
TECHNOLOGY REPORT ARTICLE
published: 13 January 2015

doi: 10.3389/fninf.2014.00089

BrainBrowser: distributed, web-based neurological data
visualization
Tarek Sherif , Nicolas Kassis , Marc-Étienne Rousseau , Reza Adalat and Alan C. Evans*

McGill Centre for Integrative Neuroscience, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

Edited by:

John Van Horn, University of
California at Los Angeles, USA

Reviewed by:

Graham J. Galloway, The University
of Queensland, Australia
Hidetoshi Ikeno, University of
Hyogo, Japan

*Correspondence:

Alan C. Evans, McGill Centre for
Integrative Neuroscience,
McConnell Brain Imaging Centre,
Montreal Neurological Institute,
McGill University, 3801 University
Street, Webster 2B #208, Montreal,
QC, H3A 2B4, Canada
e-mail: alan.evans@mcgill.ca

Recent years have seen massive, distributed datasets become the norm in neuroimaging
research, and the methodologies used to analyze them have, in response, become
more collaborative and exploratory. Tools and infrastructure are continuously being
developed and deployed to facilitate research in this context: grid computation platforms
to process the data, distributed data stores to house and share them, high-speed
networks to move them around and collaborative, often web-based, platforms to
provide access to and sometimes manage the entire system. BrainBrowser is a
lightweight, high-performance JavaScript visualization library built to provide easy-to-use,
powerful, on-demand visualization of remote datasets in this new research environment.
BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web
Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web
browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser
into any web-based platform. BrainBrowser is simple enough to produce a basic
web-based visualization in a few lines of code, while at the same time being robust enough
to create full-featured visualization applications. BrainBrowser can dynamically load the
data required for a given visualization, so no network bandwidth needs to be waisted on
data that will not be used. BrainBrowser’s integration into the standardized web platform
also allows users to consider using 3D data visualization in novel ways, such as for data
distribution, data sharing and dynamic online publications. BrainBrowser is already being
used in two major online platforms, CBRAIN and LORIS, and has been used to make the
1TB MACACC dataset openly accessible.

Keywords: visualization, neuroimaging, neurology, WebGL, HTML5

1. INTRODUCTION
BrainBrowser is an open source JavaScript library exposing a
set of web-based 3D visualization tools primarily targeting neu-
roimaging. Using open web technologies, such as WebGL and
HTML5, it allows for real-time manipulation and analysis of 3D
imaging data through any modern web browser. BrainBrowser
includes two major components. The BrainBrowser Surface
Viewer (Figure 1) is a WebGL-based 3D viewer capable of display-
ing 3D surfaces in real time and mapping various sorts of data to
them. The BrainBrowser Volume Viewer (Figure 2) is an HTML5
Canvas-based viewer allowing slice-by-slice traversal of 3D or 4D
MINC volumetric data (Vincent et al., 2004).

In recent years, neuroimaging research has seen itself inun-
dated by large, distributed datasets that have necessitated a shift
in how scientists approach their research: guiding hypotheses
are often articulated after analyzing the mass of available data
(Margulies et al., 2013), and data sharing has become a necessity
for scientific discovery (Jomier et al., 2011). Several large-scale,
distributed, collaborative platforms have been developed to facil-
itate this new approach, and they tend to integrate poorly with
traditional visualization tools requiring a local installation and
local data. These tools and their dependencies would have to be
installed locally, and data would generally have to be exported

from the platform in order to be visualized in the local environ-
ment. Web-based visualization tools, on the other hand, present
significant benefits in the context of distributed research plat-
forms:

• They can be easily integrated into existing web-based plat-
forms.

• Other than the web browser, no software or libraries need to be
installed.

• If a visualization doesn’t require the entirety of a remote dataset
at once, it can load required data on-demand, potentially
saving bandwidth.

Ideally, a web-based visualization tool might have the following
properties:

• Performant and responsive: If network latency or lag-
ging performance interfere with usability, researchers will not
use it.

• Doesn’t require any browser plugins (e.g., Java, Flash):
Plugins add extra friction to the deployment of tools that
depend on them. They require users to install software on their
machines and keep it up to date. Furthermore, not all users

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00089/abstract
http://community.frontiersin.org/people/u/158737
http://community.frontiersin.org/people/u/201450
http://community.frontiersin.org/people/u/103344
http://community.frontiersin.org/people/u/158553
http://community.frontiersin.org/people/u/158755
mailto:alan.evans@mcgill.ca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

FIGURE 1 | The BrainBrowser Surface Viewer.

FIGURE 2 | The BrainBrowser Volume Viewer.

have the administrative access to their machines that is required
to install most plugins.

• Dynamic and interactive: If the tool is to be used to explore
data, it should allow that data to be loaded, removed, manipu-
lated and modified with minimal effort.

• Extensible: Many labs use different data formats, standards
and requirements can change rapidly, so the tool should be able
to adapt.

• Open source: It’s easier for researchers to trust the results
they’re seeing if they can verify how the tool is functioning. If
need be, they can also extend, customize and tweak the tool to
fit their needs.

While this shift in research requirements has been taking place,
modern web standards have introduced a host of new technolo-
gies that are built directly into modern web browsers and allow

for the creation of high-performance, web-based applications
that rival much of what is available offline. Improvements to the
JavaScript language itself and the optimizations made by browser
vendors such as Google and Mozilla to their JavaScript engines
have created a base on which robust applications can be built. At
the same time, Graphical Processing Unit (GPU) access through
WebGL, and multi-threaded processing through Web Workers,
blur the lines between what is possible on native versus web
applications.

The fact that these technologies are now a part of the hyper-
connected web platform has also made it possible to consider
using visualization technologies in novel ways:

• Publication: With scientific articles now being published
online, publishers are looking for ways to disseminate
datasets and present them in more meaningful ways (Jomier

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

et al., 2011). It is now possible to replace the static visual
media of traditional print publications, such as static fig-
ures or charts, with more dynamic, interactive 2D or 3D
visualizations1.

• Distribution: Online visualization tools can also be used
as a means to distribute data, as researchers can use the
tools to explore a remote dataset directly. BrainBrowser, for
example, was used to share the MACACC dataset, as will
be discussed further in Section 4.1. TissueStack, which will
be discussed in Section 2, was used for remote visualiza-
tion of the BigBrain dataset (Amunts et al., 2013) upon its
release.

As will be discussed in Section 2, approaches to using the afore-
mentioned web technologies for visualization can be broadly split
into two categories. The first requires some back-end infrastruc-
ture to support a front-end client. This infrastructure will usually
involve some processing of the data to be served, and might also
include some proxying or database support. The second runs
completely in the browser, requiring the back end to do noth-
ing more than serve static files. BrainBrowser takes the latter
approach for the following reasons:

1. Scalability: Both approaches require that the resources avail-
able on the server be capable of handling the user load at all
times, but a fully front-end application puts a much lighter
load on those resources. For back-end infrastructure, growth
of the user base necessitates an expansion of infrastructure
resources to prevent the application from blocking. In a com-
mercial setting, where new users bring increased revenues, this
type of expansion might not be considered problematic. In
a research setting, however, where the relationship between
users and revenue is not so direct, the cost of scaling becomes
a major concern.

2. Network latency: If simple manipulations of a visualiza-
tion require continuous network traffic, the responsiveness
of the application will be bound by network latency. After
the initial load of the data to be visualized, most fully
front-end applications will no longer be dependent on the
network.

3. Flexibility: Being independent of any particular server allows
a fully front-end application to pull its data from essentially
anywhere. An application could allow users visualize data they
have stored locally on their machines without being required
to upload them to a server. There is also nothing preventing
fully front-end application from requesting data from a server
with more elaborate infrastructure, thus allowing it to benefit
from both approaches.

BrainBrowser has been developed to facilitate the exploitation
of modern web technologies for a wide range of purposes. It
exposes an application programming interface (API) that is sim-
ple enough to create a basic, interactive visualization in a few
lines of code, while being deep enough to build more com-
plex visualizations involving dynamic, on-demand fetching and

1For example: http://onpub.cbs.mpg.de/role-brocas-area-language.html

loading of remote data. It uses WebGL, the HTML5 Canvas and
Web Workers to push as much of the processing client-side as
possible, thus minimizing the effect of network lag on its usage
and eliminating the need for browser plugins. BrainBrowser is an
open-source project, meaning that its users can verify the code
directly and even modify it to fit their needs.

2. RELATED WORK
Early attempts at advanced web-based visualization required plu-
gins of one form or another, as standard web technologies could
not provide the functionality and performance required for more
advanced applications. The Java Internet Viewer (JIV, Cocosco
and Evans, 2001) is an example of this type of solution. JIV could
run as a standalone application or as a Java applet embedded in a
web page. JIV presented the user with three orthogonal slices of a
MINC volume that could be navigated by manipulating a cursor
on each of the slices.

As more advanced web standards were proposed and imple-
mented, many research groups began to show an interest in
exploiting the new robustness of the web platform for various
forms of advanced visualization. Google Body (now Zygote body,
Blume et al., 2011) was an early example of what had become
possible. Google Body renders several layers of a human body,
from muscle tissues to blood vessels, and allows layers to be
manipulated (e.g., by toggling their visibility or rendering them
transparently) to facilitate viewing.

In the domain of neuroimaging, several tools have been devel-
oped, each offering a different approach to the problem of visual-
ization. We present here a few examples that we believe exemplify
the two approaches, back-end infrastructure and fully front-end,
that were discussed in Section 1:

ParaViewWeb (Jourdain et al., 2011) functions as a web
client for ParaView2 , an open-source, server-side, parallel
data visualization framework. ParaView uses the Visualization
Toolkit3 (VTK) to generate visualizations on the server that
the ParaViewWeb client interacts with through a web service
proxy.
TissueStack4 (Lin et al., 2013) is an open-source application
for visualizing MINC and NIfTI (Cox et al., 2004) files on the
web. It is composed of an image server that tiles the volume to
be visualized, a configuration database and an HTML5-based
client for rendering the tiles.
The X Toolkit5 (XTK, Hähn et al., 2014) is an open-source,
front-end JavaScript library that, unlike the previous two
applications, does not require any back-end infrastructure.
Images can be loaded directly into the browser and rendered
using WebGL. XTK supports volume rendering, as well as
cross-sectional slicing that can be navigated programmati-
cally. It allows labels and colors to be mapped to a surface
and can also perform lower-level geometric functions such as
constructive solid geometry.

2http://www.paraview.org/
3http://vtk.org/
4https://github.com/NIF-au/TissueStack
5http://goxtk.com

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 3

http://onpub.cbs.mpg.de/role-brocas-area-language.html
http://www.paraview.org/
http://vtk.org/
https://github.com/NIF-au/TissueStack
http://goxtk.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

Papaya6, like XTK, is an open-source visualization tool that
operates completely in the browser. Unlike XTK, however,
Papaya is implemented as an independent application rather
than a library. It uses the 2D HTML5 Canvas API to imple-
ment an orthogonal viewer for NIfTI volumetric data that can
be navigated using the keyboard or mouse. Users can manip-
ulate the color mapping and thresholding of the intensity data
being displayed.

3. MATERIALS AND METHODS
3.1. CORE TECHNOLOGIES
The HTML5 Canvas element is a high-performance, scriptable
2D drawing surface. Originally introduced by Apple in their Safari
browser, it was eventually standardized by the Web Hypertext
Application Working Group7 (WHATWG). The canvas element
provides both a 2D drawing context exposing an API for draw-
ing basic 2D shapes and images, and a WebGL context exposing
an API for high-performance 3D graphics. The key aspect of the
2D API used by BrainBrowser is a set of functions for pixel-level
image processing and manipulations. The Volume Viewer makes
heavy use of this functionality to colorize and render volume slices
to the screen.

WebGL is a low-level JavaScript graphics API that makes use
of the HTML5 Canvas element to provide web pages with access
to the GPU of the client computer. WebGL provides a plat-
form for high-end, web-based 3D graphics programming without
requiring any browser plugins. The API consists of control code
written in JavaScript and GLSL shader code which runs directly
on the GPU. WebGL is designed and maintained by the Khronos
Group8. The BrainBrowser Surface Viewer makes use of WebGL
through the three.js JavaScript library.

Three.js9is a lightweight, open-source JavaScript library devel-
oped to abstract away much of the complexity of using the WebGL
API directly. It implements a scene graph and allows one to
manipulate the scene using intuitive constructs such as objects,
lights and cameras, rather than the more mathematical buffers
and matrices of the raw WebGL API. Three.js also provides intu-
itive APIs for more complex operations such as ray casting. The
BrainBrowser Surface Viewer was built using three.js.

Web Workers are a recent standard adopted by the World
Wide Web Consortium10 (W3C) and WHATWG providing an
API to run multiple JavaScript processing threads concurrently
in the same browser. Prior to the introduction of Web Workers,
one of the glaring weaknesses of JavaScript, when it came to
building performance-intensive applications, was that it was
designed to be a single-threaded language. As such, all pro-
cessing, rendering and event-handling code had to share the
same processing thread, even if running on a multi-core com-
puter. BrainBrowser makes extensive use of Web Workers to
parse large data files in threads that are separate from the
main UI and rendering threads, allowing the interface to remain

6https://github.com/rii-mango/Papaya/
7https://whatwg.org/
8http://www.khronos.org/
9http://threejs.org/
10http://www.w3.org/

responsive to the user while these heavy operations are being
performed.

3.2. BRAINBROWSER
At its core, BrainBrowser is a JavaScript library that can be
inserted into an ordinary web page. It exposes an intuitive API
to the developer that is simple enough to begin visualizing a
dataset in 5–10 lines of JavaScript code, while at the same time
being robust enough perform more complex color mapping,
thresholding or blending of datasets.

Much of this flexibility comes from the modular approach
taken in BrainBrowser’s design. The library has been built from
several independent, interconnected layers. The BrainBrowser
core contains modules and functions related to functionality
required by both the Surface Viewer and Volume Viewer: data
loading over the network or from the file system, color mapping
of intensity data, event handling, data storage and various util-
ity functions. Aside from this shared core, the Surface Viewer and
Volume Viewer each contain modules encapsulating more specific
functionality.

3.2.1. Surface viewer
Rendering a model using the BrainBrowser Surface Viewer
requires only a few method calls (Listing 1), but behind these calls
are several layers interacting to optimize performance (Figure 3):

1. Model geometry data are loaded asynchronously over the net-
work using AJAX11, or from the file system using the FileReader
JavaScript API12. Geometry data can be described in sev-
eral parts, depending on the data format, and these will be
parsed as different shapes in the Surface Viewer object model.
Different shapes can be manipulated either individually or
collectively (see item 4). Data can be in one of several sup-
ported binary or text formats commonly used in neuroimag-
ing research: MNI OBJ13, Freesurfer binary and Freesurfer
ASC14. The Surface Viewer also supports Wavefront OBJ15, as

Listing 1 | BrainBrowser API code to create an instance of the

Surface Viewer and use it to load and display surface and

intensity data.

BrainBrowser.SurfaceViewer.start("visualization-div",
function(viewer) {

viewer.render();
viewer.loadColorMapFromURL("color-map.txt");
viewer.loadModelFromURL("brain.obj" {
complete: function() {

viewer.loadIntensityDataFromURL("cortical-
thickness.txt");

}
});

});

11https://developer.mozilla.org/en-US/docs/AJAX
12https://developer.mozilla.org/en-US/docs/Web/API/FileReader
13http://www.bic.mni.mcgill.ca/users/mishkin/mni_obj_format.pdf
14http://www.grahamwideman.com/gw/brain/fs/surfacefileformats.htm
15http://en.wikipedia.org/wiki/Wavefront_.obj_file

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 4

https://github.com/rii-mango/Papaya/
https://whatwg.org/
http://www.khronos.org/
http://threejs.org/
http://www.w3.org/
https://developer.mozilla.org/en-US/docs/AJAX
https://developer.mozilla.org/en-US/docs/Web/API/FileReader
http://www.bic.mni.mcgill.ca/users/mishkin/mni_obj_format.pdf
http://www.grahamwideman.com/gw/brain/fs/surfacefileformats.htm
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

FIGURE 3 | Surface Viewer workflow for loading surface geometry.

well as a custom JSON16-based format we developed to facil-
itate exporting surfaces out of external applications and into
the Surface Viewer. Supporting these formats directly, rather
than requiring they be converted beforehand, is what allows
the Surface Viewer to remain independent of any server-side
infrastructure that would be necessary to preprocess them.

2. Geometry data are sent to one of several Web Workers for
parsing. Each supported file type in the Surface Viewer is asso-
ciated with a Web Worker that can be spawned to convert a
given geometry description into the geometry object model
that the Surface Viewer uses internally (Listing 2). This archi-
tecture, in which one Web Worker is responsible for each data
format, exposes a plugin framework that can be used to add
support for other data formats. Adding support for a new for-
mat requires only the creation of a Web Worker script that can
convert the new format into the Surface Viewer object model.

3. Once data are converted to the Surface Viewer object model,
a final step is required before the data can be displayed. One
of the weaknesses of the current WebGL specification is that
indices describing how to build a mesh from individual ver-
tices are limited to 16 bits in size. This puts a limit of 65536
vertices on indexed models in WebGL. The Surface Viewer
is meant to handle datasets that fall well outside this limit
(the DTI sample on the BrainBrowser website17, for exam-
ple, contains 560674 vertices). To get around this problem,
BrainBrowser will send model data to a second Web Worker
that de-indexes the model data, essentially “unrolling” the
indices so that simply traversing the list of vertices is sufficient
to draw the model.

4. Once model data are prepared, they are passed to a high-
performance three.js BufferGeometry object to prepare them
for display. The Surface Viewer supports displaying models
made out of polygons (used for most surfaces) or lines (used
for tractography data). If normals or vertex colors are provided
in the model description, they will also be passed to the

16https://developer.mozilla.org/en-US/docs/Glossary/JSON
17https://brainbrowser.cbrain.mcgill.ca/surface-viewer#dti

Listing 2 | The BrainBrowser Surface Viewer object model.

{
type: ("line" | "polygon"),
name: "...",
vertices: [...],
normals: [...],
colors: [...],
shapes: [
{
name: "...",
indices: [...]

},
{
name: "...",
indices: [...]

}
]

}

BufferGeometry. Otherwise, the vertex colors will be set to
gray, and the normals will be inferred from the geometry
using available three.js utility methods. If several shapes were
described in the input data, each shape will get its own
BufferGeometry object. This allows each shape to be manipu-
lated individually (to apply different opacity levels to different
parts, for example) or collectively (for rotating the model as a
whole, for example).

If per-vertex intensity data are to be mapped to a loaded model,
three additional steps are taken (Figure 4):

1. A color map file is loaded. Similarly to the model data, this can
be either over the network or from the local file system. Since
parsing color map files is an inexpensive operation, however,
it is done directly in the main thread, rather than in a Web
Worker.

2. The intensity data are loaded and parsed. Loading, as with
the other forms of data described, can occur over the net-
work or from the local file system. Parsing is done similarly to

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 5

https://developer.mozilla.org/en-US/docs/Glossary/JSON
https://brainbrowser.cbrain.mcgill.ca/surface-viewer#dti
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

the geometry data, with separate Web Workers being imple-
mented for each supported intensity data type. As with the
geometry, this creates a plugin framework for intensity data
support, making it straightforward to add support for new for-
mats. Currently, plain-text, Freesurfer binary and Freesurfer
ASC intensity data formats are supported.

3. The color map is used to assign a color to the intensity
scalar associated with each vertex. The mapped colors are then
applied to the BufferGeometry color buffer, which updates the
model’s colors on a per-vertex basis.

Once a model is loaded and colorized, it can be manipulated in
several ways:

• Intuitive mouse and touch controls to rotate, pan and zoom.
• A wireframe view that provides a clearer view of a model’s

geometry.
• Setting opacity on different parts of the model to reveal internal

elements.
• Loaded intensity data can be manipulated in various ways

such as setting intensity thresholds for color mapping, blending
multiple datasets and programmatically modifying the dataset
itself.

A key feature of the Surface Viewer is the picking mechanism that
it implements. A simple method call that takes arbitrary x and y
coordinates on the canvas (defaulting to the current mouse posi-
tion) will return information about the vertex rendered closest to
the given point. Returned data includes:

• The index of the vertex in the list of vertices.
• The x, y, and z coordinates of the selected vertex.
• The specific shape in the model that contains the selected

vertex.

This picking mechanism makes it possible to implement more
complex interactions with a rendered model based on the spe-
cific vertex with which a user is interacting. The MACACC dataset
viewer that will be discussed in Section 4.1, for example, uses

picking to dynamically load intensity data based on the selected
vertex.

The Surface Viewer also implements an annotation system that
is built on top of the picking mechanism. Annotations allow a
user to select a specific vertex and associate arbitrary data with
it: links, images, charts, text, etc. The annotation is rendered as a
colored dot on the model, and the user can later click on the dot
to retrieve the annotation. Internally, annotations are stored in a
basic JavaScript object that can easily be converted to JSON for
persistent storage in a back-end database.

3.2.2. Volume viewer
Like the Surface Viewer, the Volume Viewer only requires a few
simple method calls to render a volume to the screen (Listing 3).
Behind the scenes, the following steps are taken (Figure 5):

1. A color map is loaded via the network or the local file sys-
tem. Unlike the Surface Viewer, the Volume Viewer requires
the color map to be loaded beforehand as the volume is pure
scalar intensity data, without any explicit geometry, so there
can be no visualization without a color map.

2. A volume is loaded over the network or from the local file
system. This data will be loaded in two parts: (a) the raw inten-
sity data, (b) header information describing the dimensions of
the data and relationship between the voxel and world coordi-
nate spaces. Currently, only MINC data are directly supported,
but similarly to the Surface Viewer, volume preparation

Listing 3 | BrainBrowser API code to create an instance of the

Volume Viewer and use it to load and display a MINC volume.

BrainBrowser.VolumeViewer.start("visualization-div",
function(viewer) {
viewer.render();
viewer.loadDefaultColorMapFromURL("color-map.txt");
viewer.loadVolume({
type: "minc",
header_url: "volume.mnc.header",
raw_data_url: "volume.mnc.raw"

});
});

FIGURE 4 | Surface Viewer workflow for coloring a surface based on per-vertex intensity data.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

FIGURE 5 | Volume Viewer workflow for loading a volume.

is done with a plugin architecture that makes it straightforward
to add support for other formats.

3. The color map is used to assign a color to the intensity
scalar associated with each voxel. These colors are used the
create the image rendered for a given slice through the
volume.

4. Other options can also be set, including setting the panel size
and creating an overlay view of the loaded models.

Once a volume is loaded, three orthogonal slices of the volume
along the sagittal, transverse and coronal planes will be displayed
on three separate canvases. Each canvas also renders a cursor
indicating the current display position of the volume along the
given plane. The view of the volume can be manipulated in the
following ways:

• Moving the cursor using mouse or touch controls updates the
displayed orthogonal slices in real time.

• If the volume is four-dimensional, the time dimension can be
manipulated programmatically.

• Keyboard controls are also available for all dimensions to
facilitate more precise navigation through the volume.

• The current position of cursor in the in volume can be retrieved
in both voxel and world coordinates. The Volume Viewer
provides methods that perform the conversion automatically.

• The distance in world coordinates between two points can be
measured.

• Intensity thresholds can be set to focus on particular ranges.

If more than one volume is loaded, then the following function-
alities also become available:

• The volumes can be combined into an overlaid view for com-
parison. The blending weights for each volume can be set to
favor one or the other.

• The cursors can be synchronized across volumes to facilitate
comparisons.

Any of these functionalities can be hooked into standard user
interface callbacks for events such as clicks or text input to create

more complex applications. To simplify the creation of such user
interfaces when multiple volumes are loaded, the Volume Viewer
also provides a templating mechanism that allows a single UI
template to be defined and repeatedly instantiated for multiple
volumes. The developer simply creates a template using standard
HTML. When loading the volumes, the Volume Viewer fetches
the template, instantiates the UI and then inserts the display
canvases at the appropriate location.

4. RESULTS
BrainBrowser has already been deployed for web-based visu-
alization on a variety of platforms. Here, we will dis-
cuss three cases that we believe highlight BrainBrowser’s
strengths.

4.1. THE MACACC DATASET
The MACACC Dataset (Lerch et al., 2006) is a database of struc-
tural correlations across the cortex derived from the International
Consortium for Brain Mapping (Mazziotta et al., 2001). Cortical
thickness at each of 81924 3D locations were calculated using
the CLASP algorithm (Kim et al., 2005). The MACACC Dataset
contains maps for all cortical vertices for each of three vertex-
wise morphological variables: thickness, area and volume. The
total number of permutations encoded in the dataset is 81924
vertices × 9 blurring kernels × 3 morphological indices × 3
statistical indices for a total of 6.3 million data maps, requiring
over 1TB of storage space. The MACACC dataset presents an
ideal use case for BrainBrowser in that its size makes it extremely
inconvenient to distribute or to visualize using traditional, locally
installed tools. These tools would generally necessitate the trans-
fer of the entire dataset to the machine on which it is to be
visualized. BrainBrowser, on the other hand, makes it trivial
to explore this dataset in an intuitive manner. The MACACC
Viewer18 (Figure 6) uses the picking mechanism described in
Section 3.2.1 to fetch vertex information based on the point where
the user clicks on the screen. This vertex information is used
to make a network request for the correlation map associated
with the selected vertex and then use it to colorize the model.

18https://brainbrowser.cbrain.mcgill.ca/macacc-viewer

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 7

https://brainbrowser.cbrain.mcgill.ca/macacc-viewer
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

FIGURE 6 | The MACACC Viewer: A viewer built using the BrainBrowser Surface Viewer to visualize the MACACC dataset (Lerch et al., 2006).

This dynamic fetching means that only the portion of the 1TB
MACACC dataset associated with the selected vertex (approxi-
mately 455kB) is transferred over the network, thus minimizing
bandwidth usage and increasing accessibility.

4.2. CBRAIN
CBRAIN (Sherif et al., 2014) is a distributed, collaborative, web-
based, grid computing platform developed at McGill University.
CBRAIN has been in active production since 2009 and currently
has over 250 users from 53 cities in 21 countries around the world.
CBRAIN is a complex system comprised of many interconnected
components, but there are four components in particular that are
relevant to the discussion here:

• Users interact with CBRAIN through a web inter-
face that can be accessed through any modern web
browser.

• Data are connected to CBRAIN through Data Providers, which
are essentially storage devices that might be at any controlled,
secure, network-accessible location.

• CBRAIN is connected to several High Performance
Computing Centers (HPCs) at several locations around the
world.

• Installed on the HPCs are data-processing tools that researchers
use to analyze or process their data.

The current production deployment of CBRAIN consists of 11
HPCs in Canada, Germany and Korea. CBRAIN provides over
100TB of storage on its central servers, and several external Data
Providers for specific projects or institutions are also registered
with the system. A typical workflow for a CBRAIN user might
include the following steps:

1. Register data with CBRAIN. This can be done by either cre-
ating a new Data Provider or by uploading data to one that
already exists.

2. Visualize data as a preparatory quality control step before
submitting them to an HPC.

3. Submit a job to an HPC through the web interface. This typ-
ically involves selecting the processing tool one wishes to use
and the HPC on which to run the job.

4. Once the job is complete, results are saved back to the user’s
account.

5. Visualize results as a means of ensuring their quality or other-
wise interpreting them.

Early in CBRAIN’s development, visualizing data for the sec-
ond and final steps was found to be problematic. It would often
require downloading the data to visualize them locally. The Java
Image Viewer (JIV) was used for a time to allow users to view
images online. Among other problems, the requirement that users
install a Java plugin on their machine was an issue for the reasons
outlined in Section 1. BrainBrowser was an ideal solution in this
situation as it could be integrated directly into the web-based UI
of the platform without requiring a plugin. The Volume Viewer
has now completely replaced JIV for visualizing MINC files in
CBRAIN, and the Surface Viewer is now used to visualize surface
files produced by the CIVET processing pipeline (Ad-Dab’bagh
et al., 2006).

4.3. LORIS
LORIS (Das et al., 2011) is a web-based database system pro-
viding infrastructure to automate the flow of clinical data for
complex multi-site neuroimaging studies. Initially developed
to manage data for the NIH MRI Study of Normal Brain

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

Table 1 | Feature comparison between BrainBrowser, XTK and Papaya.

View surfaces View volumes Web workers Picking Annotations Plugin data format support Load local files

BrainBrowser � � � � � � �
XTK � � �
Papaya � �

Development (Evans, 2006), LORIS has since been adapted
and implemented in numerous decentralized large-scale studies
internationally, such as 1000BRAINS19 (Caspers et al., 2014,
Germany), IBIS20 (USA), NeuroDevNet21 (Canada),
GUSTO22(Singapore) and NIHPD23(USA).

As an example of the type of data LORIS handles, the NIH
MRI Study of Normal Brain Development (NIHPD) used LORIS
to house and distribute 3TB of native and processed data for
over 2000 MRI acquisitions. Medical doctors visualized this data
throughout the project to assess the quality of incoming scans. As
with CBRAIN, visualization using traditional tools was problem-
atic for users of LORIS, and like CBRAIN, JIV was used for a time
as a solution that was imperfect for the reasons mentioned above.
Currently, MINC volume files are visualized in LORIS using the
Volume Viewer, and the Surface Viewer is used to visualize any
compatible data that are stored in the system.

5. DISCUSSION
The advent of big data in neurological research, and the new
methodological approaches it necessitates, have lead to the devel-
opment of large-scale, distributed platforms to facilitate its explo-
ration. Modern web technologies such as HTML5 and WebGL,
have made it possible to create web-based tools that integrate
seamlessly into these new environments. Conversely, newly avail-
able technologies have opened doors to novel ways of using
research data that were not previously possible. Interactive figures
in online articles and online data exploration are two examples of
such novel usage that were presented here.

BrainBrowser presents itself as a lightweight, flexible means to
easily exploit modern web technologies for a variety of uses. A
simple visualizer with full interactivity and touch controls can
be embedded in a web page with just 5–10 lines of JavaScript
code. On the other hand, the robustness of BrainBrowser can be
exploited to create a full visualization user interface with controls
to load intensity data, switch color mappings, set intensity thresh-
olds, etc. As shown in the MACACC Viewer example, even more
complex interactions can be built on top of BrainBrowser, with
data being loaded interactively to allow for dynamic exploration
of very large datasets.

Compared to the other web visualization solutions presented
in Section 2, BrainBrowser differentiates itself on several fronts.

19http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/
1000_Gehirne_Studie_node.html
20http://www.ibis-network.org
21http://www.neurodevnet.ca
22http://www.gusto.sg
23http://pediatricmri.nih.gov/nihpd/info/index.html

BrainBrowser operates completely in the browser, which sets it
apart from back-end infrastructure solutions like ParaViewWeb
and TissueStack. A comparison of BrainBrowser to XTK and
Papaya, the two other fully front-end solutions that were dis-
cussed, is given in Table 1.

BrainBrowser’s modular construction, and the fact that its
source code is freely available, make it easily extensible and modi-
fiable to suit the needs of its users. New data-parsing Web Workers
can easily be added to BrainBrowser to allow it to support new
file formats. This, in fact, ties into one of the major goals for
the future of BrainBrowser: to continue building our open-source
development community24so it can directly develop the features it
requires, including support for new file formats.

Moving forward, we would like to explore using BrainBrowser
to visualize larger datasets (the BigBrain dataset, for example) that
are not as granular as the MACACC dataset but are too large
to be loaded directly into the browser. This would likely entail
connecting a BrainBrowser-based application to a server that per-
forms more back-end processing of the data, as was discussed
in Section 1. There is also an enormous space for collabora-
tive data exploration that has yet to be investigated. Using new
technologies such as Web Sockets25 or WebRTC26, it is possible
to create real-time collaborative environments that will facilitate
the exploration of shared data in ways that have been impossible
until now.

5.1. DATA SHARING
All source code for BrainBrowser is freely available on
GitHub27 under the GNU Affero General Public License v328.
Demonstrations of BrainBrowser functionality are available on
the BrainBrowser website29.

ACKNOWLEDGMENT
This work has been funded by CANARIE, Canada’s Advanced
Research and Innovation Network30, and McGill University. In
addition to the authors, we would like to thank BrainBrowser’s
open source development community for their contributions31.
We would also like to thank Samir Das and Penelope Kostopoulos
for their help in determining feature requirements for the Volume
Viewer.

24https://github.com/aces/brainbrowser/graphs/contributors
25https://developer.mozilla.org/en/docs/WebSockets
26https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
27https://github.com/aces/brainbrowser
28http://www.gnu.org/licenses/agpl-3.0.html
29https://brainbrowser.cbrain.mcgill.ca
30http://www.canarie.ca
31https://github.com/aces/brainbrowser/graphs/contributors

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 9

http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.ibis-network.org
http://www.neurodevnet.ca
http://www.gusto.sg
http://pediatricmri.nih.gov/nihpd/info/index.html
https://github.com/aces/brainbrowser/graphs/contributors
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
https://github.com/aces/brainbrowser
http://www.gnu.org/licenses/agpl-3.0.html
https://brainbrowser.cbrain.mcgill.ca
http://www.canarie.ca
https://github.com/aces/brainbrowser/graphs/contributors
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. BrainBrowser

REFERENCES
Ad-Dab’bagh, Y., Lyttelton, O., Muehlboeck, J. S., Lepage, C., Einarson, D.,

Mok, K., et al. (2006). “The CIVET image-processing environment: a fully
automated comprehensive pipeline for anatomical neuroimaging research,” in
Proceedings of the 12th Annual Meeting of the Organization for Human Brain
Mapping (Florence), S45.

Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É.,
et al. (2013). BigBrain: an ultrahigh-resolution 3d human brain model. Science
340, 1472–1475. doi: 10.1126/science.1235381

Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R. W., et al.
(2011). “Google body: 3d human anatomy in the browser,” in ACM SIGGRAPH
2011 Talks (Vancouver), 19.

Caspers, S., Moebus, S., Lux, S., Pundt, N., Schütz, H., Mühleisen, T. W., et al.
(2014). Studying variability in human brain aging in a population-based
German cohortrationale and design of 1000BRAINS. Front. Aging Neurosci.
6:149. doi: 10.3389/fnagi.2014.00149

Cocosco, C. A., and Evans, A. C. (2001). “Java internet viewer: a WWW tool for
remote 3d medical image data visualization and comparison,” in Medical Image
Computing and Computer-Assisted Intervention (Utrecht), 1415–1416.

Cox, R. W., Ashburner, J., Breman, H., Fissell, K., Haselgrove, C., Holmes,
C. J., et al. (2004). “A (sort of) new image data format standard: NiFTI-
1,” in 10th Annual Meeting of the Organization for Human Brain Mapping
(Budapest), 13–17.

Das, S., Zijdenbos, A. P., Harlap, J., Vins, D., and Evans, A. C. (2011). LORIS: a web-
based data management system for multi-center studies. Front. Neuroinform.
5:37. doi: 10.3389/fninf.2011.00037

Evans, A. C. (2006). The NIH MRI study of normal brain development. Neuroimage
30, 184–202. doi: 10.1016/j.neuroimage.2005.09.068

Hähn, D., Rannou, N., Ahtam, B., Grant, E., and Pienaar, R. (2014). “Neuroimaging
in the browser using the X Toolkit,” in Frontiers in Neuroinformatics Conference
Abstract: 5th INCF Congress of Neuroinformatics (Munich).

Jomier, J., Jourdain, S., Ayachit, U., and Marion, C. (2011). “Remote visualization
of large datasets with MIDAS and ParaViewWeb,” in Proceedings of the 16th
International Conference on 3D Web Technology (Paris), 147–150.

Jourdain, S., Ayachit, U., and Geveci, B. (2011). Paraviewweb, a web frame-
work for 3d visualization and data processing. Int. J. Comput. Inf. Syst.
Ind. Manage. Appl. 3, 870–877. Available online at: http://www.mirlabs.org/
ijcisim/regular_papers_2011/Paper98.pdf

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald,
D., et al. (2005). Automated 3-d extraction and evaluation of the inner
and outer cortical surfaces using a Laplacian map and partial volume

effect classification. Neuroimage 27, 210–221. doi: 10.1016/j.neuroimage.2005.
03.036

Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd,
J., et al. (2006). Mapping anatomical correlations across cerebral cortex
(MACACC) using cortical thickness from mri. Neuroimage 31, 993–1003. doi:
10.1016/j.neuroimage.2006.01.042

Lin, M. K., Nicolini, O., Waxenegger, H., Galloway, G. J., Ullmann, J. F., and Janke,
A. L. (2013). Interpretation of medical imaging data with a mobile applica-
tion: a mobile digital imaging processing environment. Front. Neurol. 4:85. doi:
10.3389/fneur.2013.00085

Margulies, D. S., Böttger, J., Watanabe, A., and Gorgolewski, K. J. (2013).
Visualizing the human connectome. Neuroimage 80, 445–461. doi:
10.1016/j.neuroimage.2013.04.111

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A
probabilistic atlas and reference system for the human brain: international con-
sortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
356, 1293–1322. doi: 10.1098/rstb.2001.0915

Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R., et al. (2014).
CBRAIN: a web-based, distributed computing platform for collaborative neu-
roimaging research. Front. Neuroinform. 8:54. doi: 10.3389/fninf.2014.00054

Vincent, R. D., Janke, A., Sled, J. G., Baghdadi, L., Neelin, P., and Evans, A. C.
(2004). “MINC 2.0: a modality independent format for multidimensional
medical images,” in 10th Annual Meeting of the Organization for Human Brain
Mapping (Budapest).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 October 2014; accepted: 17 December 2014; published online: 13 January
2015.
Citation: Sherif T, Kassis N, Rousseau M-É, Adalat R and Evans AC (2015)
BrainBrowser: distributed, web-based neurological data visualization. Front.
Neuroinform. 8:89. doi: 10.3389/fninf.2014.00089
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2015 Sherif, Kassis, Rousseau, Adalat and Evans. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 89 | 10

http://www.mirlabs.org/ijcisim/regular_papers_2011/Paper98.pdf
http://www.mirlabs.org/ijcisim/regular_papers_2011/Paper98.pdf
http://dx.doi.org/10.3389/fninf.2014.00089
http://dx.doi.org/10.3389/fninf.2014.00089
http://dx.doi.org/10.3389/fninf.2014.00089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	BrainBrowser: distributed, web-based neurological data visualization
	Introduction
	Related Work
	Materials and Methods
	Core Technologies
	BrainBrowser
	Surface viewer
	Volume viewer

	Results
	The MACACC Dataset
	CBRAIN
	LORIS

	Discussion
	Data Sharing

	Acknowledgment
	References

