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The design of modern scientific experiments requires the control and monitoring of many

different data streams. However, the serial execution of programming instructions in a

computer makes it a challenge to develop software that can deal with the asynchronous,

parallel nature of scientific data. Here we present Bonsai, a modular, high-performance,

open-source visual programming framework for the acquisition and online processing of

data streams. We describe Bonsai’s core principles and architecture and demonstrate

how it allows for the rapid and flexible prototyping of integrated experimental designs in

neuroscience. We specifically highlight some applications that require the combination of

many different hardware and software components, including video tracking of behavior,

electrophysiology and closed-loop control of stimulation.

Keywords: rapid prototyping, data acquisition system, data stream processing, parallel processing, open-source,

video tracking, electrophysiology, behavior control

Introduction

Modern scientific experiments crucially depend on the control and monitoring of many parallel
streams of data. Multiple measurement devices, from video cameras, microphones, and pressure
sensors to neural electrodes, must simultaneously send their data in real-time to a recording sys-
tem. General purpose digital computers have gradually replaced many of the specialized analog
and digital technologies used for this kind of data acquisition and experiment control, largely due
to the flexibility of programming and the exponential growth in computing power. However, the
serial nature of programming instructions and shared memory makes it a challenge, even for expe-
rienced programmers, to develop software that can elegantly deal with the asynchronous, parallel
nature of scientific data.

Another challenge arises from the need for software integration. Each hardware vendor
provides their own set of drivers and programming interfaces for configuring and acquiring
data from their devices. In addition, the growth of the open-source movement has greatly
increased the number of freely available technologies for different data processing domains.
Integration of these diverse software and hardware components remains a major challenge for
researchers.

These difficulties lead to increased development times when setting up an experiment.
Moreover, it requires experimenters to pursue specialized training outside their domain of
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research. This limits the ability to rapidly prototype and try out
new designs and can quickly become the factor limiting the kinds
of questions that are amenable to scientific investigation.

Here we describe Bonsai, an open-source visual programming
framework for processing data streams (Box 1). The main goal
of Bonsai is to simplify and accelerate the development of soft-
ware for acquiring and processing the many heterogeneous data
sources commonly used in (neuro) scientific research. We aim to
facilitate the fast implementation of state-of-the-art experimental
designs and to encourage the exploration of new paradigms. The
framework has already been successfully used for many appli-
cations. In the following we will specifically highlight Bonsai’s
utility in neuroscience for monitoring and controlling a diverse
range of behavior and physiology experiments.

Results

Architecture
Scientific data, like the world we live in, is inherently parallel. To
monitor this complexity, modern experimenters are often forced
to use multiple electronic instruments simultaneously, each with
their own independent sampling rates. As data arrives at the
acquisition computer, there are two main approaches to log and
process these asynchronous data streams. The first approach is
to use a polling strategy: a single sequential process in the com-
puter runs a processing loop that goes through each device in
sequence and gathers the available data. In this case, data from
only one device is being collected and manipulated at any point
in time. The second approach is to use an event-driven (reac-
tive) architecture: processes are setup in parallel to collect data
from all the devices simultaneously. Whenever new data is avail-
able, notifications are sent to the appropriate software routines
that collect and process the data as soon as possible. When only
a single processor is available, the difference between these two
strategies is negligible: only one instruction at a time can be exe-
cuted by the computer. However, with modern multi-processor
cores and dedicated data transfer circuits, the performance differ-
ence between the two approaches will significantly influence the
throughput of a data acquisition and processing system. Unfor-
tunately, software tools to support and facilitate the “reactive”
approach to data stream processing are only just now starting
to be adopted and most software systems are still built from the
sequential composition of simple program routines. Many of the
assumptions of the sequential processing scenario do not scale
to handle parallel execution, especially when shared memory and
resources are involved.

In recent years, a number of advances in programming lan-
guages and software frameworks have tried to make it easier to
create complex software applications by composition of asyn-
chronous computing elements (Bainomugisha et al., 2013). Bon-
sai builds upon these new efforts and aims to extend these
developments to the rapid-prototyping domain by introducing
a visual programming language for composing and processing
asynchronous data streams. Bonsai was developed on top of the
Reactive Extensions for the .NET framework (Rx) (Microsoft
Open Technologies, 2014). Rx provides many built-in opera-
tors that transparently deal with the concurrency challenges that

inevitably surface when multiple data streams need to be pro-
cessed and integrated together in a single program. It has become
an increasingly popular framework to develop reactive interfaces
for next generation mobile and desktop computing platforms,
where it is used to handle the growing number of sensors and net-
work communications required by business logic and consumer
applications.

Bonsai (via Rx) represents asynchronous data streams using
the notion of an observable sequence. An observable sequence
represents a data stream where elements follow one after the
other. An example would be a sequence of frames being captured
by a camera, or a sequence of key presses logged by the keyboard.
The name observable simply specifies that the way we access ele-
ments in the data stream is by listening to (i.e., observing) the
data as it arrives, in contrast with the static database model, in
which the desired data is enumerated.

In Bonsai, observable sequences are created and manipulated
graphically using a dataflow (Mosconi and Porta, 2000; John-
ston et al., 2004) representation (Figures 1, 2A, Supplementary
Video 1). Each node in the dataflow represents an observable
sequence. Nodes can be classified as either observable sources of
data or combinators (Table 1). Sources deliver access to raw data
streams, such as images from a video camera or signal waveforms
from a microphone or electrophysiology amplifier. Combinators
represent any observable operator that handles one or more of
these sequences. This category can be further specialized into
transforms, sinks and other operator types depending on how
they manipulate their inputs (Table 1). Transforms modify the
incoming data elements of a single input sequence. An example
would be taking a sequence of numbers and generating another
sequence of numbers containing the original elements multiplied
by two. Sinks, on the other hand, simply introduce processing
side-effects without modifying the original sequence at all. One
example would be printing each number in the sequence to a
text file. The act of printing in itself changes nothing about the
sequence, which continues to output every number, but the side-
effect will generate some useful action. Combinators that change,
filter or merge the flow of data streams are neither transforms nor
sinks, and they are simply referred to by the more general term
combinator. The Sample combinator illustrated in Figure 2A

takes two data sequences and produces a new sequence where ele-
ments are sampled from the first sequence whenever the second
sequence produces a new value. In this example, we use Sample
to extract and save single images from a video stream whenever a
key is pressed.

A common requirement when designing and manipulating
dataflows is the ability to visualize the state of the data at dif-
ferent stages of processing. We have therefore included a set of
visualizers to assist debugging and inspection of data elements,
including images and signal waveforms (Figure 1). These visu-
alizers are automatically associated with the output data type of
each node and can be launched at any time in parallel with the
execution of the dataflow. Furthermore, it is often desirable to be
able to manipulate processing parameters online for calibration
purposes. Each node has a set of properties which parameterize
the operation of that particular source or combinator (Figure 1).
This allows, for example, changing the cutoff frequency of a signal
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BOX 1 | Getting Started with Bonsai

Community

The Bonsai framework can be downloaded at https://bitbucket.org/horizongir/bonsai and installed on Windows operating systems starting with Windows 7 and above.

The website is organized into different sections: Downloads (where the latest installer is located), Wiki (with a “Getting Started” guide, tutorials and (FAQ) frequently

asked questions), and Issues (where bugs can be reported). We have also created a user forum (address is listed in the FAQ section) where the community of Bonsai

users have been sharing their feedback, questions and experiences.

A video tutorial introduction to Bonsai is included with this publication (Supplementary Video 1).

Extending Bonsai

Bonsai was designed from the outset to support many different layers of extensibility:

(a) Dataflows: The first layer is through the creation of Bonsai dataflow files themselves. Existing dataflows can be directly reused inside other dataflows as nested

nodes. This allows for the sharing of reusable dataflow design patterns between applications.

(b) Python Scripting: Bonsai supports embedded scripting using IronPython 2.7. Specifically, Bonsai includes three types of Python nodes: PythonTransform,

PythonCondition, and PythonSink, which all operate by calling a user-defined Python function described by a script. Below we include a simple example of a

PythonTransform for rescaling data:

# Declare transform output type
@returns(float)
def process(input):

return input / 255.0

(c) NuGet: Bonsai modules are natively written in C# or other .NET languages. The NuGet package manager has emerged as the defacto standard for the sharing

of code between .NET developers. Bonsai includes a full NuGet client which manages local package versions, provides access to the curated feed of standard

Bonsai packages, and allows for the quick sharing of modules between Bonsai users through either NuGet or other remote and local package sources. Tutorials

and examples on how to create new Bonsai modules are included in the Wiki.

processing filter, or setting the name of the output file in the case
of data recording sinks. We have also included the possibility
of externalizing node properties into the dataflow (Figure 2B).
Externalizing a property means extracting one of the parameters
into its own node in the dataflow, making it possible to connect
the output of another node to the exposed property. This allows
for the dynamic control of node parameters.

Finally, we have built into Bonsai the ability to group nodes
hierarchically. In its simplest form, this feature can be used to
encapsulate a set of operations into a single node which can be
reused elsewhere (Figure 2C). This is similar to defining a func-
tion in a programming language and is one of the ways to create
new reactive operators in Bonsai. Any named externalized prop-
erties placed inside an encapsulated dataflow will also show up as
properties of the group node itself. This allows for the parame-
terization of nested dataflows and increases their reuse possibili-
ties. In addition, encapsulated dataflows are used to specify more
complicated, yet powerful, operators such as iteration constructs
that allow for the compact description of complex data process-
ing scenarios that can be cumbersome to specify in pure dataflow
visual languages (Mosconi and Porta, 2000) (see below).

Bonsai was designed to be amodular framework, whichmeans
it is possible to extend its functionality by installing additional
packages containing sources and combinators developed for spe-
cific purposes. New packages can be written using C# or any
of the .NET programming languages. Python scripts [via Iron-
Python (IronPython Community, 2014)] can be embedded in the
dataflow as transforms and sinks, allowing for rapid integration
of custom code. All functionality included in Bonsai was designed
using these modular principles, and we hope to encourage other
researchers to contribute their own packages and thereby extend
the framework to other application domains. At present, the

available packages include computer vision and signal process-
ing modules based on the OpenCV library (Itseez, 2014). Drivers
for several cameras and interfaces to other imaging and signal
acquisition hardware were integrated as Bonsai sources and sinks,
including support for Arduino microcontrollers (Banzi et al.,
2014), serial port devices and basic networking using the OSC
protocol (Wright et al., 2003). Given the specific applications in
the domain of neuroscience, we also integrated a number of neu-
roscience technology packages. The Ephys package, for example,
builds on the Open Ephys initiative for the sharing of electro-
physiology acquisition hardware (Voigts et al., 2013) by provid-
ing support for the Rhythm open-source USB/FPGA interface
(Intan Technologies, US). Therefore, the next generation tools for
electrophysiology can already be used inside Bonsai, the acquired
physiology data implicitly integrated with other available data
streams and thus easily assembled into a powerful and flexible
experimental neuroscience platform.

Advanced Operators
The most common application of Bonsai is the acquisition and
processing of simple, independent data streams. However, for
many modern experiments, basic acquisition and storage of data
is often not sufficient. For example, it can be convenient to only
record the data aligned on events of interest, such as the onset
of specific stimuli. Furthermore, neuroscience experiments often
progress through several stages, especially for behavioral assays,
where controlled conditions vary systematically across different
sessions or trials. In order to enforce these conditions, experi-
ments need to keep track of which stage is active and use that
information to update the state of control variables and sen-
sory processing. These requirements often cannot be described
by a simple linear pipeline of data, and require custom code to
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FIGURE 1 | Screenshot of the Bonsai user interface running a

video processing pipeline. An example dataflow for color

segmentation and tracking of a moving pendulum is shown. Data

sources are colored in violet; transform operators in white; sinks in dark

gray. The currently selected node (Hsv Threshold) is colored in black

and its configuration parameters are displayed in the properties panel

on the right. Overlaid windows and graphs represent Bonsai data

visualizers for the output of individual nodes.

handle the complicated logic and bookkeeping of experimen-
tal states. Below we describe a set of advanced Bonsai oper-
ators that can be used to flexibly reconfigure data processing
logic to cover a larger number of scenarios. These operators
and their applications are all built on the single idea of slic-
ing a data stream into sub-sequences, called windows, which
are then processed independently and, potentially, in parallel
(Figure 3).

Bonsai provides different combinators that allow the cre-
ation of these sub-sequences from any observable data stream,
using element count information, timing, or external triggers
(Figures 3A–C). The specific set of operations to apply on each
window is described by encapsulating a dataflow inside a Select-
Many group, as detailed in the signal processing example of
Figure 3D. The input source in this group represents each of the
window sub-sequences, i.e., it is as if each of the windows is a
new data source, containing only the elements that are a part of
that window. These elements will be processed as soon as they
are available by the encapsulated dataflow. Windows can have
overlapping common elements, in which case their processing
will happen concurrently. The processing outputs from each win-
dow are merged together to produce the final result. In the case
of Figure 3D, past and future samples are grouped in windows to

compute a running average of the signal through time, necessarily
time-shifted by the number of future samples that are considered
in the average.

The processing of the elements of each window happens inde-
pendently, as if there was a new isolated dataflow running for
each of the sequences. We can exploit this independence in order
to dynamically turn dataflows on and off during an experiment.
In the video splitting example of Figure 3E, we use an external
trigger source to chop a continuous video stream intomany small
video sequences, aligned when the trigger fired. We then nest
a VideoWriter sink into the SelectMany group. The VideoWriter
sink is used to encode video frames into a continuous movie file.
It starts by creating the video file upon arrival of the first frame,
and then encoding every frame in the sequence as they arrive.
When the data stream is completed, the file is closed. By nest-
ing the VideoWriter inside the SelectMany group, what we have
effectively done is to create a new video file for each of the created
windows. Whenever a new trigger arrives, a new clip is created
and saving proceeds, implicitly parallelized, for that video file.

More generally, we can use this idea to implement discrete
transitions between different processing modes, and chain these
states together to design complex control structures such as
finite state machines (FSMs). FSMs are widely used to model
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FIGURE 2 | Examples of dataflow processing pipelines using

Bonsai. (A) Taking grayscale snapshots from a camera whenever a key

is pressed. Top: graphical representation of the Bonsai dataflow for

camera and keyboard processing. Data sources are colored in violet;

transform operators in white; combinators in light blue; sinks in dark

gray. Bottom: marble diagram showing an example execution of the

dataflow. Colored tokens represent frames arriving from the camera.

Black circles represent key press events from the keyboard. Asterisks

indicate saving of images to permanent storage. (B) Dynamic

modulation of an image processing threshold using the mouse. The

x-coordinate of mouse movements is used to directly set the

externalized Threshold Value property (orange). The updated threshold

value will be used to process any new incoming images. (C) Grouping

a set of complex transformations into a single node. In the nested

dataflow, the source represents incoming connections to the group and

the sink represents the group output.

environments and behavioral assays in systems and cognitive
neuroscience. One example is illustrated in Figure 3F, where we
depict the control scheme of a stimulus-response apparatus for a
simple reaction time task. In this task, there are only two states:
Ready and Go. In the Ready state, no stimulus is presented and a
timer is armed.Whenever the timer fires, the task transitions into
the Go state, and a stimulus is presented. The subject is instructed
to press a key as fast as possible upon presentation of the stimulus.
As soon as the key is pressed, the system goes back to the Ready
state to start another trial. In a FSM, nodes represent states, e.g.,
stimulus availability or reward delivery, and edges represent tran-
sitions between states that are caused by events in the assay, e.g., a
key press. In each state, a number of output variables and control
parameters are set (e.g., turning on a light) which represent the
behavior of the machine in that state.

In the Bonsai dataflow model, dataflows encapsulated in a
SelectMany group can be used to represent states in a FSM
(Figure 3F, bottom). Specifically, a state is activated whenever it
receives an input event, i.e., the dataflow nested inside the state
will be turned on. The dynamics of the nested dataflow determine
the dynamics of the state. In the Go state presented in Figure 3F,
the activation event is used to trigger stimulus onset. In parallel,
we start listening for the key press which will terminate the state.
Conversely, for the Ready state we would trigger stimulus offset
and arm the timer for presenting the next stimulus. An impor-
tant difference between Bonsai dataflows and pure state machine
models is that a dataflow is specified as a directed acyclic graph,
i.e., the data stream cannot loop back on itself. However, by tak-
ing advantage of the Repeat combinator, we can restart a dataflow

once it is completed, allowing us to reset the state machine for the
next trial.

Many of the control tasks in experiments have this sequential
trial-based structure, which has allowed us to rapidly prototype
complex behavior assays, such as closed-loop rodent decision
making tasks, simply by leveraging the flexibility of the data
stream slicing operators.

Alternatives to Bonsai
Although graphical user interfaces have played a crucial role in
the widespread proliferation of computing technology through-
out various scientific fields, the majority of these interfaces tend
to be applied to relatively narrow domains, such as the oper-
ation of a specific instrument. Their goal is often to provide
access to all the various configuration parameters of the hard-
ware and to provide basic data acquisition functionality. There
is often no opportunity to parameterize or condition the behav-
ior of the instrument beyond the possibilities presented by the
interface, and interconnections with other devices are often lim-
ited to simple hardware triggers. The alternative, when available,
is to access low-level application programming interfaces (APIs),
and program the desired behavior from scratch.

In the more flexible domains of data analysis, behavior control
and software simulations, the use of more versatile graphi-
cal interfaces has become increasingly prevalent. In these sce-
narios, it is not uncommon to encounter the development
of domain-specific languages (DSLs), where graphical building
blocks related to the domain of application can be combined
together by the user to generate new behaviors, such as the
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TABLE 1 | List of Bonsai node categories.

Color Category Description

BONSAI NODE CATEGORIES

Source # Inputs: 0

Generates observable sequences of data

Combinator # Inputs: 0..N

Can change both the elements and the

sequence; elements may be dropped,

shifted, duplicated or merged with other

sequences

Transform # Inputs: 1

Transforms the elements in the sequence

but does not change the sequence order

or timing

Condition # Inputs: 1

Does not change the elements in the

sequence but can drop (filter out) elements

from the sequence

Sink # Inputs: 1

Does not change neither the elements nor

the sequence, but can introduce

side-effects

Property # Inputs: 1

Represents a property of another node.

Writing to it at runtime will change the

value of the property

Nested # Inputs: 0..N

A nested combinator uses an internal

(nested) dataflow to implement specific

operations

The color of each Bonsai node serves as a visual aid to identify their role in dataflow pro-

cessing pipelines. Most of these categories are actually specializations of the very general

combinator and are meant to visually depict their specific data processing semantics.

sequence of steps in a psychophysics experiment or a state-
machine diagram used to control stimuli and rewards in operant
conditioning. While providing more flexibility to the end user,
such DSLs are usually not conceived, at their core, to be applied
to wildly different domains (e.g., an operant conditioning state
machine is not expected to be able to filter continuous electro-
physiology signals). In fact, most DSLs will not even allow the
user to extend the set of built-in operations. In those that do,
the developer may find a customization pit (Cook et al., 2007),
where concepts and operations that are within the range of what
the DSL can express are easy to develop, whereas tasks that are a
little bit outside of the boundaries of the language quickly become
impossible or too cumbersome to implement.

As the level of flexibility of a graphical user interface increases,
we start to approach the space occupied by general purpose visual
programming languages (GPVPL). These are languages that are
designed from the outset to be capable of solving problems across
a wide variety of domains using a general set of operations. Ide-
ally, the core building blocks of the language will themselves be
domain-independent, so that the user can easily apply the same

set of operations to the widest possible class of inputs. In order to
better illustrate the feel and expressive power of GPVPLs, and to
clarify where Bonsai itself is positioned, we will give two examples
of popular languages that have succeeded in this niche: LabVIEW
(National Instruments, 2014) and Simulink (MathWorks, 2014).

LabVIEW is one of the best examples of a GPVPL applied to
the design and control of experiments (Elliott et al., 2007). In
LabVIEW, users create virtual instruments (VIs) which are com-
posed of a graphical front-panel containing an assortment of but-
tons, dials, charts and other objects; as well as a back-panel where
a flowchart-like block diagram can be used to specify the behav-
ior of the VI. In this back-panel, nodes and terminal elements can
represent hardware components, numerical operations or front-
panel objects, which are connected together using virtual wires
that specify the flow of data between them. The popularity of
LabVIEW grew initially from its support for state-of-the-art data
acquisition cards and hardware as well as its data visualization
capabilities. The modularity of its architecture also allowed users
to quickly develop and implement new nodes within the language
itself by using VIs themselves as nodes.

Although the LabVIEW back-panel is a dataflow visual pro-
gramming language, its executionmodel tends to follow a polling,
rather than event-driven, strategy for dealing with multiple data
streams. In order to properly scale this model to the increas-
ing number of available processor cores, LabVIEW has imple-
mented sophisticated code analysis tools that attempt to identify
parallelizable portions of block diagrams automatically (Elliott
et al., 2007). Once these sections are identified, LabVIEW will
automatically generate parallel processes depending on the num-
ber of available cores and will manage the bottlenecks in the
code accordingly. Although this mitigates the limitations of the
sequential polling programming model, it is important to realize
that the goal of such automatic parallelization is still to provide
the user with a logically synchronized programming model.

Simulink is a popular dataflow visual programming language
for modeling, simulating and analyzing multi-domain dynamic
systems. It has become extremely popular for modeling response
characteristics of control systems, allowing not only for the rapid
prototyping of algorithms, but also the automatic generation of
microcontroller code for embedded systems. Again, the success
of the language stemmed primarily from the flexibility and ease
of use of the block diagrams, as well as the number of prebuilt
operations and data visualization tools which quickly took care
of many crucial but tedious aspects of control systems modeling.

Like LabVIEW, the execution model for Simulink generated
code is still based on polling strategies, where ready to execute
dataflow nodes are updated in turn as inputs become available.
Again, strategies to scale the output of Simulink to multiple
cores have been proposed based on analyzing and segmenting the
model into parallelizable sections which can be converted into
equivalent parallel execution code for microcontrollers (Kumura
et al., 2012).

Similar to LabVIEW and Simulink, Bonsai was designed as
a general purpose modular language. The core architecture of
Bonsai is domain-independent and provides a general frame-
work to compose asynchronous data streams. A general set of
composition operators, or combinators, provides support for
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FIGURE 3 | Using slicing and window processing combinators in

Bonsai. (A) Creating data windows using element count information. The

Count and Skip parameters specify the size of each window and the number

of elements to skip before creating a new window, respectively. Top:

graphical representation of the Bonsai dataflow used for slicing. Bottom:

marble diagram showing the behavior of the operator for different values of

the parameters. The boundaries of each window are indicated by the

enclosing rectangles. (B) Creating data windows using timing information.

Time is split into intervals of equal fixed duration. Each interval defines a

window and data elements are assigned to each window based on the

interval that is active at the time of their arrival. Top: Bonsai dataflow. Bottom:

marble diagram. (C) Creating data windows using an external trigger. The

boundaries of the created windows are defined by the timing of events

produced by the trigger source. Top: Bonsai dataflow. Bottom: marble

diagram. (D) Moving average of a signal source using windows. Sliding

windows of the data are created based on element count information. Top:

Bonsai dataflow. The dataflow encapsulated in SelectMany specifies the

processing done on each window. In this case, the average value of each

window sequence is computed. Middle: marble diagram. As soon as each

window is completed, its average value is merged into the result sequence.

Bottom: example signal trace before and after the filtering. (E) Online splitting

(Continued)
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FIGURE 3 | Continued

of video recordings into different files based on an external trigger. Top:

Bonsai dataflow. Notice that the VideoWriter sink is included inside the

SelectMany combinator. Bottom: marble diagram. At the start of each

window, a new movie file is created. Asterisks indicate the encoding of

individual frames in each window to the corresponding file. (F)

Implementing state-machines using window operators. Top:

state-machine schematic of a task designed to measure response times.

In the Ready state, the stimulus is off. When entering the Go state, the

stimulus is turned on. At the end of each trial, the system goes back

to the initial state. Bottom: graphical representation of the equivalent

Bonsai dataflow. The SelectMany combinator is used to specify the

behavior and transitions of each state. The Take combinator truncates a

sequence to include only a specified number of initial elements. In this

case, only the first element is included. The Repeat combinator restarts

a sequence when no more elements are produced (see text).

iteration, segmentation and merging of parallel data streams, as
well as other common manipulations on observable sequences.
Both the sources of data and available processing operations can
be extended within the language itself using nesting of dataflows.
Data visualizers and a growing library of data stream acquisi-
tion, processing and logging modules are provided to allow rapid
prototyping of a large number of different applications.

However, in contrast to LabVIEW or Simulink, Bonsai adopts
a very different strategy to implement dataflow execution. Rather
than trying to derive a global sequential execution order of
dataflow nodes based on the number of active inputs, Bonsai
nodes simply react to incoming inputs immediately, without the
need to wait for all of them to be active. When multiple observ-
able sequences are present, this allows for a choice of different
concurrency composition strategies. Nevertheless, as the result
of the composition is an observable sequence itself, such con-
currency management can remain functionally isolated from the
combinator that is handling the composition. From the point
of view of downstream operators, they are simply receiving an
observable sequence. There is a tradeoff, of course, that more
responsibility for managing the flow of data is passed to the end
user, but it also allows for a finer grained control of concurrency
that is critical to the specification of parallel applications.

One important caveat of developing asynchronous systems
is that debugging can be more difficult in situations where the
precise timing and ordering of events is required to reproduce
an offending behavior. In synchronized and sequential execution
environments, one can easily go step by step through the precise
cascade of transformations that resulted in a problem. In con-
trast, when multiple processes are executing concurrently, it can
be harder to analyze the program flow in a similarly reproducible,
deterministic manner. However, it should be noted that this issue
is not unique to reactive environments with real asynchronous
devices. A sequential polling strategy will be equally deficient
in reproducing a particular execution sequence when data from
parallel input devices is being accessed.

Another important caveat is that Bonsai currently runs exclu-
sively in Windows operating systems. However, Microsoft has
recently open-sourced the execution engine of the .NET frame-
work and will pursue implementations for all the major operat-
ing systems (Linux/Mac). This raises the interesting possibility of
eventually extending the Bonsai user base into these important
platforms.

Applications
The validation of Bonsai was performed by using the framework
to implement a number of applications in the domain of neu-
roscience (Figure 4). The breadth of technologies at use in this

field demands that modern experiments be able to handle many
heterogeneous sources of data. Experimenters need to routinely
record video and sensor data monitoring the behavior of an ani-
mal simultaneously with electrophysiology, optical reporters of
neural activity or other physiological measures. Online manip-
ulation and visualization of data is a fundamental part of the
experiment protocol for many of the reported techniques. In the
following, we highlight some of these practical applications of
Bonsai in more detail in order to illustrate both “best practices”
and implementation strategies.

One of the first use cases driving the development of Bon-
sai was the automated online tracking of animal behavior using
video. The most common tracking application involves chain-
ing together operators for image segmentation and binary region
analysis to allow the extraction of the spatial location of an ani-
mal over time (Figures 4A,B). The same technique can easily
be extended to track different kinds of objects, such as eyes or
experimental manipulanda in human psychophysics experiments
(Figure 4C), provided adequate illumination contrast and the
appropriate choice of a method for segmentation. These image
processing tools can also be used to acquire and process physio-
logical data in neural imaging setups, where it is now possible to
record bioluminescent or fluorescent reporters of neural activity
during behavior. For example, Figure 4B demonstrates simulta-
neous measurement of animal behavior and neural activity using
bulk fluorescence calcium imaging in the mouse brain recorded
with a CCD sensor and a fiberoptic system (Tecuapetla et al.,
2014).

Raw video data from modern high-resolution, high-speed
cameras can be expensive and cumbersome to store. Online video
compression and storage sinks were implemented taking advan-
tage of parallelism to avoid frame loss. Video compression is pro-
cessing intensive and can compromise data acquisition if reading
the next frame has to wait for the previous frame to be fully
encoded. One solution is to buffer incoming frames and com-
press them in parallel with the rest of the processing stream. By
encapsulating this behavior into a Bonsai sink, it became easy to
incorporate video recording and compression functionality into
any image processing pipeline (Figures 4A–E,G,H).

While simple image processing techniques can easily extract
continuous two-dimensional measures of animal location over
time, it often becomes the case that the experimenter is con-
cerned with tracking the detailed behavior of specific features in
the animal’s body, such as head pose. This is an essential com-
ponent in neurophysiology or stimulation experiments in freely
moving animals, where ongoing behavior is the central constraint
in interpreting neural responses and manipulations. However,
identifying such features and reconstructing their position and
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FIGURE 4 | Example use cases of neuroscience experimental setups

using Bonsai. (A) High-speed tracking of zebrafish behavior. Insets depict

the image processing steps for segmenting the shape of a fish from the

background and extracting its spatial location and orientation. Right:

example trajectories extracted from an individual fish. (B) Mouse tracking and

bulk fluorescence measurement of neuronal calcium activity. Top insets:

schematic of the fiber optic imaging setup for freely moving rodents with

example fluorescence data frame and extracted fluorescence signal traces.

Bottom insets: image processing steps for behavior tracking of a mouse as

(Continued)
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FIGURE 4 | Continued

the largest dark object in the video. (C) Tracking human behavior during

a stochastic sound discrimination task. Left insets: arm movements on

the joystick on each trial tracked by brightness segmentation of a bright

LED. Right insets: extraction of pupil dilation by computing the length of

the major axis of the largest dark object. (D) 3D tracking of rodent

head pose. Left inset: example video frame of a mouse carrying fiducial

markers. A cube was rendered and superimposed on the image to

demonstrate correct registration. Colored traces show representative

single trial trajectories of an individual marker, aligned on center poke

onset. Red and blue refer to left and right choice trials, respectively.

Right inset: Three-dimensional plot of the same trajectories using

isometric projection. (E) Real-time stimulation conditioned to a region in

space. Top insets: example raw movie frame and stimulation state. Red

and blue indicate no stimulation and stimulation regimes, respectively.

Bottom insets: example video frames where the mouse is either outside

or inside the region of interest. (F) Acute recordings from dense silicon

probes. Left insets: example traces from raw amplified voltage signals

and high-pass filtered spike triggered waveforms. Right inset:

visualization of spike waveforms triggered on a single channel

superimposed on the actual probe geometry. (G) Recording Drosophila

feeding behavior. Left inset: example trace of a single-channel capacitive

signal from the flyPAD. Right inset: simultaneously recorded video of the

fly feeding behavior. (H) 2AFC task using video triggered reward. Left

inset: schematic of the reactive state machine used for controlling the

task. Each state is represented by a nested dataflow. Branches

represent possible transitions. Right inset: example thresholded activity

from a single region of interest activated by the mouse.

orientation in 3D space is a challenging computer vision prob-
lem. A common solution is to use planar fiducial markers of
known geometry (Kato and Billinghurst, 1999; Garrido-Jurado
et al., 2014) (Figure 4D). The computer vision research com-
munity has developed some open-source software solutions to
this problem (Garrido-Jurado et al., 2014), which have been inte-
grated into Bonsai to allow the possibility of easily and flexibly
incorporating online 3D fiducial tracking in video streams. This
approach has been used successfully to record 3D head move-
ments of a mouse under optogenetic stimulation in a decision-
making task (Figure 4D).

One final, but important application of video stream pro-
cessing is in the development of closed-loop interfaces, where
the actions of an animal directly modulate manipulations under
the experimenter’s control. This kind of experiment requires fast
online analysis of behavior and physiological variables of inter-
est that are subsequently coupled to hardware control interfaces.
In Figure 4E, real-time stimulation conditioned to a region in
space was implemented by analyzing the position of an animal in
a square arena. Whenever the animal found itself inside a speci-
fied region of interest, a signal was sent to an Arduino controller
which was then used to drive optogenetic stimulation of specific
neural circuits.

Another key data type that is commonly processed by Bonsai
dataflows is buffered time-series data. This type of data usu-
ally arises from audio, electrophysiology or other digital acqui-
sition systems where multiple data samples, from one or more
channels, are synchronously acquired, buffered and streamed
to the computer. These buffers are often represented as data
matrices, where rows are channels and columns represent indi-
vidual data samples through time, or vice-versa. Support for
simple band-pass filters, thresholding and triggering allowed us
to build flexible spike detection and waveform extraction sys-
tems (Figure 4F). Using Intan’s Rhythm API, we integrated into
Bonsai support for a variety of next-generation electrophysiol-
ogy devices using Intan’s digital amplifier technology, such as the
Open Ephys acquisition system (Voigts et al., 2013) or Intan’s
evaluation board (RHD2000, Intan Technologies, US). This sys-
tem was successfully used to acquire and visualize simultane-
ous recordings from dense silicon probes where spikes from a
loose-patch juxtacellular pipette were used as triggers to align and
extract waveform data appearing on the multi-channel extracel-
lular probe. Responses from every silicon probe site could then be

superimposed on an accurate rendition of the probe geometry, in
real-time.

The ability to rapidly integrate new modules allowed us
to support the development and cross-validation of new tools
for behavioral neuroscience. A paradigmatic example was the
flyPAD, a new method for quantifying feeding behavior in
Drosophila melanogaster by measuring changes in electrode
capacitance induced by the proboscis extension of a fly (Itskov
et al., 2014). The integration of the flyPAD in Bonsai allowed
researchers to quickly get started using this approach to design
new experiments. Furthermore, it also allowed the valida-
tion of the tool by enabling simultaneous acquisition of high-
speed video recordings of fly behavior which were later used
for annotation and classification of the sensor feeding traces
(Figure 4G).

In a different set of experiments, Bonsai was used to imple-
ment a variation on a popular two-alternative forced choice
(2AFC) decision-making task for rodents (Figure 4H). In this
type of task, animals are placed in an environment with three
“ports.” They are presented with a stimulus in the center port
and afterwards report their perception of the stimulus by going
either to the left or right choice ports. In the variation we
present in this work, the two choice ports were replaced by
regions of interest where the activity of the animal is analyzed
using computer vision. This example offered unique challenges
as it combined sophisticated sequential control of a task envi-
ronment with continuous data stream processing of video and
sensor data.

The integration of all these diverse components for data
acquisition and experiment control does not only allow for the
rapid deployment of established protocols. In fact, the mod-
ular nature of their integration (i.e., how they can be com-
bined together) opens up new avenues for research, by allowing
a rich, rapid exploration of novel methodologies. To demon-
strate this, we created a dynamic virtual environment for freely
moving rodents where the visual presentation of a stimulus is
tightly controlled in closed-loop to the actions of the animal.
We used a projection setup similar to the low-cost multi-touch
sensing table proposed by Han (2005), where a visible light rear-
projection system is coupled with infrared illumination and an
infrared imaging sensor to detect in real-time where the animal is
located with respect to the visual display surface (Supplementary
Video 2).
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Discussion

After about a year of using Bonsai in an active neuro-
science research institute, dozens of different experimental pro-
tocols and data analysis pipelines have been successfully imple-
mented using the provided building blocks (Gouvêa et al.,
2014; Itskov et al., 2014; Tecuapetla et al., 2014). We were
surprised by the diversity of applications and by the pace
at which new modules and devices were developed and
integrated.

The performance achieved by Bonsai dataflow processing was
an important consideration throughout (Box 2). Video process-
ing can be particularly challenging to handle given the bandwidth
required to quickly acquire and process large data matrices. In
order to correlate continuous measures of behavior with neu-
ral activity, it is useful for those measurements to have both
high spatial and high temporal resolution. Using Bonsai, we were
able to simultaneously process and compress grayscale image
sequences from high resolution (1280× 960) and high frame rate
(120Hz) cameras using standard off-the-shelf desktop comput-
ers (Intel Core i7, 8 GB RAM). In fact, many of the reported
assays use multiple (>2) such video streams with success and
actually process the behavior video online either to control states
of the behavior protocol or to pre-process video data for offline
analysis.

One of the areas where we see the application of Bonsai
becoming most significant is in the development of dynamic
behavior assays (environments) using reactive control strate-
gies. Brains evolved to generate and control behaviors that can

deal with the complexity of the natural world. However, when
neuroscientists try to investigate these behaviors in the lab, it
is often difficult to design equivalent environmental complexity
in a controlled manner. As an example, consider a simple for-
aging scenario in which a land animal must collect, in a timely
manner, food items that become available at random intervals
in many sites. If the item is not collected in time, it rots or
gets eaten by competitors. In the case of a single foraging site, a
FSM description intuitively represents the workings of the envi-
ronment (Figure 5A). However, let us now consider a situation
where the environment has two of these food sites operating
independently, thus introducing the possibility of different events
occurring simultaneously at each of the sites. If our environ-
ment is modeled as a finite-state machine, then we must repre-
sent every possible combination of states and transitions, as in
Figure 5B. In the classical state machine formalism the machine
can only be in one state at a time, which means we now need
to model each state as the combination of the individual inde-
pendent states at each reward location. Furthermore, because
transitions between these states are asynchronous and indepen-
dent, we thus have edges between nearly every pair of nodes, as
each reward site can change its state at any point in time relative
to the other.

How would designing such a scenario feel like in a reactive
programming language? Figure 5C shows a possible specification
of the 1-site foraging task in reactive terms. In this case, we have
two sources of events from the environment: one timer signaling
the availability of reward (A); and a sampling event (S) which is
triggered every time the animal checks the location for food. Both

BOX 2 | Under the Hood

Computational Overhead

Bonsai takes full advantage of the flexibility of C# and its Just-In-Time (JIT) compiler to bring the computational overhead of running the framework to zero. This is

possible due to the fact that the graphical dataflows in Bonsai are actually specifying syntactically correct C# code by means of an expression tree. When the dataflow

is executed, C# code is generated for assembling and running the pipeline. This code is ultimately compiled into native machine language before execution, which

has the consequence that running a Bonsai dataflow is as fast as if one wrote the equivalent Rx code manually. In fact, this also means every Bonsai module is just a

standard C# class exposing methods working on Rx’s observable interface, which makes it possible to reference every single Bonsai package from a standard .NET

application and just use the module functionality directly.

Concurrency

The level of concurrency and parallelism in Bonsai entirely depends on the structure of each individual dataflow and the specific computer hardware involved. Typically,

each hardware device source (e.g., a camera) runs independently in its own logical thread. Some sources can occasionally share threads when the underlying device

architecture allows for it. For example microcontroller sources coming from the same USB port effectively require sharing a single communications channel, but this is

logically abstracted from the developer so there is no need to worry about handling multiplexed messages.

The specialized handling of concurrency introduced by merging different processing streams is done using dedicated Rx concurrency operators that are exposed

graphically through the language. Operators located downstream from the merge point can treat the merged sequence as if it was a single sequential data source.

This means most Bonsai operators are actually concurrency-agnostic, meaning they don’t have to worry about concurrency at all: they simply assume their inputs are

processed sequentially. This functional approach allows Bonsai operators to be simple to program, reliable and extremely performant.

Finally, some Bonsai operators introduce local concurrency implicitly to maximize performance. For example, many of the data logging sinks actually write to disk in

parallel with the arrival of data. This prevents processor-heavy routines, such as video compression, to stall the pipeline and allow for online execution to proceed as

fast as possible. From the point of view of the developer, however, such optimizations happen transparently.

Time

Being a fully asynchronous framework, Bonsai has to deal with code executing logically in many different processors. There is no particular assumption about time in

the framework other than the sequential flow of data through the pipeline, but facilities are in place to help the synchronization and timing of data. For example, the

Timestamp operator provides access to hardware performance timers included in modern processors to timestamp event notifications, across the pipeline, using a

shared high resolution clock. However, it should be noted that this only applies to processes occurring centrally: for precise sub-millisecond synchronization of physical

events happening outside the computer (e.g., stimulation pulse train and electrophysiology data) we still recommend the classical sharing of voltage or optical sync

pulses logged simultaneously in each device.
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FIGURE 5 | Describing the behavior of dynamic environments using

either state-machines or dataflows. (A) A state-machine model of

the 1-site foraging task. Zero indicates non-availability of reward at the

site. One indicates reward is now available at the site. Labels on edges

indicate event transitions. (B) A non-exhaustive state-machine model for

a foraging task with two sites. The active state is now a combination of

the state of the two sites (indicated by a two character label) and all

possible state combinations are tiled across the model. Event labels are

omitted for clarity. Notation is otherwise kept. (C) A dataflow model of

the 1-site foraging task. Events in the state-machine model are now

modeled as data sources. The coincidence detector node propagates a

signal only when the sample event closely follows reward availability. (D)

A dataflow model for a foraging task with two sites. The number

subscripts denote foraging site index.

of these events can occur independently of each other, but when
a sampling event coincides with reward availability (C), then
reward (R) is delivered. Because this description is intrinsically
asynchronous and parallel, it makes it extremely easy to scale the
task to a larger set of locations: just replicate the dataflow for each
of the other locations (Figure 5D). In this example, the design
space was made more intuitive by introducing the parallel and
asynchronous nature of a real-world situation into our modeling
formalism.

Another difficulty of the classical state machine formalism
is dealing with continuous variables. The natural environment
provides constant real-time feedback that tightly correlates with
the actions of an animal. Reproducing such closed-loop interac-
tion and manipulating its dynamics is a necessary tool for fully
investigating brain function. Such models are virtually impossi-
ble to represent in a machine of finite states, given the potential
infinitude of feedback responses. However, the dataflow formal-
ism of asynchronous event sources can easily accommodate such
models. In fact, this is their natural battleground; nodes repre-
sent reactive operators that promptly respond to input values
broadcasted by event sources. These models of asynchronous
computation are thus ideal for recreating the complex discrete
and continuous aspects of natural environments that brains
evolved to master. We thus propose Bonsai as a new tool for neu-
roscientists trying to understand how the brain deals with real
world complexity.

Materials and Methods

All experiments were approved by the Champalimaud Founda-
tion Bioethics Committee and the Portuguese National Authority
for Animal Health, Direcção-Geral de Alimentação e Veterinária
(DGAV).

High-Speed Tracking of Zebrafish Behavior
Larval zebrafish (6 dpf) were filmed with a high-speed
monochrome video camera (Flea3, Point Gray, CA) under
IR illumination. Fish swam freely in a custom-built arena that
was laser cut from transparent acrylic that consisted of three sep-
arate chambers, each 40× 100mm. The position and orientation
of the zebrafish in the central chamber was continuously tracked
in real-time, while the video of the entire arena (1.3 Megapixel)
was compressed to a high-quality H.264 encoded file that was
used for subsequent offline analysis of the interaction between
individuals and groups of zebrafish placed in either of the side
chambers.

Mouse Tracking and Bulk Fluorescence
Measurement of Neuronal Calcium Activity
Freely behaving mice were filmed with a video camera (PlaySta-
tion Eye, Sony, JP) under white light illumination in their
own homecages. A fiberoptic setup was developed to moni-
tor bulk fluorescence changes in specific neuron populations
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using genetically encoded calcium indicators. Changes in flu-
orescence caused by neuronal activity were transmitted by an
optical fiber and recorded with a CCD camera (Pike, Allied
Vision Technologies, DE). The position and orientation of the
mice was continuously tracked in real-time, while the mean
pixel value of the area of the camera facing the fiber optic
was continuously calculated. Both videos were compressed to
high-quality H.264 encoded files to be used in subsequent
offline analysis.

Tracking Human Behavior during a Stochastic
Sound Discrimination Task
Bonsai was used to acquire timestamped images from three cam-
eras (eye, person’s view, and arm) simultaneously. The videos
are synced with presented sound stimulus by using the arm
camera to also capture two IR LEDs which are turned on
at sound on-set and off-set, respectively. The arm is tracked
by using an IR LED mounted on a joystick and process-
ing the video online at 120Hz to minimize noise from com-
pression. All the videos are compressed to a MP4 encoded
file for offline analysis of the eye movements, pupil dilation,
and syncing of all events with the sounds. The eye videos
are captured at 30Hz using the IR illuminated pupil headset
(https://code.google.com/p/pupil/).

3D Tracking of Rodent Head Position
Adult mice performing a two alternative forced choice task were
filmed with a high-speed monochrome video camera (Flea3,
Point Gray, CA). A fiber optic cable was attached to the mouse’s
head. The 3D position and orientation of the head was tracked
in real-time using square fiducial markers from the ArUco
tracking library (Garrido-Jurado et al., 2014). The video (0.24
Megapixel) was simultaneously compressed to a high-quality
H.264 encoded file that was used for subsequent offline analysis of
the behavior.

Real-Time Stimulation Conditioned to a Region in
Space
Black mice were recorded with a high speed video camera (Flea3,
Point Gray, CA), while exploring an open field arena (50×40 cm,
L ×W), under white illumination (∼250 lux). The x and y posi-
tion, body centroid and orientation of the animal in the arena was
continuously tracked in real-time. Mice were implanted with an
optical fiber connected to a laser, in order to receive photostim-
ulation with blue light. A region of interest (ROI, 13 × 10.5 cm,
L × W) was defined and a python script was written to outline
the conditioning protocol. A digital output signal was sent to a
microcontroller board (Uno, Arduino, IT), each time the body
centroid of the animal entered in the ROI, producing photostim-
ulation. All data for the animal tracking and digital output was
saved in a.csv file, as well as the video, for subsequent offline
analysis of the behavior.

Acute Recordings from Dense Silicon Probes
Recordings of spontaneous neural activity in motor cortex
were performed in anesthetized rodents by means of silicon

probes comprising a dense electrode array (A1x32-Poly3-5mm-
25s-177-CM32, Neuronexus, US). An open-source electrophys-
iology acquisition board (Open Ephys) was used along with a
RHD2000 series digital electrophysiology interface chip that fil-
ters, amplifies, and digitally multiplexes 32 electrode channels
(Intan Technologies, US). Extracellular signals sampled at 30 kHz
with 16-bit resolution in a frequency band from 0.1 to 7500Hz
were saved into a raw binary format for subsequent offline anal-
ysis. Online analysis of neural spike waveforms across all probe
channels was performed by aligning the multi-channel raw data
on spike events from a selected channel of interest. A custom
Bonsai visualizer was written using OpenGL to display all chan-
nel traces superimposed on the geometric arrangement of probe
sites. It was possible to examine the details of extracellular activity
in the spatial distribution.

Recording Drosophila Feeding Behavior
Individual Drosophila melanogaster flies were allowed to freely
feed on the flyPAD (Itskov et al., 2014) while their feeding behav-
ior was monitored at 50Hz with a video camera (Flea3, Point
Gray, CA) mounted on a Zeiss Discovery v.12 Stereo Micro-
scope (Carl Zeiss, DE). flyPAD measures fly’s behavior on the
food source by recording the capacitance at 100Hz between the
electrode on which the fly stands and the food. Videos were com-
pressed to high-quality H.264 encoded files and subsequently
manually annotated by a human observer to be used as a bench-
mark for the development of the automatic algorithms for the
extraction of feeding behavior from the capacitive trace. Formore
info, visit http://flypad.pt/.

2AFC Task Using Video Triggered Reward
Adult PWD female mice were tested in behavioral experiments
using restricted social interaction with adult C57BL6 and PWK
males as reward. The behavioral paradigm consists of a custom
built arena made of modular acrylic pieces assembled in an alu-
minum frame. The contact zone between the female and the male
(composed of four holes with r = 0.5 cm) was either available
for a fixed period of time, or physically restricted by a verti-
cally sliding door controlled by a servomotor. Subjects initiated
the interaction by nose-poking in an infrared beam port that
would trigger the opening of the door and subsequent availabil-
ity of the contact zone. Videos were recorded using high-speed
monochrome video cameras (Flea3, Point Gray, CA). Perfor-
mance, monitoring and control of the behavior box was done
using a Motoruino board (Motoruino, Artica, PT) and custom
Bonsai scripts.

Dynamic Virtual Environment for Freely Moving
Rodents
Three to 5 months old Long-Evans female rats were trained
sequentially to forage and hunt virtual elements of a projected
display in exchange for water rewards. The behavioral paradigm
consists of a custom built arena made of structural framing
components (Bosch Rexroth, DE). The floor of the arena is a
rear-projection screen made out of a frosted acrylic panel. In
order to compensate for the short-throw distance, the projected
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image is reflected off a mirror positioned below the arena floor.
Video was recorded using a high-speed monochrome video
camera (Flea3, Point Gray, CA) equipped with a visible light
cutoff filter (R72, Hoya, JP) and analyzed in real-time using
Bonsai. Infrared LED strips were positioned at the bottom of
the arena in order to illuminate the floor through the diffuser,
allowing for the tracking of the animal without contamination
from the visual stimulus. Animals were first conditioned to a
tone as a secondary reinforcer and then subsequently trained
to either touch the light presented at random locations (for-
aging) or pursue a moving spot (hunting). Performance, mon-
itoring and control of the behavior box was done using an
Arduino board (Micro, Arduino, IT) and a Bonsai reactive state
machine.
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