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Data-driven neuroscience research is providing new insights in progression of
neurological disorders and supporting the development of improved treatment
approaches. However, the volume, velocity, and variety of neuroscience data generated
from sophisticated recording instruments and acquisition methods have exacerbated
the limited scalability of existing neuroinformatics tools. This makes it difficult for
neuroscience researchers to effectively leverage the growing multi-modal neuroscience
data to advance research in serious neurological disorders, such as epilepsy. We
describe the development of the Cloudwave data flow that uses new data partitioning
techniques to store and analyze electrophysiological signal in distributed computing
infrastructure. The Cloudwave data flow uses MapReduce parallel programming
algorithm to implement an integrated signal data processing pipeline that scales
with large volume of data generated at high velocity. Using an epilepsy domain
ontology together with an epilepsy focused extensible data representation format
called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data
heterogeneity and is interoperable with existing neuroinformatics data representation
formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using
a 30-node cluster installed with the open source Hadoop software stack. The results
demonstrate that the Cloudwave data flow can process increasing volume of signal
data by leveraging Hadoop Data Nodes to reduce the total data processing time.
The Cloudwave data flow is a template for developing highly scalable neuroscience
data processing pipelines using MapReduce algorithms to support a variety of user
applications.

Keywords: electrophysiological signal data, epilepsy research, MapReduce, cloudwave signal format, epilepsy
and seizure ontology

Introduction

Electrophysiological signal data, such as electroencephalogram (EEG) and electrocardiogram
(ECG), are critical to both neuroscience research and patient care (Bartolomei et al., 2008;
Wendling et al., 2010). For example, EEG is recorded using electrodes placed on the surface
or inside the brain to record electrical activity, which include detection of seizure events,
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location of seizure, and seizure signal characteristics. EEG
signal data plays a key role in neurological disease treatment,
for example it is used as gold standard for identifying the
seizure onset zone in focal epilepsy patients during presurgical
evaluation (Rosenow and Lüders, 2001). Epilepsy is the most
common serious neurological disorder affecting 65 million
persons worldwide with about 150,000 new cases diagnosed each
year in the United States alone (Epilepsy Foundation, 2014).
EEG data is used to identify the specific brain region that
can be removed to reduce or eliminate seizure occurrences.
In addition to epilepsy, electrophysiological signal data is
also used in sleep and other neurological disorder research
(Redline et al., 2013). The growing sophistication of signal
recording hardware and signal analysis techniques, for example
development of epileptogenicity index using Stereotactic EEG
and MRI data for characterizing seizure onset zone (Bartolomei
et al., 2008), has significantly increased data management
challenges for signal data. The International Neuroinformatics
Coordinating Facility (INCF) aims to address some of these
data management challenges, including development of common
data representation format and use of consistent terminological
system, through collaborative initiatives (INCF). However, the
existing neuroinformatics software tools have limited capability
to address these challenges and do not scale with increasing
volume of signal data to support user requirements (Schlögl,
2010).

For example, epilepsy patients are typically admitted for
a five-day period in an epilepsy monitoring unit (EMU)
to record electrophysiological signals from multiple channels,
which generates about 10--20 gigabytes (GB) of signal data.
The signal data is analyzed by epileptologists using standalone
signal visualization and analysis tools to detect clinical events,
for example start or end of seizures, changes in heart rate,
and signal characteristics during a seizure event (Lüders et al.,
2012). These manually identified clinical events are stored in a
separate text annotation file, whereas the signal data is usually
stored using the European Data Format (EDF; Kemp and Olivan,
2003). EDF is a de-facto standard for storing signal data with
associated metadata, such as recording details (duration of a
data record, transducer type) and the study information (patient
description), in the epilepsy community. However, EDF files
are not suitable for fast access to random segments of signal
data in response to user queries, combining data from different
channels to compose a signal montage, and efficient network
transfer to remote user applications (e.g., signal visualization). In
addition, the separate storage of clinical event annotations makes
it difficult to ensure synchronized changes with signal data,
coordinated data transfer, and integration with user applications
(Schlögl, 2010).

Existing signal data management approaches use multiple
software programs and data processing scripts that: (a) require
manual intervention at each step; (b) are difficult to maintain
and re-use across projects; and (c) have significant limitations
in terms of scalability as well as efficiency. For example, it takes
approximately 8 h to process a single EDF file using existing
signal processing tools and about 3--4 days to process all signal
data recorded during a single patient visit to the EMU. The

limitations of existing data processing tools are exacerbated by
the increasing volume of signal data collected by sophisticated
techniques, for example use of intracranial electrodes to record
signals at a high resolution. The large volume and high velocity
(rate of data generation as well as need for fast analysis) clearly
identify signal data as an example of ‘‘clinical Big Data’’ (Agrawal
et al., 2012). For example, the EMU at the Case Western
Reserve University Neurology Department has generated 20
terabytes (TB) of data in the past 3 years and the rate of data
collection is increasing each year. This requires the development
of highly scalable signal processing and storage techniques using
distributed and parallel computing infrastructure that can keep
pace with signal Big Data.

In addition to the volume and velocity of signal data,
there is a clear need to address the challenge of variety in
signal data, which is often generated at different sites using
disparate recording protocols. The use of heterogeneous terms
to describe clinical events and signal metadata also make
it difficult to ensure consistent interpretation of signal data
annotations and support data sharing or integration. Consistent
use of terminology is specifically important in the epilepsy
community due to the well-known challenges in epilepsy
classification with its inherent complexity and requirements
of different stakeholders (Berg et al., 2010; Lüders et al.,
2012). The role of well-defined terminological system has also
been highlighted to enhance the secondary use of biomedical
data (Holdren and Lander, 2010). A common terminological
system modeled using formal knowledge representation
language, for example domain ontologies, will support easier
data sharing and development of re-usable neuroinformatics
tools.

Related Work
The existing work on electrophysiological signal data
management can be divided into two categories: (a) Data
Representation Formats; and (b) Data Processing Tools.
Although there is no existing standard for signal data
representation, there are a large number of data formats
developed by instrument vendors, researchers, and different
neuroscience projects (Schlögl, 2010; Sobolev et al., 2014a). Signal
data representation formats need to meet the requirements of
multiple stakeholders and address multiple challenges, including
the inherent complexity of signal data such as different sampling
rates and scaling factors (Schlögl, 2010). The General Data
Format (GDF), which is part of the BioSig platform (Vidaurre
et al., 2011), was proposed to meet several of these requirements,
such as representing all physical units of the signal and multiple
binary data types (Schlögl, 2006). Similarly, the Neuroscience
Electrophysiology Object (NEO) is a well-known object-
oriented data representation format with extensive Application
Program Interface (API) support implemented in the Python
programming language (Garcia et al., 2014). The NEO format
supports representation of both signal metadata, for example
sampling intervals and brain location for signal recording
together with the signal data.

The German Neuroinformatics Node (G-Node) integrates
the NEO format with the open metadata Markup Language
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(odML; Grewe et al., 2011) to define the GNData format for
use in a data management platform (Sobolev et al., 2014b).
In addition to the data format, the GNData signal data
management platform aims to develop a common storage
layer with a generic API based on Representation State
Transfer (REST) web services for signal data annotation and
access control (Sobolev et al., 2014a). The GNData platform
also uses the Hierarchical Data Format (HDF5) (Hierarchical
Data Format (HDF5), 2014), which has generated a lot of
interest in the neuroinformatics community as a potential
common representation standard, to store the signal data. The
INCF dataspace is a cloud-based signal data storage platform
that supports exchange and storage of signal data using the
Integrated Rule-Oriented Data System (iRODS) software (INCF
International Neuroinformatics Coordination Facility (INCF),
2014). The Carmen project has developed a workflow tool to
support analysis of neuroscience data in a virtual laboratory using
a library of services and tools based on the Neurophysiology Data
translation Format (NDF; Weeks et al., 2013). The Neuroscience
Information Framework (NIF) has created an ontology-based
resource describing many neuroscience terms, for example
diseases and brain anatomy, which can be used as starting
point for reconciling terminological heterogeneity (Imam et al.,
2012).

Some recent projects have identified the need to develop a
neuroscience domain ontology to standardize the terminology
used for signal data annotation (Mouček et al., 2014). Ontologies
are widely used as reference terminology in the biomedical
community to standardize terms and support knowledge
discovery over ontology-annotated data (Ashburner et al., 2000;
The National Center for Biomedical Ontology, 2014). However,
the proposed Ontology for Experimental Neuroscience (OEN)
is not publicly available for review and evaluation at present. In
addition, there is no available documentation demonstrating the
use of OEN in any existing project, including the EEG/ERP portal
(Mouček et al., 2014). At present, we are not aware of any existing
work that uses an ontology-based scalable computing approach
to develop an integrated data flow for signal processing, which
addresses the three challenges of volume, velocity, and variety in
signal data management. We describe the Cloudwave data flow
in this paper that aims to address these challenges by using a
MapReduce-based signal processing algorithm together with an
epilepsy domain ontology for signal data annotation.

Cloudwave Project: Managing
Electrophysiological Signal Big Data
The Cloudwave project is being developed as part of a
multi-center epilepsy research project to study the potential
biomarkers of sudden unexpected death in epilepsy (SUDEP;
Lhatoo, 2014) The three primary aims of the Cloudwave
project are to: (a) develop scalable neuroinformatics data
processing and storage approaches using parallel programming
over distributed computing infrastructure; (b) use domain
ontology together with flexible data representation format for
data integration and analysis; and (c) develop a Web browser-
based visualization and query interface to support multi-
center collaborative research. The Center for SUDEP Research

(CSR) has been funded by the U.S. National Institutes of
Neurological Disorders and Stroke (NINDS), which brings
together domain expertize in human and animal models of
epilepsy to advance SUDEP research (Lhatoo, 2014). The CSR
builds on the earlier Prevention and Risk Identification of
SUDEP Mortality (PRISM) project, which involved EMUs at the
University Hospitals Case Western Reserve University (CWRU),
the Ronald Reagan Medical Center (University of California, Los
Angeles), the Northwestern Memorial Hospital (Chicago), and
the National Hospital for Neurology and Neurosurgery (London,
UK) (Lhatoo, 2011).

In earlier work, we have described the development of
the Cloudwave signal visualization user interface (Jayapandian
et al., 2013b) and initial results from using parallel computing
approach to extract channel-specific signal data from EDF files
(Jayapandian et al., 2013a). In this paper, we describe:

1. Development and evaluation of an integrated signal
data processing pipeline implemented using MapReduce
programming approach to support user application, such as
signal visualization;

2. Define a flexible signal data partitioning technique that
support processing and transfer of large volume of signal data
in a distributed computing environment; and

3. Development of a new epilepsy-focused Cloudwave Signal
Format (CSF) that uses domain ontology for signal data
annotation and is compatible with existing representation
formats, such as HDF5 and NEO.

The rest of the paper is organized as follows: Section Material
and methods describes the components of the Cloudwave
data flow, including data partitioning technique, MapReduce
algorithm, the CSF, and the epilepsy domain ontology.
Section Results describes the results of our evaluation that
demonstrates the flexibility of the Cloudwave data partitioning
technique and scalability of the data flow. Section Discussion
discusses the applicability of the Cloudwave data flow in
existing neuroscience data management projects and the wider
neuroinformatics community followed by conclusion in Section
Conclusion.

Material and Methods

Figure 1 provides an overview of the different phases of
neuroscience data generation and management in an EMU,
which involves data acquisition, storage, and analysis using
multiple informatics tools. As part of the PRISM project, we
have developed an ontology-driven patient information capture
system called OPIC (Sahoo et al., 2012) and a clinical text-
processing tool for clinical documents called EpiDEA (Cui
et al., 2012). The Cloudwave project is complementary to
these tools and aims to process EDF files into self-descriptive
objects, which can be stored in a high performance distributed
file system and support fast access to random segments of
signal data. The data flow is initiated after a user deposits
one or more EDF file in a specified folder location, which is
regularly polled by a ‘‘server process’’. The second phase of
the data flow partitions the signal data into smaller fragment
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FIGURE 1 | Data acquisition and management in Epilepsy Monitoring
Unit (EMU). Multiple modalities of data are generated during patient stay in an
EMU, including electrophysiological signal data. Three neuroinformatics tools
have been developed as part of the PRISM project: (a) OPIC for patient
information collection, (b) EpiDEA for clinical text processing of discharge

summaries and related documents; and (c) Cloudwave for managing signal
data. The Cloudwave data flow uses MapReduce and distributed file system to
store and process signal data for scalability. The data processed and generated
from the Cloudwave data flow is consumed by a Web browser-based signal
visualization interface.

that is used by the MapReduce algorithm to generate CSF data
objects. The CSF data objects consist of signal data, metadata,
and epilepsy domain ontology-based signal annotations. In
the final phase, CSF data objects are stored in a high
performance distributed file system that supports different
user applications, such as the Cloudwave signal visualization
interface.

Scalable Electrophysiological Signal Data
Processing Using MapReduce
MapReduce is a well-known and widely used parallel
programming approach for large-scale data processing and
analytical tasks in Web search engines and scientific data
processing (Dean and Ghemawat, 2010). The MapReduce
approach uses a simple two-step programming model consisting
of the ‘‘map’’ and ‘‘reduce’’ functions for data processing and
aggregation respectively. A map function generates a set of <key,
value> pairs for each input data record, which are grouped into
output records based on a common key. A partition function
assigns each output record with common key to a reducer
function that aggregates all values with common key and
generates the final output record. MapReduce algorithms are
usually implemented with multiple map and reduce functions
that are executed on different computing nodes. A shuffle
function transfers the output records from map functions to
appropriate reduce functions based on the mapping of keys
to reducers by the partition function (Dean and Ghemawat,
2010).

This two-step programming approach can be generalized
to process any type of data and it can be executed multiple
times for multi-step data processing workflows. MapReduce
algorithms are usually implemented over distributed file system,
such as the open source Hadoop Distributed File System
(HDFS; Shvachko et al., 2010). HDFS is a high performance
file system deployed in a distributed computing platform that
uses data replication and parallel file operations to support
reliable storage and fast access to large volumes of data. In
contrast to traditional desktop file system, HDFS is designed
to manage large volumes of heterogeneous data and it can
easily scale with increasing volume of data by adding new
computing nodes as required. The Cloudwave data flow leverages
these features of the open source Hadoop technology stack to
efficiently process large volumes of signal data and support
reliable storage.

Signal Data Processing and Flexible Data Partitioning
Technique
Signal visualization applications usually extract and render
signal data from a single channel or group of channels,
which constitutes a signal montage. For example, six standard
montages (M1 to M6) are used for epilepsy signal data analysis.
However, an EDF file stores signal data in contiguous set
of samples recorded from all channels in a given session
(also called EDF Data Record), which makes it difficult to
access random signal fragments and extract data for specific
channel or montage-specific channel data. In addition, signal
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FIGURE 2 | Cloudwave data flow. EDF files generated by signal
recording instruments are deposited in pre-specified folder, which is
regularly polled by a daemon process. If one or more EDF files are
detected, the Cloudwave data flow follows multiple steps: (1) in the
pre-processing phase signal data is partitioned into fragments of specific
time duration (epoch) and stored in a new self-descriptive structure called
EDFSegment, (2) in the second phase, an EDFSegment method is invoked
to store signal data in channel-oriented order for easier composition into

signal montages, (3) in the third phase, the signal data are converted from
binary to short integer format and from digital to physical values for use by
the Cloudwave signal visualization interface, (4) in the third phase, the
EDFSegments are transformed in the Cloudwave Signal Format (CSF) data
objects, which are aggregated based on original EDF file identifier in the
last phase. The CSF data objects can be efficiently transferred over the
network to the Cloudwave signal visualization module as compared to the
original EDF files.

analysis and visualization applications often require integrated
access to clinical event annotations, which are stored separately
from the EDF file. The Cloudwave data flow addresses these
challenges as well as supports the use of ontology-based
annotation by implementing data pre-processing, partitioning,
and transformation steps (Figure 2 illustrates the Coudwave data
flow). In the first step, the data flow extracts and integrates
the signal metadata with clinical event annotation into a single
data object. In the next step, the signal data corresponding
to each recording channel is extracted from EDF files and
integrated into a channel-specific signal data fragments. The data
flow transforms these data fragments into CSF with mappings
between the clinical event annotation and terms modeled in the
epilepsy domain ontology.

In the final step, the data flow converts the signal data
stored in binary format to short integer and from ‘‘digital
values’’ (generated by analog to digital signal converter) to
‘‘physical values’’ (physiological values) to meet the requirements
of the Cloudwave signal visualization interface. These data
flow steps are parallelized using MapReduce programming
approach. An initial implementation of the data flow used a

single EDF file as input to the MapReduce algorithm, which
could not be processed on the CWRU Hadoop cluster due to
lack of adequate memory in the computing nodes. A Hadoop
cluster consists of a single Master Node and multiple Data
Nodes, which execute the computational tasks in a MapReduce
algorithm (based on a master-slave configuration). The large
volume of signal data in an EDF file (about 1 GB) exhausted
the available memory on individual Data Nodes leading to
memory error. The Hadoop Java API allows partitioning the
input data into smaller sized datasets, which can be distributed
and processed in multiple Hadoop Data Nodes. However,
there is no existing technique to partition EDF files, which
requires partitioning the signal data into appropriate sized
fragments with the associated signal metadata and clinical event
annotations.

The Cloudwave data flow implemented a new ‘‘EDFSegment’’
data structure to address this requirement. An EDFSegment
object (Figure 3) consists of the clinical event annotations, study
metadata, and metadata corresponding to each channel together
with the fragments of signal data. Each fragment of signal data
corresponds to a single ‘‘epoch’’ of specific time duration, which
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FIGURE 3 | EDFSegment and CSF object. During the pre-processing
phase, the signal data from study metadata, channel-specific metadata
from EDF file is integrated with clinical event annotations and stored with
partitioned signal data (fragments corresponding to 30 s epochs). The
total number of fragments per EDFSegment is a configurable parameter
in Cloudwave data flow that can be adjusted according to available

memory in the Hadoop Data Data Nodes. In the first phase of the
MapReduce algorithm, the signal data stored as EDF Data Records are
transformed into channel oriented data. After additional data processing
steps to support the Cloudwave signal visualization module, the CSF
data objects are created using the signal data partitioning scheme of the
EDFSegments.

is a configurable parameter in Cloudwave data flow (30 s is
the default duration). A signal fragment consists of multiple
EDF Data Records (a Data Record is usually of 0.1 s duration
Kemp and Olivan, 2003). The number of signal fragments in a
single EDFSegment object is also a configurable parameter in
Cloudwave, which is specified according to the available memory
resources on individual Hadoop Data Nodes. The EDF Segment
objects are generated from EDF files during the pre-processing
phase, which allows the Cloudwave data flow to flexibly change
the volume of data assigned to each Data Node for successful
execution of the MapReduce algorithm.

MapReduce Algorithm for Processing Signal Data
The map and reduce functions require input data to be
structured as <key, value> pairs. The Cloudwave data flow
generates a unique key for each EDFSegment object based
on the file identifier and the fragment identifier with the
EDFSegment object as value. The map function implements the
data processing steps in the Cloudwave data flow over multiple
Hadoop Data Nodes, which have one or more EDFSegment
objects. The EDFSegment object keeps track of the EDF Data
Records, the order of signal fragments, and the order of channel
recording, which is converted into structural metadata in the CSF
data objects. The Cloudwave data flow uses the EDFSegment
object to store and transfer signal data across intermediate
processing steps (Figure 3 illustrates the internal structure of
the EDFSegment object before (a) and after the data processing
steps (b)). The output record of the map function uses the
channel identifier and the EDFSegment identifier as the key and
the CSF file as the value, which is used as the <key, value>
pair for the next phase of reduce function. The reduce function

uses the channel identifier as the key to aggregate all fragments
of signal data corresponding to each channel and generates a
single CSF object (the details of CSF are described in the next
section).

The use of MapReduce algorithm together with HDFS to
implement the Cloudwave data flow has multiple advantages,
including:

1. Scalability: The use of effective data partitioning techniques
and MapReduce algorithm allows the Cloudwave data flow
to leverage multiple Hadoop Data Nodes and scale with
increasing volume of data.

2. Speedup: The parallelization of the data processing steps also
allows the Cloudwave data flow to significantly reduce the
total time taken to process signal data.

3. Reliable storage and fast access: The use of HDFS for storing
the CSF files allows the Cloudwave data flow to use the HDFS
data replication feature for reliable storage and parallelized
read feature for fast access.

We demonstrate the scalability of the Cloudwave data flow
in Section 3 (Results) using de-identified signal data generated
at the CWRU EMU. In the next section, we describe the
CSF that uses the epilepsy domain ontology for signal data
annotation.

The Cloudwave Signal Format (CSF) with
Ontology-Based Semantic Annotation
The CSF is an extensible representation format based on
the Javascript Object Model (JSON; Crockford, 1999) that
is designed to address the specific data storage and analysis
requirements of the epilepsy research community. In addition
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to epilepsy, CSF can be extended with new data and metadata
fields to meet the requirements of other neuroscience and
clinical research domains, for example CSF can be used to store
polysomnography (PSG) data in sleep research. CSF consists
of two primary information elements: (1) signal metadata; and
(2) signal data, where the metadata element is divided into
three sub-elements, namely: (a) study-specific metadata, (b)
channel-specific metadata; and (c) clinical event annotations.
Each information element in the signal metadata section uses a
nested object structure of ‘‘attribute-value’’ pairs with arbitrary
levels of nesting based on application requirements. A CSF
object may be composed of additional CSF objects to support
multiple-levels of granularity (e.g., all signal recording of patient
over multiple visits), which is not supported in many existing
signal data representation formats. CSF objects can be processed
by both object model-based parsers and streaming JSON API
parsers, which are now part of standard Java (EE 7) specifications
(Java API for JSON Processing (JSR 353), 2014). The JSON
format is similar to the eXtensible Markup Language (XML) with
the flexibility to represented complex nested data but it requires
significantly less space as compared to XML (Crockford, 1999).

Figure 3 illustrates an example of CSF object with signal
metadata fields, epilepsy ontology annotations used to represent
clinical events, and fragments of signal data. Further, the
CSF object stores ‘‘structural’’ information (derived from the
EDFSegment class) for the each fragment of signal data,
including the start and end time of recording, the sequential
order of each fragment, and data type of the signal (binary or
integer). CSF supports random access to specific fragments of
signal data (based on the associated clinical events) by using
the structural information, the signal metadata, and the clinical
annotation fields. The CSF object can be used to store a single
EDF file or can be partitioned into smaller-sized CSF objects with
a variable number of signal fragments per CSF object (similar
to EDFSegment) based on the requirements of user applications
or available storage resources in HDFS. The ordering of signal
fragments in a CSF object is flexible, for example it can be
ordered in channel-oriented order or record-oriented order
(similar to EDF Data Records). The structural information in
CSF keeps track of the ordering format. The CSF representation
model is designed to be compatible with existing signal data
representation formats, specifically the HDF5 representation
format.

Interoperability Between CSF and Existing Signal
Representation Formats
The nested representation mode of CSF is similar to the
hierarchical representation model used in HDF5, which is rapidly
emerging as a popular representation format for neuroscience
data. It is important to note that CSF is not proposed to be
a generic neuroscience data model and is designed to address
specific data annotation, storage, and query requirements for
epilepsy and related neurological disorders. For example, CSF
supports combining random signal fragment from specific set
of signal channels to construct a customized montage, which
may not be required in other neurological disease domains.
HDF5 consists of two primary structures namely, groups and

datasets, which may have a list of attributes that describes user-
defined information about the groups or datasets. Similar to the
CSF model, the HDF5 attributes use a <name, value> structure
to represent the attribute (although CSF uses this approach
to represent the data objects also). The HDF5 structure stores
multiple-levels of metadata information that can be used to
interpret the data stored in a HDF5 file and pointers to other
metadata that may include data annotations. This integrated
storage of different types of metadata together with data is also
similar to the approach used in CSF, which stores three categories
of signal metadata together with signal data (described in the
previous section).

The HDF5 specification describes three storage layout
schemes to store the data on disk namely, contiguous, compact,
and chunked. The CSF data model does not specify a data
storage layout scheme as it relies on the underlying file system,
such as HDFS, to store the data. The use of ontology-based
terminology to annotate signal data in CSF is an important
feature, which makes it easier for software applications to
accurately and consistently interpret signal annotations. In
contrast to traditional use of free text annotation of signal data,
the ontology terms are well defined in a formal knowledge
representation language. The HDF5 does not describe the use
of ontology terms for data annotation, although it is possible
to re-use and add CSF <name, value> pairs to HDF5. Hence,
this comparison of the HDF5 and CSF structures demonstrates
that CSF can be considered as a specialization of HDF5 for the
epilepsy domain and it will allow the Cloudwave platform to
interoperate with tools that support HDF5.

The NEO initiative is developing an object-oriented memory-
based model with APIs to add and update neurological data
using python libraries (Garcia et al., 2014). The NEO object
model consists of 14 classes that are categorized as ‘‘data
objects’’, ‘‘containers’’, and ‘‘grouping objects’’. However, unlike
CSF the NEO APIs are implemented in Python and are
focused on Python libraries for generic neuroscience data. In
addition, the default NEO model does not support ontology-
based annotation and data partitioning, which is necessary for
use in distributed computing infrastructure. Similar to HDF5,
the NEO model consists of both data and metadata elements
with <key-value> pairs and it clusters together data into
‘‘segments’’ and ‘‘blocks’’ (types of containers), which make it
interoperable with CSF. Similar to CSF structural information,
the NEO model also supports assertions of links between
objects and implicit structural links between ‘‘container’’ and
‘‘objects’’. The NEO API currently supports interoperability
with HDF5, which can be extended to support CSF objects for
epilepsy focused applications and parallelized data processing
workflows.

Semantic Annotation Using Clinical Events Modeled
in the Epilepsy and Seizure Ontology
A domain ontology uses formal knowledge representation
language to model domain-specific terms that can be used
as a standard reference terminology for annotating data and
allow software tools to accurately interpret the annotations
(Bodenreider and Burgun, 2009). Biomedical ontologies modeled
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FIGURE 4 | Epilepsy and Seizure Ontology (EpSO) class hierarchy.
EpSO models 1350 classes related to epilepsy neurological disorders,
including the clinical event terms used to annotate signal data. The class
hierarchy of EpSO allows software application to use reasoning to improve
the quality of query results and is used in cohort query user interface called

Multi-Modality Epilepsy Data Capture and Integration System (MEDCIS).
The EpSO classes are used as reference terminology for signal data
annotation in the Cloudwave data flow, which reduces terminological
heterogeneity and facilitates data sharing and integration across epilepsy
informatics tools.

using the description logic-based Web Ontology Language
(OWL2; Hitzler et al., 2009) have been widely used for
consistent annotation of data, support data integration, and
enable knowledge discovery (Bodenreider and Stevens, 2006).
We have developed the Epilepsy and Seizure Ontology
(EpSO) as a reference terminology for epilepsy domain that
can reduce terminological heterogeneity in epilepsy-focused
neuroinformatics software tools. The EpSO domain ontology
was developed to model multiple aspects of epilepsy, including
the epilepsy syndromes, etiology, medication, seizure features,
paroxysmal events, and clinical events used to annotate signal
data (Sahoo et al., 2014). EpSO currently models 1350 classes
with properties to represent domain-specific constraints and
metadata information about the classes, which can be used
by neuroinformatics tools. For example, EpSO classes are
extensively annotated with free text labels describing user-
friendly description of the classes, commonly used alternate
labels of the class, and acronyms (e.g., ‘‘Generalized Epilepsy
with Febrile Seizure Plus’’ is annotated with its acronym
‘‘GEFS+’’).

EpSO re-uses classes from many existing biomedical
ontologies and terminology systems, such as the Foundational

Model of Anatomy (FMA; Rosse and Mejino, 2003), RxNorm
(Nelson et al., 2011), and the Neural ElectroMagnetic Ontologies
(NEMO; Dou et al., 2007). This allows EpSO to be interoperable
with existing biomedical ontologies. The current version
of EpSO models about twenty clinical events that are used
to annotate signal data, which can be broadly divided into
categories of epileptic seizures, lateralizing signs, and EEG
patterns. The clinical and EEG onset/end of seizures, EEG
suppression, pre-baseline and return to baseline are modeled
as subclasses of epso:EEGEvent (epso: represent the EpSO
namespace and resolves to the Uniform Resource Identifier
(URI)).1 The classes describing the onset and end of specific
EEG patterns, such as epso:ContinuousSlowAcitivity and
epso:IntermittentSlowActivity, are modeled as subclasses
of the epso:EEGPattern, which is also the parent class of
epso:EEGEvent.

The occurrence of lateralizing signs (e.g., ‘‘Sign of Four’’)
and motor seizure events (e.g., ‘‘Clonic Seizure’’ and ‘‘Tonic
Seizure’’) are modeled as subclasses of epso:ParoxysmalEvent
and epso:SeizureFeature respectively. Figure 4 illustrates a part

1http://www.case.edu/EpSO.owl
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of the EpSO class hierarchy modeling the clinical events. The
EpSO class URI is used in the CSF files as signal annotations
and describe the clinical events associated with the signal
recordings. The EpSO class definition together with annotation
properties, such as synonyms and text description (e.g., GEFS
+ described above), enable the Cloudwave signal visualization
interface to reconcile terminological heterogeneity in signal data
generated from disparate sources. EpSO can be extended to
model additional neurological disorders for annotating HDF5
objects, which will ensure use of standardized terminology
instead of unstructured text in neurological data annotation.
In addition, the OEN ontology can be mapped to EpSO and
re-use epilepsy-specific terms to facilitate interoperability of
OEN compliant tools with existing EpSO compliant software
tools.

Integration of Cloudwave Data Flow with Storage
and Signal Visualization Application
The primary use of the Cloudwave data flow is to support
integrated processing of signal data generated from recording
instruments and generation of CSF objects that can be
directly used by user applications, such as the Cloudwave
signal visualization module. The Cloudwave signal visualization
interface is implemented in a Web browser that can be used
by researchers from multiple institutions to access and visualize
signal data in collaborative research projects. In contrast to
existing signal visualization tools that need to be installed on
individual computers, the Cloudwave visualization interface can
be accessed over any Web browser (client side computation).
However, a Web browser is a resource constrained platform
and cannot store or process large volume of signal data (e.g.,
converting binary to integer format and digital to physical
values), which will lead to significant delay in the response time
of the visualization interface. These challenges are effectively
addressed by using CSF objects (consisting of fragments of signal
data) instead of EDF files. The configurable parameters of the
Cloudwave data flow in terms of number of signal fragments
per CSF object and duration of an epoch enable the signal
visualization interface to modify the volume of signal data
transferred to Web browser.

In previous work, we have demonstrated the advantages
of transferring fragments of signal data corresponding to the
six standard montages over the network as compared to an
unpartitioned EDF file (Jayapandian et al., 2014). In addition,
the CSF object stores signal data in integer format as physical
values (described in Section Signal Data Processing and Flexible
Data Partitioning Technique), which significantly reduces the
data processing task of the Web browser. The processing of
EDF files to generate channel-specific CSF objects was found
to improve the response time of the Cloudwave visualization
interface. In addition, the total time taken to transfer the signal
data fragments with associated metadata as well as clinical
event annotation and rendering of the signal data on the Web
browser interface was found to be consistently less for signal
data fragments (stored in CSF objects) in comparison to EDF
files (Jayapandian et al., 2014). The signal visualization interface
also used the annotation properties of EpSO classes to display

clinical events as human readable text on the signal data. As
part of our ongoing work, we are evaluating the performance
of the ontology-driven query approach in the Cloudwave signal
visualization module.

In addition to its use in the signal visualization application, the
CSF objects generated by the Cloudwave data flow is important
to address the issue of scalable storage and random access to
segments of signal data. CSF objects are well suited for storage in
distributed storage systems, such as HDFS, due to the storage of
signal data as partitioned signal fragments. As discussed earlier,
HDFS has a number of advantages as compared to traditional
file systems, including ability to scale with increasing volume of
data, support for multi-modal data types, and reliability through
use of data replication (Shvachko et al., 2010). The Cloudwave
platform can scale and reliably store the signal data as CSF objects
by adding new Hadoop Data Nodes as the volume of signal
data increases without disrupting the functioning of existing user
application. The storage of CSF in HDFS can potentially improve
the rate of data access in Cloudwave by leveraging the parallel
read feature of HDFS (Shvachko et al., 2010) and we propose to
evaluate this feature in our future work. In the next section, we
demonstrate the scalability and performance of the Cloudwave
data flow using a 30-node Hadoop cluster.

Results

The Cloudwave data flow was evaluated to demonstrate: (a)
its flexibility to support different partition schemes without
adversely affecting the performance of the data flow; and (b)
the scalability of the data processing algorithm by effectively
leveraging Hadoop Data Nodes. The evaluation experiments
were performed using de-identified signal data generated at
the University Hospital Case Medical Center EMU. The data
flow was executed over a High Performance Compute Cluster
(HPCC) at the Case Western Reserve University (CWRU) using
the open source Hadoop software (version 2.0.0). The HPCC
consists of 30 data nodes and a master node that are connected by
a 10 Gigabit Ethernet (GigE). The master node has a dual quad-
core Intel Xeon 5150 2.66 GHz processor and the data nodes have
dual quad-core Intel Xeon 5450 3.0 GHz processors with 16 GB
of memory each. The HPCC is within the CWRU firewall, which
allowed the use of de-identified patient data for evaluating the
Cloudwave Data Flow. Due to space limitation on the individual
data nodes of the HPCC, the maximum volume of signal data
used in the experiment is 25 GB, which included the clinical event
annotation and signal metadata.

Performance of Cloudwave Data Flow with
Variable-Sized Signal Data Fragments
The support for signal data partitioning is an important feature
of the Cloudwave data flow that allows it to process large EDF
files using Hadoop Data Nodes with limited memory resources
(described earlier in Section Signal Data Processing and Flexible
Data Partitioning Technique). This evaluation is to validate the
hypothesis that the number of data fragments per EDFSegment
object can be flexibly changed without affecting the overall
performance of the Cloudwave data flow. This flexibility of
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FIGURE 5 | Cloudwave data flow evaluation results with variable-sized
signal data fragments. The number of signal data fragments in an
EDFSegment object can be modified according to available memory in the
Hadoop Data Nodes. The results of this experiment demonstrate that for 25 GB
of EDF files processed on 15 and 30 Data Nodes, the change in total number of

fragments per EDFSegment does not lead to significant variations in
performance of the Cloudwave data flow. This parameter can be tuned to get
maximum improvement in performance of the Cloudwave data flow, for
example 12 and 14 signal fragments per EDFSegment object are optimal values
for 15 and 30 Hadoop Data Nodes respectively.

the data partitioning approach is important to allow the data
flow to be deployed on different types of Hadoop Data Nodes.
We evaluated the effect of different number of fragments per
EDFSegment object on the Cloudwave data flow by partitioning
25 GB of signal data and using two configurations of 15 and 30
Hadoop Data Nodes in the HPCC. Each fragment of 30 s epoch
corresponds to 0.648 MB of signal data (in binary format) and
the number of fragments per EDFSegment object was increased
(from 2 to 16 fragments) until the available memory in the
Hadoop Data Nodes was exhausted during the evaluation.

Figure 5 shows that the performance of the Cloudwave data
flow does not vary significantly with increase in the number of
signal data fragments per EDFSegment object for both the 15 and
30 Data Node configurations. The reported results are an average
of three consecutive runs with the first run executed on a cold
cache. The results demonstrate the Cloudwave data flow can be
configured to use the maximum available memory on a Hadoop
Data Node without affecting its performance. At present, the
configuration parameter is modified manually, however in future
we propose to enable the Cloudwave data flow to dynamically
adjust the fragment per EDFSegment parameter by using an error
logging mechanism. The results show that the available memory
on the CWRU HPCC Data Nodes supported a maximum of
16 signal data fragments (10.94 MB) per EDFSegment object
(although 14 data fragments give better performance results).
The results also demonstrate that the time taken to process the
data is lower for the 30 nodes configuration as compared to the 15
nodes configuration, which shows that the data flow effectively
parallelizes the computations to leverage available Hadoop Data
Nodes. In the next section, we describe a more detailed evaluation
to demonstrate the scalability of the Cloudwave data flow.

Scalability of The Cloudwave Data Flow
We evaluate the scalability of the Cloudwave data flow in
terms of: (a) ability to process increasing volume of signal data

with corresponding change in total time; and (b) ability to
leverage increasing number of Hadoop Data Nodes to reduce
the total data processing time for fixed volume of signal data.
Seven datasets of EDF files with sizes ranging from 100 MB
to 25 GB were created and the complete Cloudwave data flow
was executed during the experiment. Using the Cloudwave
partitioning techniques, two categories of the seven datasets were
generated with 8 and 16 fragments per EDFSegment object.
These 14 datasets were processed using six configurations of
Hadoop Data Nodes ranging from 1 to 30 Data Nodes to
create CSF data objects, each with 8 and 16 signal fragments.
Each combination of dataset and Data Node configurations
(14 datasets and 6 Data Node configurations) was executed
for three consecutive runs (starting with a cold cache) and the
average values are reported.

Figure 6A shows that the Cloudwave data flow scales with
increasing volume of signal data (with 8 signal fragments per
EDFSegment object) and effectively leverages the increasing
number of Hadoop Data Nodes to significantly reduce the
total data processing time. Figure 6B shows similar results
for 16 signal data fragments per EDFSegment object, which is
consistent with previous results that showed that changes in
number of fragments does not affect the performance of the
data flow (Section Performance of Cloudwave Data Flow with
Variable-sized Signal Data Fragments). The increase in Hadoop
Data Nodes from 1 to 30 improves the performance of the
data flow by 64.2% for 100 MB of data with 16 fragments per
EDFSegment object (Figure 6B) and by 63.15% with 8 fragments
per EDFSegment object (Figure 6A). The performance of the
data flow improves by smaller percentage of 27.2% for 25 GB
of data with 16 fragments per EDFSegment object (and 26.6%
for 8 fragments per EDFSegment object, Figure 6A). We are
exploring additional approaches to use greater parallelization to
improve the performance of the data flow for larger sizes of signal
data.
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FIGURE 6 | Scalability of the Cloudwave data flow with increasing size
of data. The Cloudwave data flow effectively uses multiple Hadoop Data Nodes
to scale with increasing amount of data and consistently reduces the total time
taken to process the data. The results also demonstrate that the data

partitioning approach allows the Cloudwave data flow to flexibly modify the
volume of signal data per EDFSegment (total number of signal fragments)
without adversely affecting time performance (EDFSegments with 8 (A) and 16
(B) fragments have comparable performance).

The improvement in performance of the data flow with
increase in parallelization is clear since the total data processing
time decreases as the number of Hadoop Data Nodes is increased
for the larger signal datasets. For example, as the number of Data
Nodes is doubled from 5 to 10 and from 10 to 20 for 25 GB
of data (with 16 fragments per EDFSegment), the performance
of the data flow improves by 12.5% and 14.4% respectively.
However, there is no improvement in performance of the data
flow as the number of Data Nodes is doubled from 5 to 10 and
negligible improvement of 0.02 s for increase in Data Nodes from
10 to 20 for 100 MB data (with 16 fragments per EDFSegment).
We are analyzing our current algorithm to address this issue.
It is interesting to note that there is an order of magnitude
difference between the rate of increase in data size (from 100 MB
to 25 GB) and the rate of increase in data processing time
(from approximately 15 s to 4.4 min). This slower increase in
data processing time (as compared to increase in volume of
data) can be further improved with more effective parallelization
approaches, which is part of our ongoing work in the Cloudwave
project.

Discussion

The increasing complexity of neuroscience data and especially
electrophysiological signal Big Data has made it difficult to
manage data using traditional informatics infrastructure that use
existing database models (e.g., relational database) to store and
retrieve data (Mouček et al., 2014). In addition to storage, there
is an important requirement to develop scalable neurosciences
data processing approaches that can take advantage of parallel
and distributed computing techniques for large volume of data
that is generated at a high velocity. The Cloudwave data flow
is designed to meet these two requirements and uses EpSO to
address the issue of terminological heterogeneity to facilitate data
sharing and integration. The primary features of the Cloudwave
data flow include the use of Hadoop MapReduce and HDFS
together with the flexibility to configure multiple parameters
based on the availability of resources on a Hadoop cluster. This

allows Cloudwave data flow to be deployed on different types
of Hadoop clusters and to be used as a template to develop
scalable neuroscience data processing data flow in many existing
neuroinformatics projects, such as the GNDataPlatform (Sobolev
et al., 2014a).

Similarly, the Cloudwave data flow can be integrated with
existing large data linking and sharing initiatives in neuroscience,
such as the INCF Dataspace and the International Epilepsy
Electrophysiology portal (IEEG; Wagenaar et al., 2013), for high
performance data processing and analysis. The INCF dataspace
may offer the Cloudwave data flow as a service by using the
Software as a Service (SaaS) approach, which will allow users to
process signal data using the instances of Cloudwave data flow
hosted by INCF to generate HDF5 or CSF data objects. This
service will significantly reduce the computational requirements
for users and support standard-based signal data sharing. The
IEEG portal is a large U.S National Institutes of Health (NIH)
project that stores signal data in the cloud and provides Matlab-
based tools to analyze the data (IEEG-Portal). The IEEG portal
uses the Multiscale Electrophysiology Format (MEF; Brinkmann
et al., 2009), which uses data compression, encryption, and
cyclic redundancy check for identifying data errors, to store
the data in cloud. At present, the IEEG-Portal supports the
download of datasets from the Amazon Web Services (AWS)
cloud platform and subsequent analysis using Matlab tools
(Ieeg-Portal, 2014). The integration of the Cloudwave data
flow with the IEEG-Portal will allow greater support for Java-
based signal data analysis tools and use of EpSO classes for
signal data annotation. The ontology-based signal annotation
will significantly improve the query feature of the IEEG portal
for users.

The use of EpSO as an epilepsy domain ontology is a
novel feature of the Cloudwave platform. In addition to its
role in reducing terminological heterogeneity in signal data
annotation, it is also being used to support constructing patient
cohort queries in the PRISM project for clinical research in
epilepsy (Sahoo et al., 2014). A similar functionality to support
querying of signal data based on clinical event annotation, study
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metadata, and signal-specific metadata is under development
in the Cloudwave project. The use of EpSO for querying signal
data will allow use of description logic-based reasoning to
improve the quality of results. For example, existing approaches
to query for signal segments annotated with interictal events
cannot select signal data annotated with ‘‘spike’’ although
‘‘spike’’ is a sub category of interictal event, which is explicitly
modeled in EpSO. Hence, use of EpSO for signal data annotation
(implemented in the Cloudwave data flow) and querying will
address the limitations of lexical matching-based query execution
techniques. In addition, the use of EpSO to model signal
montages can be used to pre-compute these values in Cloudwave
platform using channel-specific signal fragments from CSF
objects. The pre-computed values can be stored as CSF objects
in HDFS and transferred to the signal visualization module to
reduce computational time and improve responsiveness of the
user interface.

Conclusion

The paper describes the development of a MapReduce-based
high performance scalable electrophysiological signal processing
data flow, which was developed as part of the Cloudwave project
to address the challenges of volume and velocity of signal data.
The Cloudwave data flow processes one or more EDF files to
generate CSF data objects, which is an extensible JSON-based
signal data representation format, with partitioned fragments of
signal data for storage and processing in HDFS. The CSF model
is compatible with existing neuroscience data representation

formats, such as HDF5 and NEO object-oriented APIs, with
ontology-based signal annotations to address terminological
heterogeneity in neuroinformatics tools. The evaluation of the
Cloudwave data flow on a 30-node Hadoop Data Nodes validate
the effectiveness of using MapReduce algorithm to scale with
increasing volume of signal data. The Cloudwave data flow
not only meets the requirements of user applications such as
signal visualization, but it can also be integrated with existing
large neuroscience data repositories such as INCF dataspace and
IEEG-Portal.
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