respective algorithm is selected heuristically
depending on message size and the number of nodes used for
the simulation. While the Ring algorithm scales as ∝ β (n − 1) +
γ n−1

n , the two other algorithms scale as ∝ β
⌈

log2 n
⌉ + γ n−1

n .
Taken together we either expect the run time T to scale as

T = α

n
+ β

⌈
log2 n

⌉ + γ
n − 1

n
(2)

or else

T = α

n
+ β (n − 1) + γ

n − 1

n
(3)

with only positive parameters α, β, and γ . We can see imme-
diately that both, Expression (2) and (3), are lower bounded:
TLB > 0. This is the manifestation of the plain fact that inter-
process communication takes time and simulations cannot run
faster than the time they spend on communication.

2.3. NETWORK MODELS
2.3.1. Vogels-Abbott benchmark
For comparison against other simulators we adapted the
VAbenchmark2.py benchmark code from PyNN (Davison
et al., 2009) which is a down-scaled version of a network by Vogels
and Abbott (2005). The network has 3200 excitatory and 800
inhibitory neurons and approximately 320k synapses.

Specifically we re-implemented the same simulation in Auryn,
Brian and NEST (Supplementary Material). The Auryn code is
comprised as an example in the current release of Auryn (sim_-
coba_benchmark.cpp). For simulations in Neuron the original
PyNN version (Davison et al., 2009) was modified. In particular
all recordings were switched off and the script was used directly
via nrniv -python -mpi to avoid unnecessary overhead.

We ensured that all simulations were loading the same weight
matrix from external files. Unless mentioned otherwise we used
a 0.8 ms synaptic delay between all synapses. The delay was cho-
sen as a compromise between a small value, to stay as close as
possible to the original (Vogels and Abbott, 2005), and a large
value, to reduce inter-process communication for the cases where
parallel execution was possible. Simulations were run for 60 s of
simulated time. To avoid the spontaneous deactivation of the self-
sustained activity state (Vogels and Abbott, 2005), all neurons
received excitatory current input of 200 pA (Vogels et al., 2011).
All benchmarks were run 5 times for statistics. For each simu-
lation only the run time of the actual simulation was measured.
The time to set up the weight matrices or to write data to disk was
ignored.

To simulate this network we used Neuron (version 7.3;
Carnevale and Hines, 2006), NEST (version 2.2.2; Gewaltig and
Diesmann, 2007) and Brian (version 1.4.1; Goodman and Brette,
2008) and compiled against MPI libraries where possible. Unless
mentioned otherwise we used MPICH2 (version 1.2.1). However,

we did not encounter a notable difference in performance with
OpenMPI (version 1.4.3).

2.3.2. 25k cell network model
The plastic 25,000 cell network model was implemented as
described in Zenke et al. (2013). It consists of 20,000 exci-
tatory and 5000 inhibitory neurons connected by a total
of ≈ 3.4 × 107 synapses of which approximately ≈ 2 × 107 are
plastic as described by triplet STDP (Pfister and Gerstner,
2006). The code is available as sim_background.cpp
(sim_bg_static.cpp for the non-plastic version of it) with
the current release of the Auryn simulator. A detailed model
description is available in tabular form in the Supplementary
Material.

2.3.3. Brunel network
This is a 10,000 cell balanced network model based on a net-
work by Brunel (2000) with a total of 107 synapses. Specifically we
adapted the simulation included in the PyNEST examples in the
current NEST (Gewaltig and Diesmann, 2007) release (version
2.2.2) under the LeNovere_2012 directory (Gewaltig et al.,
2012), which comes as a non-plastic network and the same net-
work with weight dependent STDP (Supplementary Material;
6.4 × 107 plastic synapses). To make the networks comparable
with the other simulations synaptic delays were set to 0.8 ms and
the same random connectivity was loaded from external files. In
contrast to Gewaltig et al. (2012) all weights were initialized with
the same value to facilitate the implementation of a comparable
simulation in Auryn.

2.4. THE AURYN SIMULATOR
Auryn was written with the UNIX philosophy in mind: Do one
thing and do it well (Raymond, 2003). The Auryn code is open
source and it was optimized for simulation speed to allow for
large-time-scale simulations of recurrent neural networks involv-
ing synaptic plasticity. To that end Auryn simulates networks of
spiking neurons and writes relevant output to human readable
text files. It does not perform any analysis and the output files have
to be processed and analyzed independently. At the heart Auryn
is a collection of C++ classes that are combined into a com-
piled program to form the simulation. This allows the compiler
to optimize each simulation code specifically for the hardware it
runs on.

Like other simulators Auryn takes a hybrid approach between
event-based and continuous integration (Morrison et al., 2005).
Neuron models in Auryn are integrated continuously, while
weight updates for many standard synaptic plasticity rules are
implemented in an efficient event-based way.

Quantities that require time continuous integration are typ-
ically neuronal state variables describing synaptic conductance
and membrane voltage. In many neuronal networks large sets
of identical or similar neurons need to be integrated. The
required computation can be vectorized efficiently. The advan-
tages of vectorization are the reduction of function calls, the
efficient use of layered cache architectures deployed in modern
CPUs, and giving the compiler the opportunity to use hard-
ware for single instruction multiple data (SIMD) such as SSE
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or AVX. Vectorization is therefore widely used in existing sim-
ulators such as Brian (Brette and Goodman, 2011) as well as
in our code. Since many SIMD instructions can process twice
the amount of single precision floating point operations per
instruction, Auryn uses single precision arithmetic to increase
performance.

The logical extension to vectorization is parallelization. To run
parallel code Auryn uses the message passing interface (MPI) as
a general and versatile back-end to allow parallel simulations on
a single machine with multiple cores or distributed over multiple
physical machines in a cluster.

Frequently used functionality in Auryn is implemented in
highly specialized classes. One example is the generation of
Poisson spike trains. In our simulations, we often use input from a
homogeneous population of Poisson neurons which spike at low
and identical firing rates. Hence, Auryn comes with an optimized
solution for this particular scenario. Most existing simulators
come with at least one way to generate Poisson spikes. NEST uses
a poisson_generator in combination with “parrot neu-
rons” and the Brian simulator uses PoissonGroup objects.
Both examples are more versatile than Auryn’s solution. Brian
handles different firing rates for each neuron as well as tempo-
ral modulation of firing rates. NEST has the ability to recreate
the same pseudo random Poisson spike trains independently of
the number of cores used. The highly specific implementation
in Auryn does not have this flexibility, but it allows for a fast
implementation (Figure 1A).

To efficiently generate Poisson spike trains from such a config-
uration we consider a grid spanned by N rows corresponding to
the Poisson neurons and discrete-time with bins of size �t on
the x-axis (Figure 1B). To create Poisson spikes we could now

FIGURE 1 | Efficient generation of Poisson spike trains from a

population of input units. (A) Run times of different simulators to
generate 100 s long spike trains from 1000 Poisson neurons spiking at 5 Hz.
(B) Illustration of the algorithm. One typical ISI interval for single Poisson
neuron (blue). Typical example of a random stride of magnitude x (red
arrow) or a stride x′ that would lead beyond N and is consequently
continued in the next time step (gray). (C) Spike raster from simulated
Poisson spike trains from (A). (D) From the same simulation: Distribution of
firing rates (left) with the theoretical expectation from the Poisson
distribution (solid line). Right: Distribution of coefficient of variation of the
ISI (CV ISI). The mean values of the distributions are indicated by arrow
heads.

fill each row of the grid with spikes by drawing exponentially
distributed inter-spike-intervals. This can be done on-line, but
requires a certain degree of book-keeping because the algorithm
has to remember the N last spike times of all Poisson units. It
is more efficient to fill each column at the very time step when
the spikes are needed. This can be done efficiently since the
distribution of inter-spike-intervals (ISIs) is the same in x and y-
direction. Therefore, all spikes can be generated online when they
are needed during the simulation (Figures 1B–D). When a jump
leads beyond N it is simply continued in the next time step. This
way every random number yields a spike.

2.5. IMPLEMENTATION OF SPIKE-TIMING-DEPENDENT PLASTICITY
Auryn was developed to provide an efficient environment for
simulating plastic synapses in recurrent neural networks. To that
end we are particularly interested in simulating spike-timing-
dependent plasticity (STDP) as it is a form of plasticity commonly
found in the brain (Markram et al., 1997; Bi and Poo, 1998, 2001;
Zhang et al., 1998; Markram et al., 2011). STDP can be imple-
mented efficiently in an event-based way where synaptic weights
only change when pre- or postsynaptic spikes occur (Gerstner and
Kistler, 2002b; Morrison et al., 2008).

A broad family of spike-timing-dependent plasticity (STDP)
models can be written in the following form (Gerstner and
Kistler, 2002b)

dwij

dt
= apreSj(t) + apostSi(t)

+Sj(t)

∫ ∞

0
W(s)Si(t − s)ds

+Si(t)

∫ ∞

0
W( − s)Sj(t − s)ds (4)

where apre and apost are constants, W(t) is a real valued function
with finite support and Sj(t) is the presynaptic (Si(t) the post-
synaptic) spike train given as a sum of delta functions Sx(t) =∑

k δ(t − tk
x) where tk

x runs over all spike times k of neuron x. The
parameters apre, apost as well as the window W(s) may depend
on the momentary value wij of the synaptic weights (van Rossum
and Turrigiano, 2001; Gütig et al., 2003). Expression (4) describes
a piecewise constant function of time with jumps whenever pre-
or postsynaptic spikes occur. Note that STDP can also contain
higher order terms (Pfister and Gerstner, 2006) which does not
influence the key points of our argument. In many situations
the window function W(t) can be well approximated by one or
multiple exponential functions. As an example

W(t) =
⎧⎨
⎩

A+ exp
(
− t

τA

)
t > 0

B− exp
(
+ t

τB

)
t ≤ 0

(5)

where A, B, τA, and τB are constants, yields a plausible STDP curve
(Zhang et al., 1998; Song et al., 2000; Gerstner and Kistler, 2002a).
Whenever the window function can be broken down to exponen-
tial shapes, this allows for an efficient on-line implementation
by using synaptic traces (Gerstner and Kistler, 2002b; Morrison
et al., 2008). A synaptic trace zi(t) is a low pass filtered version
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of the spike train Si(t) of neuron i. It is described by the linear
differential equation

dzx
i

dt
= − zx

i

τx
+ Si(t) (6)

with associated respective timescale τx. In the absence of spikes
the solution is a simple exponential decay. Equation (6) can either
be integrated time-continuously by multiplication with the con-
stant exp ( − �t

τx
) in every simulation time step �t or by using

the fact that the analytical solution is known for arbitrary time
intervals (event-based update).

By combining Equations (4) and (6) synaptic weight updates
can be written as follows

dwij

dt
∝ A+z+

j (t)Si(t) − A−z−
i (t)Sj(t) + apreSj(t) + apostSi(t)(7)

which is ideally suited for event-based integration because weight
changes only occur at pre- or postsynaptic spike times. To add
plasticity to a network simulation, one therefore simply adds the
required number of traces [cf. Equation (6)] and the event-based
weight update. The simplest implementation of STDP now pro-
ceeds as follows: at time tj of a presynaptic spike of neuron j the
trace z−

i (t) is read out and the necessary weight update is applied
to the weight wij. Since the postsynaptic trace of neuron i can be
integrated alongside with the neuronal state no particular care has
to be taken for parallel processing.

This changes in two ways in the case of a postsynaptic spike.
First, in case of parallel processing the neuron from which the
spike originated might not be integrated on the same physical
computer. Hence there is no simple way of providing the value of
its synaptic trace. Second, the simulator might not offer efficient
means of finding all presynaptic partners of a postsynaptic neu-
ron. Doing this efficiently generally costs memory, because each
neuron needs to keep a list of all its presynaptic partners.

Per default Auryn takes the simplest approach where at each
postsynaptic firing time all associated weight updates are car-
ried out immediately. As a direct consequence, synaptic delays are
implemented as purely axonal rather than dendritic delays (i.e.,
when two neurons spike in the same time step, the postsynaptic
spike arrives at the synapse before the presynaptic spike). To be
able to provide the value of the trace of any presynaptic neuron
at the time of the update Auryn computes presynaptic traces on
all nodes in a time continuous way. That means that presynaptic
traces are evolved in every time step irrespectively if the value is
needed or not. Since every process needs to keep track of all presy-
naptic traces, it also means that some redundant work is being
done.

Auryn alternatively supports an event-based approach. This
approach exploits the fact that in the absence of spikes, the solu-
tion to Equation (6) is an exponential decay. Since the event-based
trace update cannot be vectorized efficiently this only provides an
advantage at low firing rates. Since, the increased overhead due to
the use of the exponential function generally seems to outweigh
the advantages of this approach, which is why Auryn chooses by
default time-continuous updates of presynaptic traces.

In contrast to that NEST uses an event-based approach in
which synaptic weight updates are only carried out at the arrival
times of presynaptic spikes (Morrison et al., 2007). To do this,
each neuron stores its past firing history in a small buffer.
Whenever a presynaptic spike occurs, all post-pre updates are
applied retrospectively in a batch. Since for each update all quan-
tities appearing in Equation (7) have to be known, the retrospec-
tive update requires to keep track of these values or to compute
them on-the-fly when needed. Because all recent postsynaptic fir-
ing times are available at the time of arrival of a presynaptic spike,
this approach offers more flexibility with respect to whether spike
transmission delays are interpreted as axonal or dendritic delays.
On the downside, the storage of postsynaptic spike times as well
as the evaluation of the exponential function required for the
on-the-fly computation of synaptic trace values causes overhead.

3. RESULTS
To compare the possible simulation speed of balanced network
models using different publicly available simulators and standard
hardware (Methods) we adapted the conductance based Vogels-
Abbott network (Vogels and Abbott, 2005), which has been used
as a benchmark in the past (Brette et al., 2007; Sharp and Furber,
2013). In particular we implemented the same network in Neuron
(Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann,
2007), Brian (Goodman and Brette, 2008) and our own simulator
Auryn (Methods). The network was tuned initially to a parameter
regime in which the model exhibits stable asynchronous irreg-
ular activity over extended periods of time (Figure 2A). We ran
network simulations for each simulator in their standard con-
figuration and ensured that the different simulations produced
comparable results (Figure 2B). All simulations were run for
1 min of simulated time, using only a single core. Only the exe-
cution time of the main simulation procedure was timed, while
time consumed to set up the network, or for writing data to disk,
was ignored.

The observed individual run times differ substantially between
simulators (Figure 2C), which can have multiple different rea-
sons. First, in the standard configuration of a simulator certain
performance options might be turned off for compatibility rea-
sons. In the case of Brian for instance, enabling such features
resulted in a significant performance boost, which led to a speed-
up of the simulation by more than a factor of two (Brian†,
Figures 2C,D). Second, different simulators use different numeri-
cal solvers for the differential equations which describe the neural
dynamics. For instance, in the present simulation NEST uses
a Runge-Kutta-Fehlberg 4(5) solver (Fehlberg, 1970), whereas
Brian, as well as Auryn, rely on the simpler forward Euler method.
While the former yields higher precision, it also is computation-
ally more expensive.

To characterize the difference between the two methods, we
reimplemented the neuron model in NEST using forward Euler
integration (we will refer to this implementation as NEST∗
for disambiguation). Consequently the same simulation was
repeated, which resulted in more than a ten-fold decrease in
simulation time (Figures 2C,D).

Since this speed-up comes at the cost of precision it is natu-
ral to ask what precision is required. There is no general answer
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FIGURE 2 | Vogels-Abbott benchmark. (A) Spike raster of the excitatory
cells in the network as simulated with Auryn. (B) Distribution of the firing
rates (left), the inter-spike-intervals (middle) and the the coefficient of
variation (right). Solid color bars are the results obtained from Auryn. The
black lines is the output from NEST. Mean values of the distributions are
indicated by arrow heads. (C) Relative run times T of different simulators
and different configurations for simulating 60 s of the Vogels-Abbott
benchmark. The values for Brian, NEST and Neuron are given for the
respective simulators in their standard configuration. Brian† corresponds to
Brian with performance optimizations enabled. NEST∗ is the same as NEST,
but using a minimal forward Euler solver. (D) Zoom on the comparison of
Brian†, NEST and Auryn. The dashed line indicates a real-time simulation.

to this question. All numerical integrators only approximate the
dynamics of the true dynamical system. Since in most balanced
networks small deviations of the initial values grow exponentially
over time (van Vreeswijk and Sompolinsky, 1996) it is virtu-
ally impossible to simulate the same temporal evolution twice
using different integration methods. Nevertheless, all simulations
approximate the same network at the macroscopic level which can
be characterized by meaningful network statistics. The latter can
be compared across simulators (Davison et al., 2009; Henker et al.,
2012).

To investigate the impact of precision on the network statis-
tics of the Vogels-Abbott benchmark we used the simulation data
obtained with NEST as a reference model and compared the net-
work statistics (Figure 2B) with the results obtained with Brian
and NEST using a two sample Kolmogorov-Smirnov (K-S) test.
In particular we found that none of the sampled rate distribu-
tions were significantly different (p > 0.5 in all cases). However,
the K-S test indicated statistically significant differences for the
coefficient of variation of the ISI distribution (CV ISI) between
Auryn and the other simulators (p < 0.003) whereas differences
between Brian and NEST were not significant (p > 0.2). A similar
comparison of the ISI distributions showed that all samples from
all simulators differed significantly (p < 2 × 10−60 in all cases).

To verify that all requirements for the K-S test with respect
to independence of the samples and stationarity were met, we
computed the K-S statistic and corresponding p-values for two
samples of the rate and the CV ISI distribution from the same
simulation (20–30 s and 40–50 s). Both did not show significant
differences (NEST: p > 0.12; Brian: p > 0.45). Similar to ear-
lier findings (Davison et al., 2009), the same analysis on two
independent samples of the ISI distribution showed, that the
samples were significantly different (NEST : p < 1.3−85; Brian:
p < 6.6−8).

To gain quantitative insight into the variability and the dif-
ferences of the ISI distribution for a single simulator and across
different simulators we computed the mean K-S statistic D
for 10 pairs of independent samples from the ISI distributions
(Figure 3A). Consistent with earlier findings (Davison et al.,
2009) the comparison between NEST and Neuron yields D values
that are comparable to the ones seen from independent sam-
ples from within the same simulation performed with either
simulator. Auryn and Brian, which use less precise integra-
tion schemes, exhibit larger D values in direct comparison to
Neuron or NEST or to each other, but comparably low mean val-
ues and fluctuations when compared to themselves individually
(Figure 3A).

To check whether or not the differences between simulators
using different integration schemes could be made negligible, we
ran additional simulations for three different Euler time steps
in Auryn (�t = [0.4, 0.1, 0.01] ms; reference simulation: NEST
with �t = 0.1 ms). We then compared the firing rates of the exci-
tatory neurons in the simulation with Auryn to the ones observed
in the reference simulation and find that they are highly correlated
regardless of the time step used (Figures 3B,D,F; Supplementary
Figure S1). Moreover, the observed distributions of the inter-
spike-intervals (ISI) and the CV ISI are qualitatively similar in all
cases (Figures 3C,E,G; Supplementary Figure S1). Detailed com-
parison (K-S test) shows that the observed samples of the rate
distributions do not differ significantly from the reference data
(Figures 3B,D,F). However, the observed samples of the CV ISI
distributions are different for the 0.4 and the 0.1 ms time step case.
In the case of the 0.01 ms time step the difference is not signifi-
cant (p > 0.07; Figure 3F). Direct comparison of the K-S statistic
on the ISI distributions resulted in larger D values than the ones
obtained earlier (Figure 3A) due to the change of the temporal
grid that spikes are aligned to (not shown).

Our analysis illustrates that differences in the integration algo-
rithm have a measurable effect on macroscopic network quan-
tities when time steps well below 1 ms are used. To speed up
simulations further, an increase of the integration time step
should therefore be avoided. Otherwise, a too large integration
time step will result in synchronization effects or other artifacts
which can be mistaken for real network effects (Hansel et al.,
1998). Throughout the remaining manuscript we set the time
step to 0.1 ms, which is chosen as a compromise between speed
and accuracy. In conjunction with the particular network and
the hardware used, this allowed us to simulate the Vogels-Abbott
benchmark faster than real-time when using NEST∗ or Auryn,
while the simulation in Brian† was approximately three times
slower than real-time.
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FIGURE 3 | Effect of simulator and integration step size on network

statistics. (A) Mean K-S test statistic D comparing various combinations of
ISI distributions obtained from the Vogels-Abbott benchmark with different
simulators (integration time step �t = 0.1 ms). Each data point corresponds
to the mean value of D computed from 10 pairs of independent samples of
the ISI distribution. Error bars signify the standard deviation. (B) Individual
neuronal firing rates from Auryn simulation with Euler step size �t = 0.4 ms
against reference data set obtained with NEST [Runge-Kutta-Fehlberg 4(5),

0.1 ms time step]. r is Pearson’s correlation coefficient of the two data sets.
(C) Histograms of network statistics: Rate (left), inter-spike-interval (ISI,
middle) and the coefficient of variation of the ISI (CV ISI, right) for the
simulation with �t = 0.4 ms. Solid color bars: results from Auryn simulation.
Mean value indicated by solid arrow head. Black lines: results from NEST
simulation. Mean value given by empty arrow head. p-values from two sample
Kolmogorov-Smirnov test on the raw data before binning. (D,E) Same as top
row (A,B) but for �t = 0.1 ms. (F,G) same as before, but for �t = 0.01 ms.

These data show that when precision is not a primary concern,
real-time simulations of small neural networks are well in reach
using standard hardware and simulation tools. While real-time
simulations are important in situations were the network is to
interact with the real word—as for instance in robotics applica-
tions or in certain in-vitro experiments, for plasticity studies it is
often desirable to speed-up simulations as much as possible. To
achieve even higher simulation speeds most simulators used in
this study (with the exception of Brian) can run simulations in
parallel.

3.1. PARALLEL SIMULATIONS
To analyze how much further the present example of the Vogels-
Abbott benchmark could be sped-up by using parallelism, we
repeated the above measurement using multiple cores locally on
a single machine (Figure 4A) or distributed using four identical
machines connected via Ethernet (Figure 4B). In the case of local
execution it was possible to increase the execution speed by about
one order of magnitude. In particular we observed strong scaling
which stopped when 12 out of the 16 physical cores on a single
machine were used. In the distributed case all simulators, except
Auryn, exhibited decreased execution times, while parallel execu-
tion in Auryn even slowed down the simulation. However, despite
the fact that Auryn’s execution times increased monotonously
with increasing numbers of cores, it was still systematically faster
than the other simulators. Compared to the local case, the overall

FIGURE 4 | Scaling behavior Vogels-Abbott benchmark. (A) Relative run
times of simulators allowing parallel execution for 60 s of benchmark
simulation as a function of the number of cores used in a single machine
with 16 physical cores (local). (B) Same as (A), when simulations are run
distributed on four nodes connected via Ethernet.

scaling behavior in the distributed case was less uniform across
simulators and number of cores used (note the different and
changing slopes in the log-log plot; Figure 4B).

To see how these results generalized for different settings of
the minimum synaptic delay in the Vogels-Abbott benchmark,
we ran additional simulations in Auryn and NEST∗ for synaptic
delays ranging from 0.2 ms up to 20 ms. We found that an increase
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in synaptic delays improves scaling on larger numbers of cores
(Figure 5A). Similar to the above findings, shorter synaptic delays
resulted in monotonously increasing run times in Auryn, whereas
at this point the run times in NEST∗ were still decreasing. It is
not clear whether run times of NEST∗ or Auryn could cross over
for larger numbers of cores or if they reach a common asymptote.
The latter case can be captured in simple run time model which
assumes comparable communication delays for both simulators
(Figure 5B; Methods). While the plausibility of synaptic delays
in the order of 20 ms is questionable, the Vogels-Abbott bench-
mark, regardless of this, generated network activity which was in
qualitative agreement with a network with a 0.8 ms synaptic delay
(Figure 5C).

Qualitative differences in scaling behavior for the Vogels-
Abbott benchmark can be understood using a simple run time
model (Methods) which takes into account communication
delays. The same model also captures the observed differences
between local an distributed simulations (Figure 6A). To further
investigate the effect of communication delays and to study
whether they pose indeed the limiting factor for distributed

FIGURE 5 | Scaling of Vogels-Abbott benchmark for different synaptic

delays. (A) Relative run time T of Vogels-Abbott benchmark simulated with
Auryn for different synaptic delay values (black). Gray: The two most
extreme measurements 0.2 and 20 ms are shown for NEST∗ for reference.
Only data points for 4 cores and more are plotted for clarity. (B) Data points
for the 0.2 ms delay case in (A) with simple run time model extrapolated to
hypothetical numbers of cores [solid lines; cf. Equations (2) and (3)]. The full
model was first fitted to the Auryn data points. The gray curve was
obtained from this model by only adjusting the parameter α in the model.
(C) Network statistics for network with 20 ms synaptic delay. From left to
right: Rate distribution, inter-spike-interval distribution (ISI) and coefficient
of variation of the ISI (CV ISI). Arrowheads at the top indicate mean values
of the respective distribution.

simulations, we inserted additional profiling code into the Auryn
simulation which allowed us to directly measure the time spent
on communication, i.e., synchronizing the different processes
(sync). This measurement confirmed that communication time
was negligible in the local case (Figure 6B), whereas it became
the dominating contribution to total run time for the distributed
simulation (Figure 6C). While the increase in overall run time
can mostly be attributed to the sync time, we found that also the
difference between total run time and sync time does not scale
as ∼ 1

n where n is the number of cores, but shows saturating
behavior (Figure 6C).

We were wondering how this behavior would change for larger
and more memory intensive simulations. To that end we simu-
lated a 25,000 cell network with a mean population firing rate of
3 Hz (Methods). In line with the expected higher computational
cost, due to the larger number of neurons, we measured longer
run times on a single core (Figure 6D) than for the Vogels-Abbott
benchmark.

Similarly to the Vogels-Abbott benchmark, strong scaling
ends for distributed runs (Figure 6D) and run times cannot be
decreased below T ≈ 0.2 (Figures 6D,E). However, in the dis-
tributed case the total run time is no longer dominated by sync
time, but a significant fraction of the total time is spent on
computation (Figure 6F).

To test how the same simulation scales with synaptic plas-
ticity we added triplet STDP (Pfister and Gerstner, 2006) to all
excitatory-to-excitatory synapses (Methods; Zenke et al., 2013).
In this case the differences in scaling behavior between the local
and the distributed simulation become negligible (Figure 6G).
However, we measured a small increase in sync time for the local
plastic simulation (Figure 6H), while the sync time was virtually
identical for distributed runs of the plastic and the non-plastic
network (Figure 6I).

It has been described previously in plastic spiking network
simulations, that a substantial part of communication time is
spent at the implicit barrier in the AllGather directive, which
is commonly used to communicate spikes between nodes, and
not the actual communication latency (Ananthanarayanan et al.,
2009). In particular that means that processes which finish their
computation earlier have to wait for slower processes at every
sync instance. We were wondering to what degree this effect was
present and measurable in our simulations.

To address this question we inserted additional code into the
Auryn simulations of the 25 k cell network to record the wall
clock time of every process after each integration time step.
Figure 7A shows the difference in wall time between two pro-
cesses in the same simulation in which plasticity was initially
disabled. The observed time differences are small, which sug-
gests that the processes roughly have the same execution time per
duty cycle (the simulation performs an AllGather every 0.8 ms of
simulated time). This, however, changes once plastic updates are
enabled (Figure 7A). The number of spikes occurring in each pro-
cess per duty cycle varies stochastically which in turn influences
the execution time of the code responsible for plasticity updates.
Since the number of spikes in different processes can vary inde-
pendently, this gives rise to large fluctuations of the difference
between the wall times of both processes.
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FIGURE 6 | Scaling behavior in Auryn. (A) Scaling of relative run time
in the Vogels-Abbott benchmark on a single machine and when run
distributed over four machines. Solid red line: RMS fit of Expression (2)
to local run time data. Blue and black lines: RMS fit of Expression (2)
and (3) respectively to distributed run time data. Error bars represent the
standard deviation of the data. (B) For the same simulation as in (A).
Time spent on total computation (red) and the fraction spent on
synchronization (blue) for different numbers of cores used locally. Black

bullets: Difference between the two. (C) Same as (B), but when run
distributed over four machines. Gray line: RMS fit of f (x) = A

x + B to
difference data points. (D) Scaling of relative run time in the 25 k cell
network without plastic synapses on a single machine and when run
distributed over four machines. (E,F) Same as (B,C) but for the 25 k cell
network from (D). (G–I) Same as before, but for the 25 k cell network
with plastic excitatory-to-excitatory synapses. (H,I) Solid gray line: Total
from (E,F) for reference. Dashed line: Sync from (E,F) for reference.

To estimate the impact of this effect on run times in our sim-
ulation we extracted the wall timings before each AllGather and
determined their respective temporal offsets. We then computed
the maximum temporal offset before each sync which correlates
with the waiting time until the last process arrives at the bar-
rier. For simulations of the static network these timings were
close to zero in the case of a local simulation or fluctuating
at about 0.1 ms for a distributed simulation (Figure 7B). When
plasticity was enabled, the waiting time measurably increased
to about 0.05 ms in the local simulations. However, the effect
was difficult to observe in the case of a distributed simulation
due to the overall high fluctuations in waiting time (Figure 7C).
This suggests that for distributed simulations the implicit barrier
does not represent the crucial bottle neck on standard hardware,
but rather actual communication delays constitute the limiting
factor.

So far we have isolated the sync time and found it to be
a significant contributor to run time especially in distributed

simulations. To identify other potential sources which end strong
scaling in our simulations we profiled the above simulations
using gprof (Graham et al., 1982). Specifically we recorded run
time information for the Vogels-Abbott benchmark and the 25 k
cell network (static and plastic). We then hand-labeled the most
costly functions according to three categories: First, all functions
involved in integrating the neural state variables and synaptic
traces: “Evolve.” Second, explicitly excluding the sync time, all
functions contributing to spike propagation: “Propagate.” Third,
the specific contribution of spike propagation and weight update
at plastic synapses “Triplet.”

For the Vogels-Abbott benchmark we find that Evolve scales
slightly sub-linearly (Figure 8A), while the contribution of
Propagate is approximately constant and even rises for high num-
bers of parallel processes. Notably, while Evolve takes the lion’s
share of computation time for low numbers of cores, the behavior
changes at around 16 cores, where the run time is dominated by
Propagate (Figure 8A).
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FIGURE 7 | STDP affects load-balancing negatively. (A) Time difference
of wall clock times between a total of two processes from the 25 k cell
network simulation when run locally on a single machine. Initially, weight
updates are not computed (static weights). Plastic weight updates are
switched on at t = 3 s. (B) Maximum wall time difference between two
processes before synchronization for the static network. Filled bullets: Data
from local execution. Empty bullets: Data from distributed runs. (C) Same
as (B), but for the plastic network. Error bars show the standard deviation.

In the case of the 25 k cell network, initially Propagate and
Evolve scale close to linearly until strong scaling breaks for about
48 to 64 cores (Figure 8B). The situation is worse in the plastic
network in which both, Triplet and Evolve saturate at about T ≈
0.15, whereas Propagate even increases from 24 cores onwards
(Figure 8C). The deviation of Propagate from strong scaling is
most likely linked to the fact that in its default configuration, each
process in the simulation maintains and integrates a copy of all
presynaptic traces to implement triplet STDP (note that synaptic
traces are for technical reasons counted against Evolve). When the
presynaptic trace is switched to event-based integration, strong
scaling is restored up to 32 cores for Evolve (Figure 8D). The
associated cost increase in Triplet, however, makes the overall sim-
ulation slower, which is why event-based integration is disabled
per default in Auryn.

3.2. COMPUTATIONAL COST OF ALTERNATIVE STDP
IMPLEMENTATIONS

While the fastest run times with Auryn were achieved with an
STDP implementation which purposefully breaks strong scaling,
NEST uses a different approach to STDP. In particular, in its
standard implementation synaptic weights are updated only at
the arrival of a presynaptic spike. All previous weight updates
caused by postsynaptic spikes are then executed in a batch for
which presynaptic traces are computed retrospectively on the
fly (Methods). In this approach scaling is preserved because no
copies of presynaptic traces have to be kept locally, but the
computation of synaptic updates becomes more expensive.

FIGURE 8 | Scaling of parallel simulations without communication

times. (A) Time spent by each parallel process in a designated class of
functions. Propagate: Functions involved in delivering spikes to
postsynaptic neurons (not including synchronization). Evolve: Functions
serving directly or indirectly the integration of continuous neuronal or
synaptic state variables. Data points represent mean values averaged over
all processes of a simulation. Error bars give the standard deviation from
this average. The dashed line is given for reference. It represents perfect
strong scaling. (B) Same as (A), but for the static 25 k cell network. (C)

Same as (B), but for the plastic network. The new function class “Triplet”
includes functions involved in computing weight updates and the
propagation of excitatory-to-excitatory spikes. Note, that the evolution of
synaptic traces is counted in “Propagate.” (D) Same as (C), but with
event-based update of the presynaptic trace variables.

To study which approach leads to faster run times we com-
pared the performance of plastic network simulations in Auryn
and NEST. To do so without having to implement new plasticity
rules in NEST, we limited our study to code that already existed.
In particular we adapted two example simulations that come
with the current NEST release (Gewaltig and Diesmann, 2007;
Gewaltig et al., 2012). Both simulations implement the same bal-
anced random network model based on work by Brunel (2000).
In one case all connections are static whereas in the other case
excitatory-to-excitatory connections evolve according to a weight
dependent STDP rule.

We created the same network model in Auryn. For a better
comparison we wrote an Auryn class comparable to the NEST
poisson_generator and implemented the same neuron
model and integration scheme as used in NEST (both classes are
openly available in the Auryn code base). However, due to differ-
ences in the implementation of STDP (Methods), Auryn assumes
a purely axonal synaptic delay, whereas NEST assumes a den-
dritic delay. Network simulations were run for 20 s simulated time
with low learning rates to avoid that plasticity influences the fir-
ing statistics over the time course of the simulation. The resulting
network activity of both implementations was comparable at ≈
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43 Hz population firing rate. We ran both simulations distributed
over four machines for varying numbers of cores. The respective
run times of the plastic (PL) and the non-plastic (NP) configura-
tion were recorded (Figure 9A). On a single core the addition of
STDP caused an increase of the run times by a factor of ≈ 2.5 for
Auryn (≈ 3.5 for NEST, Figure 9C, left).

Both simulators showed good initial scaling behavior, which
saturated quickly (Figures 9A–C). When going from 32 to 64
cores, run times only decreased marginally (Figure 9C). Auryn
achieved real-time or faster simulation speed for the NP and PL
configurations (Figure 9C). When plotting the relative run time
increase caused by plasticity χ = TPL−TNP

TNP
both methods did not

exhibit any apparent scaling behavior (Figure 9D). We repeated
the above measurement for Auryn using the event-based strat-
egy for presynaptic trace update and did not find any significant
differences (data not shown).

Finally, to compare the outcome of an actual plastic simulation
we ran simulations in NEST and Auryn with a learning rate of

FIGURE 9 | Comparison of run times in balanced networks with

plasticity. (A) Scaling behavior of the relative run time T for a classical
balanced network model (Brunel, 2000) when simulated in NEST (black)
and Auryn (red). The measurement was done for the non-plastic (NP)
network and a network with multiplicative STDP (PL). (B) Total run time
(red) and time used for synchronization (blue) for the plastic simulation
using Auryn. (C) Bar plot of the end point values in (A). Single core (left), 32
cores (middle) and all 64 cores (right). Dashed line: real-time simulation. (D)

Relative difference between run time of the plastic and non-plastic network
for Auryn (red circles) and NEST (gray triangles). (E) Final weight
distribution after 20 s of simulated time for runs with learning rate
λ = 1 × 10−2 using Auryn (red) and NEST (gray). p-value computed from
Kolmogorov-Smirnov test comparing the two samples.

λ = 1 × 10−2 and compared the resulting steady state weight
distributions (Figure 9E). Similarly to the comparison of net-
work statistics (cf. Figure 3) we found the resulting samples
to be qualitatively similar, but significantly different (K-S test:
p < 10−9), which could be due to the contrasting locations of
the synaptic delay (axonal or dendritic) in the differing STDP
implementations of Auryn and NEST (Methods).

Despite the similar implementations (i.e., neuron model and
Poisson generator), run times in NEST were about a factor of two
(or ≈ 2.5× for PL simulations) longer than the same simulations
in Auryn. To check whether the observed run time differences
between Auryn and NEST were a consequence of the use of single-
precision floating point arithmetic over double-precision, we
repeated above run time measurements using double-precision
variables in Auryn. The change did not have a strong impact
on the steady state weight distribution, which remained signifi-
cantly different from the reference obtained with NEST (K-S test:
p < 10−9; data not shown). However, the use of double-precision
arithmetic caused an increase by about 10–20 percent in run times
for low numbers of cores (< 8), these differences became negligi-
ble when more cores were used (Figure 10A). Hence, differences
in run time between Auryn and NEST, in the present simulation,
were not due to differences in floating point precision. However,
they were not solely due to differences in the STDP implemen-
tations either, because the non-plastic networks alone exhibited
different run times (Figure 9C). For both simulators the increase
in run time due to plasticity was substantial and it was about three
times larger in NEST than in Auryn. This suggests, that for the
medium-sized network investigated here, an STDP implementa-
tion in which weights are updated at the occurrence of each pre
and postsynaptic spike (e.g., Auryn; Methods) can be faster than a
paradigm in which weight updates are performed for presynaptic
spikes only (e.g., NEST; Methods). It should be noted, however,
that the speed-up in the present example comes at the cost of
flexibility with respect to how a given STDP implementation can
interpret spike transmission delays as axonal or dendritic delays
(Methods).

The floating point precision used in a simulation can affect
performance in two major ways. First, double-precision variables

FIGURE 10 | Effect of floating point precision and the use of SIMD

instructions on the run time of network simulations. (A) Relative run
time difference between the plastic Brunel benchmark simulation (cf.
Figure 9) in Auryn using double vs. single-precision floating point variables.
Non-plastic (NP) network (black), plastic implementation (PL; red). (B) Same
as (A), but for the 25,000 cell network (cf. Figure 6) which uses a fully
vectorized neuron model.
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take up twice the amount of memory compared to single-
precision floating point values. This reduces the number of values
that fits into a single cache line by a factor of two and thus makes
time consuming cache misses more likely. Partly, this limitation
can be overcome by using an increased number of parallel pro-
cesses running on separate physical cores, which increases the
total amount of physical cache memory and thus reduces the
possibility of cache misses. Second, many modern CPUs offer
“single instruction multiple data” (SIMD), which allows to apply
the same arithmetic operations on multiple floating point val-
ues at once, provided the compiler detects this parallelism and
uses SIMD. In the present study we used Intel CPUs equipped
with “Streaming SIMD Extensions” (SSE). The SSE instruction
achieves its highest performance for single-precision arithmetic.
Specifically, SSE registers can either process two double-precision
or four single-precision floating point numbers at once (SSEv2
and newer), thus predicting a maximally achievable speed-up for
single-precision by a factor of two.

The fact that we only observed run time differences between
single and double-precision implementations for small num-
bers of cores, suggests that these differences are due to limits in
the cache architecture, which would explain their disappearance
when more than 8 cores are used (Figure 10A). This, however,
also suggests that the present code does not make extensive use
of vectorized SIMD instructions, because otherwise a significant
difference in run time should prevail even when many cores
are used.

In the present simulation we used a neuron model which was
implemented after the example of NEST for better comparison.
In this paradigm each neuron is processed individually (i.e., first
synaptic conductances are computed, then the membrane poten-
tial is updated and finally the membrane potential is checked for
threshold crossings), which prevents it from being compiled into
SIMD instructions. In contrast to that, most of Auryn’s default
models, such as the one deployed in the above 25,000 cell network
simulation (cf. Figure 6), use an explicit vectorized formulation
in which each atomic arithmetic operation on the neuronal state
variables is applied to all neurons before the next operation fol-
lows. This vectorized approach allows the compiler to detect and
efficiently use SIMD.

To quantify the performance gain due to vectorization, we
repeat the time measurements in the plastic 25,000 cell network
(cf. Figure 6), which natively compiles using SIMD. The relative
comparison shows a substantial increase in run time for double-
precision simulations over code using single-precision arithmetic
(Figure 10B). These results are consistent with the idea that SIMD
operations used for the neuronal state integration are sped up
by a factor of two for single-precision arithmetic (maximum
achievable difference: 100%).

In summary this analysis shows that SIMD improves perfor-
mance notably given that the neuronal model code is designed
with vectorization in mind. Moreover, for medium size net-
works, a simple weight update approach to STDP such as used in
Auryn is faster than the method NEST uses while yielding similar
results. At present it is not clear if or how STDP implementations
could be made more efficient to increase simulation speeds even
further.

4. DISCUSSION
In this paper we have shown that small or medium size recurrent
networks with STDP can be simulated in, or faster than real-time
if performance-optimized parallel code is used. However, we also
show that the margin for speed-up through parallelization on
standard hardware is limited due to finite communication delays
and the deviation from strong scaling in the mechanisms of spike
propagation.

In particular we compared the run times of several standard
simulators (Brian, NEST and Neuron) and our own simulator
Auryn, when simulating a classic Vogels-Abbott benchmark net-
work. We illustrated that the choice of integration algorithm
has a considerable effect on performance. Specifically simulation
speed can be increased substantially when numerical precision
is not a primary concern. Moreover, in some simulators, such
as Brian, the activation of additional performance options can
increase simulation speed dramatically without affecting numer-
ical precision.

Which numerical precision is necessary to conduct a particular
study strongly depends on the questions asked. On the one hand,
high numerical precision is almost always desirable because it
reduces the risk of emerging systematic errors and artifacts in the
analyzed system. On the other hand, the higher associated com-
putational cost of high-precision simulations, can render certain
types of studies infeasible. The final compromise between simu-
lation speed and simulation precision has to be taken with care
and with respect to the exact nature of the scientific questions
addressed.

Most network simulations can be sped up even further
through parallelism. In particular we compared the run times of
the Vogels-Abbott benchmark simulation using NEST, Neuron
and Auryn when run on a single machine with 16 cores or a
small cluster of four such machines. While parallelization led to
increased speed in most cases it was nevertheless difficult to speed
up network simulations beyond a tenth of real-time. Since this
constitutes a severe restriction in plasticity studies, we analyzed
the scaling behavior of Auryn more deeply from which we con-
cluded that this limitation cannot be simply levitated by using
more computers.

Specifically we found that in the realm of medium-sized net-
work models with plasticity strong scaling ends for a relatively low
number of cores. The origin of this saturation was two-fold: First,
network simulations are limited by communication delays when
simulated in a distributed fashion on a cluster. Second, larger and
more computationally costly simulations additionally suffer from
the break-down of strong scaling in each process when high num-
bers of cores per machine are used. In particular we observed a
break-down in scaling behavior in distributed simulations using
48 or 64 out of 64 available physical cores. This effect could be
due to the fact that in the latter case no dedicated core is available
for the operating system. However, we observed similar satura-
tion effects when using only 48 cores. This seems to suggest that
another limiting mechanism is responsible. It is tempting to spec-
ulate that it is linked to bandwidth limits in shared memory access
on a local machine.

To gain a deeper insight into which parts of a typical network
simulation contribute most to the break-down of strong scaling,
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we performed multiple profiling studies of the parallel simula-
tions in Auryn. This study revealed that while the pure numerical
integration of the neuronal differential equations scaled close to
linearly in most cases, scaling of spike propagation was gener-
ally sub-linear and could become substantial for large numbers of
parallel processes. Spike propagation is a memory intensive pro-
cess because it generally requires to iterate over large fractions of
the synaptic weight matrix in a quasi random order due to the
stochastic spiking of neurons. These findings therefore seem to
support the idea that memory bandwidth limits are indeed the
cause behind the breakdown of strong scaling. It will be an inter-
esting avenue for future studies to directly verify this hypothesis
in a detailed memory profiling analysis.

Taken together it seems as if the potential for further increase
in simulation speed of medium-sized spiking network models
on standard hardware is exhausted. Even if it was not for the
break-down of strong scaling at the per-process level, strong scal-
ing would still end in distributed simulations at around one
tenth of real-time due to communication delays between pro-
cesses. Therefore, large clusters can only be advantageous if they
have extremely low latency communication capabilities. With
10 Gigabit Ethernet becoming increasingly available, a decrease
of communication latencies by a factor of 5–10 seems realis-
tic, before yet another performance threshold is reached. At this
point a continuation of our study on such machines and on super
computers with dedicated low latency communication hardware
would be particularly insightful.

With the restrictions at hand it is currently difficult to speed
up typical simulations of recurrent networks much further than
real-time. In particular this means that a simulation of one day
of biological time takes at least several hours to complete. To cir-
cumvent performance limitations in simulations of spiking neural
networks, GPUs have recently received increasing attention as an
inexpensive and massively parallel alternative to distributed sim-
ulations (Yudanov et al., 2010; Richert et al., 2011; Brette and
Goodman, 2012; Hoang et al., 2013). As for now, it seems as
if these approaches are experiencing similar difficulties (Brette
and Goodman, 2012) as the ones encountered for the path taken
in this manuscript. While real-time simulations are feasible, at
present it is not clear if a further decrease of simulation times of
networks with realistic plasticity rules is possible.

The evident lack of options to increase simulation speed
for large-time-scale studies on learning and synaptic plasticity
calls for novel ideas of how to approach this type of prob-
lem. Noteworthy are approaches addressing neural simulation at
the hardware level (Furber and Temple, 2007; Schemmel et al.,
2010). Although most of these projects aim at achieving large
scale simulations (neuron numbers comparable to the human
brain) in real-time, they might also be a good fit for much
smaller network configurations where they could provide a sig-
nificant speed-up. Regardless of which solutions one considers,
it would be inevitable that the system brings the necessary flex-
ibility to support a large variety of synaptic plasticity rules ide-
ally without a notable impairment of the overall performance.
Finally, it remains an open question if such specialized model-
ing hardware can ultimately be made available for theory labs
worldwide.

In summary we have shown that real-time simulations of
plastic networks of point neurons are achievable with appro-
priate and highly optimized software. However, at the same
time increasing simulation speed beyond 10× faster than real-
time is challenging due to limitations in the inter-process
communications.
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