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Spiking neuron models can accurately predict the response of neurons to somatically

injected currents if the model parameters are carefully tuned. Predicting the response of

in-vivo neurons responding to natural stimuli presents a far more challenging modeling

problem. In this study, an algorithm is presented for parameter estimation of spiking

neuron models. The algorithm is a hybrid evolutionary algorithm which uses a spike

train metric as a fitness function. We apply this to parameter discovery in modeling

two experimental data sets with spiking neurons; in-vitro current injection responses

from a regular spiking pyramidal neuron are modeled using spiking neurons and in-vivo

extracellular auditory data is modeled using a two stage model consisting of a stimulus

filter and spiking neuron model.
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Introduction

It is difficult to find parameters for neuronal models that accurately replicate the responses seen in
in-vivo extracellular data. One of the principle difficulties is that, for in-vivo data, the current input
to the soma is generally unavailable. In this way, the model requires two components; one dealing
with the current input to the soma and the other with the soma itself. The parameters describ-
ing these two components must be estimated from the spiking output and, in the case of sensory
neurons, from the external stimulus. Since the underlying biological situation is complicated and
non-linear there is always a trade-off which needs to be made between the predictive capability of
the model and the ease with which the parameters can be estimated; this challenge is particularly
acute when considering in-vivo data where the transformation from external stimulus to current
input is non-linear and multi-dimensional.

Neuronal models vary in complexity from the integrate-and-fire model (Lapicque, 1907)
through to fully biomorphically-realistic simulators based on theHodgkin-Huxleymodel (Hodgkin
and Huxley, 1952; Bower and Beeman, 1998; Hines and Carneval, 2002). In between these extremes
are the two-variable spiking neuron models. These feature two dynamical variables; one models the
membrane voltage while the other is typically a variable dealing with spike triggered adaptation.
Dynamical systems analysis has shown that many of these simple models are capable of reproduc-
ing a wide range of the spiking behaviors commonly seen in real neurons (Izhikevich, 2003, 2006;
Brette and Gerstner, 2005; Touboul and Brette, 2008) and model fitting studies have shown that
they can accurately predict spike timings in in-vitro experiments where the input current to the
soma is known (Brette and Gerstner, 2005; Clopath et al., 2007; Jolivet et al., 2008b; Kobayashi
et al., 2009; Rossant et al., 2010). The crucial ingredient in these models, as far as modeling real
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data is concerned, is adaptation (Izhikevich, 2003; Kobayashi
et al., 2009; Rossant et al., 2010). Commonly used examples of
two variable neurons are the adaptive quadratic integrate-and-
fire or Izhikevich model (Izhikevich, 2003), integrate-and-fire
models with adaptation currents or adaptive thresholds (Geisler
and Goldberg, 1966; Chacron et al., 2003), and the adaptive expo-
nential integrate-and-fire (aEIF) model (Brette and Gerstner,
2005).

The various adaptive models have different strengths both in
reproducing different types of spiking behavior and in ease of
parameter estimation (Touboul, 2008; Izhikevich, 2010; Rossant
et al., 2010). For example, the atIF neuron has only three param-
eters, making it relatively easy to fit; when modeling data from
regular spiking cortical neurons, Rossant et al. (2010) found this
model to be the most effective in comparison to other two vari-
able spiking neuron models. On the other hand, the aEIF neuron,
which presents a more difficult optimization problem with its
eight parameters, has a wide dynamical range making it suitable
to efficient simulations of networks with unusual neuron types
(Naud et al., 2008; Touboul and Brette, 2008). Furthermore, its
parameters have a more direct biophysical interpretation than
those of many other simple models making it potentially useful
in the histological characterization of cells. The Izhikevich model
has particularly rich dynamics and with only four parameters
and with a low computational cost it seems ideal for large scale
neuronal network simulations (Izhikevich, 2006).

Several different approaches to fitting neuron models to elec-
trophysiological data have been tested; (Van Geit et al., 2008), for
example, provides a review of some recent progress in this area.
As with optimization problems in general, the various methods
employed on this problem can be broadly decomposed into two
components: the objective function which is a similarity measure
between the predicted and the experimental data and the particu-
lar optimization algorithm or method to be used to optimize the
objective function.

The choice of optimization method is highly dependent on
the model and the form of the experimental data, for example
whether the data consists of spike trains or some other neuronal
signal. If the input current to a neuron is not only known, but can
be manipulated, model parameters can be estimated in an analyt-
ical fashion. For example, in Brette and Gerstner (2005), a variety
of current pulses and ramps are used to isolate and identify the
parameters in the aEIF model. On the other hand, if we restrict
the choice of model to the leaky integrate and fire neuron with
no adaptation then the parameters can be calculated by minimiz-
ing a convex function and gradient based methods are available:
(Paninski, 2004; Paninski et al., 2004, 2005; Huys et al., 2006).

However, to develop a general purpose algorithm for neuron
model optimization, a global heuristic optimization method is
needed. This is a method which finds the global minimum, or
maximum, of a function in a search space without using gradi-
ent information but instead using some carefully designed search
heuristic. Examples of global heuristic search methods include
stochastic search techniques such as simulated annealing and
evolutionary algorithms.

In Clopath et al. (2007), the parameters for a two-
compartment aEIF model were found using a simulated

annealing approach to optimize the coincidence factor (Jolivet
et al., 2008a), a discrete measure of spike train similarity which,
roughly speaking, counts the number of spikes in one train that
are coincident with a spike in another train to within some spec-
ified tolerance. Rossant et al. (2010) presented a general pur-
pose model fitting method using a particle swarm algorithm, and
using covariance matrix adaptation (Rossant et al., 2011), to opti-
mize the coincidence factor and applied their algorithm to the
INCF single neuron modeling competition data (Jolivet et al.,
2008b).

Other fitness functions available for spike train data include
the van Rossum distance (van Rossum, 2001), the Victor-Purpura
metric (Victor and Purpura, 1996), the inter-spike-interval dis-
tance and SPIKE distance (Kreuz et al., 2007, 2011, 2013) and
the correlation-based measure due to Schreiber et al. (2003).
However, all of the available measures of spike train synchrony
approach the problem differently and have been demonstrated
to exhibit their own intrinsic bias and their own advantages
(Kreuz et al., 2007; Naud et al., 2011; Houghton and Victor,
2012).

The van Rossum metric, which will be applied to neuron
model fitting here, is a similarity measure which is computed by
convolving spike trains with a filter to produce square integrable
functions and then taking the standard L2 distance between these
functions. The measure has several useful properties; it is con-
tinuous, which gives the algorithm sensitivity to small improve-
ments in model accuracy; it does not require binning of spikes
so it retains high fidelity to the temporal structure and it satisfies
all the properties of a formal metric. With this in mind, it seems
likely the van Rossum metric is as useful as many of the other
available measures.

In this paper a general purpose evolutionary optimization
routine is presented for calculating parameters for spiking neu-
ron models responding to time varying signals which may be an
input current waveform or an auditory stimulus. The optimiza-
tion method is based on the genetic algorithm with real-value
gene representations. The algorithm uses the van Rossum spike
train metric as the fitness function.

Initially the algorithm is tested by fitting spiking neuron
models to synthetic target data generated by other models with
parameters known to lie in the search space. The algorithm
is then applied to fitting models to experimental spike train
data. Several two variable spiking neuron models are fit to in-
vitro intracellular spike train recordings with known somati-
cally injected currents. This data is taken from the Quantitative
Single Neuron Modeling Competition (Jolivet et al., 2008b). A
three variable model which is an extension of the aEIF neuron is
presented and tested alongside the other models.

The algorithm is then extended to optimize an auditory neu-
ron model, consisting of a cascade of a receptive field and a
spiking neuron, by a tandem evolution approach. The model
is fit to data consisting of song stimuli and extracellular spike
train recordings from Zebra Finch. The full auditory model is
compared to linear rate models in predicting the activity of the
Zebra Finch auditory neurons responding to conspecific songs
using two measures: the average coincidence factors and the van
Rossum distances across trials.
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1. Methods

1.1. Spiking Neuron Models
In this section we review the standard spiking neuron models
and introduce a new spiking model which we found to be effec-
tive when applied to experimental data. Spiking neuron models,
in contrast to more biophysically grounded models such as the
Hodgkin-Huxley or Morris-Lecar neurons, are phenomenolog-
ical models that reproduce neuron-like behavior with relatively
few parameters. They exhibit neuron-like behavior in response
to excitation but usually are not rooted in a careful balance of
terms representing voltage gated ion channels acting on varying
timescales, as in the Hodgkin-Huxley model. Rather, a sharp, dis-
continuous reset process at a spike threshold is used to model the
down-sweep of the action potential.

This work investigates the fitting of models of this type with
two variables. These models are expressed as either one or a
pair of coupled ordinary differential equations with the general
form as below. The first equation describes the time course of
the membrane voltage v in response to an injected current I and
adaptation variable w,

dv

dt
= f (v)− w+ RI. (1)

Here, f (v) is some function of v chosen to approximate the cur-
rent response of a real neuron. R is a scaling factor for the current.
The second equation describes the evolution of the adaptation
variable,

dw

dt
= a(bv− w). (2)

Since these models have no mechanisms to restore the voltage to
resting after a spike, a sharp reset condition must be imposed at a
cut-off voltage, vc, so when v > vc

v → vr
w → w+ α (3)

The voltage is reset to a reset value, vr , and the adaptation variable
is incremented by α.

In a real neuron, the membrane voltage rises sharply to a value
greater than zero after a threshold is reached due to the opening
of voltage-gated sodium ion channels; this effect is reproduced
somewhat in exponential and quadratic integrate-and-fire mod-
els but not in the simple leaky integrate-and-fire model where
there is no non-linearity around the voltage threshold. In other
words, the exponential and quadratic models describe some part
of the upswing of the spike but still require the manual inser-
tion of part of the upswing and the down swing, the leaky inte-
grate and fire model does not model any of the spike and do not
account for the dynamics near threshold.

The various models in the literature are obtained by an appro-
priate choice of function f (v) in the differential equation for
the voltage, Equation (1). For example, the basic IF model is
defined by

f (v) = −
1

τm
(v− EL) (4)

a = 0 (5)

b− 0 (6)

where τm is the membrane time constant. The aIF model is
defined by

f (v) = −
1

τm
(v− EL) (7)

a =
1

τw
(8)

b = 0 (9)

where τw is the adaptation time constant.
A separate but related type of model, involving an adaptation

of the spiking cutoff voltage replaces the second equation in the
previous pair, Equation (2), with a similar equation for vc,

τt
dvc

dt
= bv− vc (10)

and instead incrementing vc during the reset process by α.
The aEIF model is defined by

f (v) =
1

τm

[

(EL − v)+ 1T exp
(v−vT/1T ))

]

(11)

a =
1

τw
(12)

EL is the effective resting potential of the neuron and 1T is a
slope factor for the exponential term. vT is the threshold voltage.
When v passes this threshold its value increases exponentially and
spike initiation is almost unavoidable. This mimics the effect of
the opening of voltage gated sodium ion channels in real neurons
(Brette and Gerstner, 2005).

The adaptive quadratic integrate-and-fire (aQIF) or
Izhikevich model (Izhikevich, 2003) is defined by

f (v) = 0.04v2 + 5v+ 140 (13)

and a reset condition as before although Izhikevich refers to the
reset voltage as c rather than vR and the increment in the adap-
tation variable as d rather than α. Spike cut-off occurs at a fixed
value of 30mV. The cutoff value has been shown to be critical to
the spiking behavior of this model (Touboul, 2009).

Possible extensions of these two variable models are inclusions
of multiple time scales of adaptation in either the threshold or
the adaptation current by the inclusion of additional equations
of the form of Equations (2) or (10). Promising results have been
achieved with an approach like this. Kobayashi et al. (2009), for
example, introduced a leaky integrate-and-fire model with mul-
tiple time scales of adaptation in the spike threshold, the multi-
ple adaptive timescales (MAT) model. Their model consists of a
non-resetting leaky integrate-and-fire neuron in which the spike
threshold is increased each time the spike threshold is reached.

Overall, it seems that adaptation is both crucial to model per-
formance and occurs on multiple time scales. In Kobayashi et al.
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(2009) the predictive powers of a Hodgkin-Huxley model, leaky
integrate-and-fire model and a Spike Response model with an
adaptive threshold were compared to the MAT model using in-
vitro conductance based test data. The coincidence factor, Ŵ,
scaled by the intrinsic reliability, Ŵi is used to calculate an effec-
tive predictive score, ŴA = Ŵ/Ŵi. The Hodgkin-Huxley model
achieved a predictive score of ŴA = 0.51 ± 0.26. The leaky
integrate-and-fire model and spike response model with a sin-
gle scale adaptive thresholds yielded ŴA = 0.66± 0.26, and ŴA =
0.70± 0.26, respectively. The multiple adaptive timescales model
with three scales of adaptation achieved the best predictive score
ofŴA = 0.89± 0.21. In otherwords, the effectiveness of themodel
increases as the amount of adaptation is increased and the inclu-
sion of adaptation is more useful at improving accuracy than the
biophysical replication of short timescale channel dynamics of
the Hodgkin-Huxley equation.

Here we propose an extension of the aEIF model which
includes a second level of adaptation in the spike threshold
parameter. The model has similar sub-threshold dynamics to
the original aEIF model, however the extra dynamical equation
allows for the threshold to increase after spiking. We call this
multiply adaptive exponential integrate-and-fire model the a2EIF
model. The dynamical equations of the model are

τm
dv

dt
= EL − v+ 1T exp

(v−vt/1T ) −w+ RĨ (14)

τw
dw

dt
= bv− w (15)

τt
dvt

dt
= Vt0 − vt (16)

The parameters τt and β are the time constant of threshold
adaptation and spike-threshold increment respectively. The reset
occurs when the voltage reaches vc and has an effect on each of
the three dynamic variables;

v > vc







v → vr
w → w+ α

vt → vt + β

. (17)

where c is a constant set at the initial threshold voltage, typi-
cally ≈ −50 mV. The model differs from the MAT model and
other adaptive threshold models in that the adaptation occurs in
the threshold voltage parameter of the exponential term rather
than the spike time recording threshold voltage. The vt parame-
ter defines the membrane voltage at which the exponential term
becomes positive and initiation of a spike is almost certain.

1.2. Auditory Model
In this section the other part of modeling the in-vivo situation
is discussed, the transformation of a natural stimulus to a time
varying signal which may be a firing rate or an input current. We
demonstrate how to estimate this signal in the case of an audi-
tory stimulus and use it as part of a spiking model of an auditory
neuron.

The responses of auditory neurons to auditory stimuli are
commonly characterized using spectro-temporal receptive field

(STRF) models (Aertsen and Johannesma, 1981; Theunissen
et al., 2000; Sen et al., 2001; Olshausen and Field, 2004; Wool-
ley et al., 2005; Gill et al., 2006). The STRF is a kernel, h(τ, ω),
which describes how an auditory neuron responds to stimuli by
taking a weighted sum over different latencies and frequencies.
Convolving the STRF with the stimulus s(t, ω) gives an estimate
r̃(t) of the neurons firing rate:

r̃(t) =

∫

�

∫ T

0
h(τ, ω)s(t − τ, ω)dτdω. (18)

In the linear case, the receptive field is estimated by formulating a
least squares problem between the estimated firing rate, r̃(t) and
the actual experimental firing rate, r(t). r(t) is typically approxi-
mated by the peri-stimulus time histogram which is the ensemble
averaged rate across multiple trials of the same stimulus and this
is themethod applied to the experimental data sets used here. The
problem is to minimize E ,

E =

√

∫

(r − r̃)2dt. (19)

Several methods have been applied to the solution of Equation
(20), with normalized reverse correlation being commonly used
(Theunissen et al., 2001; Ringach and Shapley, 2004; David et al.,
2007). Gradient descent, coordinate descent (Theunissen et al.,
2001) and boosting (Friedman et al., 2000; David et al., 2007;
Willmore et al., 2010) are also popular choices. More recently
a generalized linear model approach was proposed by Calabrese
et al. (2011).

The STRF calculation used here is based on the pseudo-inverse
technique commonly used elsewhere (Theunissen et al., 2001;
David et al., 2007). The method proceeds as follows: the linear
model, Equation (18), can be written in a discrete form as

r̃(t) =

N−1
∑

i=0

M−1
∑

k=0

ht(i, k)s(t − i, k) (20)

where i is an index overN points in time and k is an index overM
frequency values. The indexes of Equation (20) can be vectorized
so that only one sum over the spatial and spectral dimension of
the stimulus is required.

r̃(t) =

N×M
∑

i=1

h(i)st(i) (21)

where h = [h1, ..., hM×N]
T is the vector of STRF coefficients.

Minimizing 〈(r − r̃)2〉 gives the solution for the receptive field
vector h,

h = (STS)−1Csr, (22)

where (STS) is the (NM × NM) stimulus auto-correlation matrix
and Csr is the cross correlation vector between the stimulus
and the response. The inversion of the stimulus auto-correlation
matrix requires careful consideration.
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The singular value decomposition of the auto-correlation
matrix (STS) will typically show that it has many very small
or zero eigenvalues corresponding to the low variance stimulus
dimensions seen in natural stimuli. Inversion of the matrix will
amplify the noise from these stimulus dimensions in the STRF.
Thus, (STS)−1 is computed by first taking the singular value
decomposition of STS and constructing a pseudo-inverse for it
using a regularization. The singular value decomposition of STS
can be written

STS = U6V∗ (23)

where 6 is a diagonal matrix of the singular values and U and
V are unitary square matrices. The pseudo-inverse of STS is then
given by

(STS)+ = V6+U∗. (24)

A regularization strategy is applied to the singular value matrix,
6, during inversion to form the regularized pseudo-inverse. It
requires selection of a single hyper-parameter λ which speci-
fies the tolerance of the regularization and is optimized using a
cross-validation procedure. The number of stimulus dimensions
to preserve,m, is computed by

m = arg max
σ1 + σ2 + . . . + σm

σ1 + σ2 + . . . + σMN
< λ (25)

If σi are the singular values in 6, then after this regularization
procedure the non-zero elements of the inverse of 6, that is 6+,
are given by

6+ = diag

(

1

σ1
,
1

σ2
, . . . ,

1

σm
, 0, . . . , 0

)

(26)

Receptive field models estimate firing rates and not spike trains.
However, the firing rate can be used to generate spike trains using
some spike generation mechanism. For example, an inhomoge-
neous Poisson process can be used to generate spike trains in a
probabilistic manner from the rate. Here, a two stage model is
used in which a receptive field model is adapted to produce an
estimate of the input signal to a two-dimensional spiking neu-
ron model. This is a deterministic model of spike generation for
auditory neurons in-vivo.

dv

dt
= f (v)− w+ Ĩ (27)

dw

dt
= a(bv− w) (28)

Ĩ(t) = C

∫

�

∫ T

0
h(τ, ω)s(t − τ, ω) dτ dω. (29)

Ĩ is an estimate of the input current signal andC is some constant.
We shall attempt to fit this model to in-vivo extracellular spike

train data using an evolutionary algorithm which is described
in the next section. Our approach will be to use a tandem evo-
lution method to alternately evolve the set of neuron parame-
ters and the the set of STRF parameters for some number of
iterations. This is illustrated in Figure 1 which shows a flowchart

of the model and the optimization process. The three variable
a2EIF model will not be used in the two stage auditory model
because it presents a more challenging optimization problem, as
will be shown later, and its parameters have not been well studied.
Instead, the standard aEIF neuron will be used.

1.3. Optimization Algorithm
In this paper a genetic algorithm is used; it is customized to
parameter discovery for the two stage spiking model. The
genetic algorithm is a heuristic optimization method inspired
by Darwinian evolution, first introduced in Holland (1973). The
method starts with an initial population of parameter sets which
represent potential solutions to the problem. The parameter
sets in the population are ranked based on the fitness measure
to be optimized, for example, how well a model predicts an
experimental spike train. Selection and breeding are used to
produce a new generation of parameter sets with most of the
good characteristics of the previous generation and, typically, a
higher average fitness. The process is continued until a genera-
tion produces a set of parameters that sufficiently optimize the
problem or until a time limit is reached.

More precisely, the genetic algorithm is used to find a param-
eter set x ∈ Rn that minimizes a fitness function f (x) ∈ R; x
may be constrained to lie in some feasible region S ⊂ Rn. It
is an iterative, population-based method in which a population
set P0 = {x1, . . . , xN} of candidate parameter sets, xi ∈ S, is
randomly initialized and successive generations of parameter sets
P1, . . . , Pi are iteratively generated from the previous generation
using a number of pre-defined rules to combine and randomly
modify parameter sets and form new parameter sets.

The fitnesses of the parameter sets in each generation are cal-
culated and ordered in ascending order. To create a new gen-
eration set, P1, first, the fittest k members of P0 are selected
and copied exactly to form k elements of P1. This procedure is
referred to as elitism and k is a run time specified parameter. The

FIGURE 1 | Schematic of the flow of the STRF-Neuron cascade model

optimization algorithm. The input stimulus, s(τ, ω), is a spectro-temporal

representation of a sound. It is convolved with a STRF, h, which forms the

input to an aEIF neuron. The predicted spike train, ũ, is then compared

against the training data and validation data spike trains using the van

Rossum distance, d(u, ũ). The population results on the training data are then

used to evolve either the population of STRFs or the population of aEIF

parameter sets, P, independently. This is done in tandem and in real

simulations, a regime of alternating between 50 iterations of evolving each

population was used. The result against the validation data is used for

tracking convergence and for convergence criteria; the algorithm can be

stopped after a maximum number of specified iterations or when d(u, ũ) < ǫ

then we have a sufficiently accurate solution.
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purpose of the elitism step is to ensure that good solutions, once
found, are not lost.

Next, breeding is used to replace the other n − k members.
The first step in breeding is selection. There are a number of
commonly used methods for this; here the roulette wheel selec-
tion method is applied which essentially ensures that parents
are selected from the population randomly but with probabilities
proportional to their fitness values. Once crossover is complete, a
small percentage of themembers of P1 are randomly selected with
somemutation probability, typically≈ 5%, to undergo mutation.

The algorithm developed here uses a non-uniform mutation
operator inspired by those commonly presented in, for example,
Michalewicz (1996). If a neuron model parameter set is selected
for mutation, a single parameter is chosen and rescaled by 1+ r,
where r is a Gaussian random number of mean zero and vari-
ance ǫm. The value of ǫm decreases with successive iterations. This
causes the algorithm to search the parameter space widely in early
iterations and to more finely tune its search in later generations.
0.2 was determined to be a roughly optimal initial value for ǫm
through trial and error as, on average, the best convergence was
observed with this value.

The differential equations governing spiking neuron models
are invariant under a number of scaling transformations. Indeed
many of the models can be rescaled and their number of param-
eters reduced. For example, Touboul and Brette (2008) showed
that rescaling of an aEIF neuron reduced it to from eight to
four parameters. The genetic algorithm traverses this invariance
and any set of parameters found by the genetic algorithm can
be rescaled to biologically plausible ranges. In the model fitting
studies here, we have ignored these invariances; instead, the algo-
rithm uses user specified ranges for each parameter to draw initial
values for the population.

There is also an ambiguity in the overall scale of r̃(t), the out-
put of the STRF model, when r̃(t) is regarded as a rate the overall
scale can be fixed to give the correct average firing rate. Here r̃(t)
is used as the input to the spiking neuron model and the prob-
lem of finding the over scale is separated from the problem of
determining the shape of the STRF by constraining the STRF to
have an L1 norm equal to one. The correct scaling factor is then
regarded as one of the parameters describing the neuron model
and is optimized along with the other neuronal parameters.

The parameters of each model that was presented in Section
2.1 and 2.2. are summarized in Table 1. These will be optimized

by the genetic algorithm. The table lists each models’ parameter
set, number of parameters and the storage format used as well as
the total size in memory of a chromosome.

1.4. Fitness Function
Here the van Rossum metric (van Rossum, 2001) is used as the
fitness function. The van Rossummetric is a continuous measure
of the dissimilarity between two spike trains. The metric is com-
puted by convolving spike trains with a filter to map the trains to
square integrable functions. A spike train

u = {u1, u2, · · · , um} (30)

is mapped to a real function, f (t;u) using a filter h(t):

u 7→ f (t;u) =

m
∑

i=1

h(t − ui). (31)

Here, an exponential kernel is used:

h(t) =

{

0 t < 0
2
τ
e−t/τ t ≥ 0

. (32)

where τ is a timescale which determines the relative sensitivity of
the metric to fine temporal features in the spike trains. The van
Rossum distance between two spike trains u and v is then the L2

metric between their respective functions, that is

d(u, v) =

√

∫

dt[f (t;u)− f (t; v)]2 (33)

An efficient algorithm for computing the metric, presented in
Houghton and Kreuz (2012), was employed in our simulations.

Often, some sort of metric clustering based optimization
routine is used to pick the best timescale τ for a data set
(Victor and Purpura, 1997). Here, however, different timescales
are used to explore different points in the spike trains in our
genetic algorithm. Different values of τ make the metric sen-
sitive to features on different timescales in the spike trains.
A long timescale allows similarities in large scale features to
be detected, for example, the mean firing rate, while a short
timescale will be more sensitive to the differences between very
similar spike trains. This is illustrated by the example in Figure 2.

TABLE 1 | Parameters and gene size for each model.

Model Optimized parameters Fixed parameters N Type Gene size

atIF τm, τt, α,b,R EL,Vc0 5 float 20 bytes

aIF τm, τw, α,R EL,Vc 4 float 16 bytes

aEIF τm, τw,EL, 1T ,VT ,b, α,Vr ,R Vc 9 float 36 bytes

a2EIF τm, τw, τt,EL1T ,b, α, β,Vr ,Vt0,R Vc 11 float 44 bytes

aQIF a,b, c,d Vc 4 float 16 bytes

STRF 20× 40 matrix h(τ, ω) 800 float 3200 bytes

Table showing the number of parameters of each model and the parameters being optimized for each model together with data type and gene size. Single precision floating point

representations were generally used because the Nvidia Tesla C1060 GPU used to run the simulations was from an early generation of Nvidia GPUs which did not have full support for

double precision. Switching to double precision would be relatively straightforward if required.
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Figure 2A shows two spike trains. In Figure 2B the spike trains
have been filtered to form functions with a short timescale.
The functions formed by filtering the spike trains only signif-
icantly overlap when spikes from each train are close to each
other. Figure 2C demonstrates that for a long timescale, very
different spike trains can produce relatively similar functions.
To demonstrate the effect of this on model optimization, we
will later present the result of using a variable timescale which
starts at a value of the order of the length of the target data
set and is then reduced to a value roughly equal to the mean
inter-spike interval.

It is convenient to introduce objects that play the role of
“average” spike trains. Following Julienne and Houghton (2013)
the average function is the mean of the functions obtained by
filtering each train in a set and the central spike train is a
spike train constructed so that its filtered function is close to
the average function. These objects provide an efficient alter-
native to fitting to many trials of the same stimulus and a
means of noise reduction similar to peri-stimulus time his-
togram estimates of the firing rate but with the result of exact
spike times.

In addition to the van Rossum metric, we use the the coinci-
dence factor as benchmark test for quantifying the performance
of neuron models since it is widely used for this purpose (Jolivet
et al., 2008a). Roughly speaking the coincidence factor counts the
fraction of spikes in one spike train that are coincident to a spike
in a target spike train to within some temporal tolerance, δ. The
coincidence factor is defined by

Ŵ =
2

1− 2δf

(

Nc − 2δNef

Ne + Nm

)

(34)

whereNc is the number of coincident pairs between the two spike
trains, Ne and Nm are the number of spikes in the experimental
and model spike trains respectively. δ is the coincidence window
which defines a coincidence; if the absolute time difference
between two spikes is less than δ then they are coincident. f

A

B

C

FIGURE 2 | An illustration of the effect of filter width on van Rossum

metric; (A) Shows two spike trains, one in black, the other in blue, (B)

Shows the functions obtained by filtering the spike trains with a causal

exponential with a time constant of τ = 10 ms, and (C) Shows the same

trains filtered with time constant of 50 ms, 5 × τ .

is the average firing rate in the experimental target. The nor-
malization factor ensures that Ŵ ≤ 1 and Ŵ = 1 corresponds
to a perfect match at the given δ value. The intrinsic reliabil-
ity of the target data set, denoted Ŵi, is the average inter-trial
coincidence factor. It is a measure of the underlying unreliabil-
ity of the spike trains and can be used to rescale model coin-
cidence factors into an effective performance factor. If a model
achieves a performance factor of Ŵ/Ŵi ≥ 1 in predictions on
a validation set then it can safely be concluded that the model
is making predictions to within the variability of experimental
data set.

1.5. Numerical Experiments
A number of numerical experiments were designed and per-
formed to test the effectiveness of our algorithm at parame-
ter estimation and neural response prediction in different sit-
uations. The details of these experiments are described in this
section.

To test the effectiveness of the algorithm in isolation, synthetic
target data generated by a spiking neuron model target was used.
Here it was expected that a model with a high coincidence fac-
tor with the target data could be found by the algorithm since
it was known in advance that a model with the same dynamics
exists.

Twenty experimental runs were performed as follows. Using
the aEIF model, a sample parameter set was used to simulate 4 s
of spike train data in response to a random input current signal.
This synthetic data set, consisting of the spike train and current
signal, was then used as the target for the genetic algorithm. For
this purpose, the data set was divided in two with the first 2 s
being for training and the final 2 s for validation. The genetic
algorithm was initialized with a population of 240 neuron mod-
els each with a parameter set drawn randomly from its feasible
region. The target parameters are indicated in Table 2. The fea-
sible regions of each are quoted in the Supplementary Material
accompanying this article.

We chose a population size of 240 as it is the number of cores
on the NVidia CUDA GPU we ran the code on. The algorithm
was set to run for 1000 iterations to allow full convergence and
the evolution of the population best van Rossum distance and
coincidence factor when compared against the validation data set
was observed.

It was also investigated here whether using a variable timescale
in the van Rossum distance fitness function results in a more
effective optimization search than a fixed timescale. Three test
case optimization runs were performed; in the first the algorithm
was set to use a timescale which starts at a value half the length
of the target data set and is reduced with subsequent iterations
to a value equal to the mean inter-spike interval. The decrement
in τ is logarithmic with the base being calculated using the max-
imum number of genetic algorithm iterations, N. In the second
and third test cases, the van Rossum distance was set to have fixed
timescales equal to half the data set width and the mean inter-
spike interval respectively. For each test case, the algorithm was
run 20 times for 200 iterations and the convergence behavior was
observed.
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TABLE 2 | Target parameters and found parameters.

τm τw b VT VR = EL α 1T

Range [3, 17] ms [36, 204] ms [0.0003, 0.0017] [−70, −20] mV [−120, −50] mV [0.3, 1.7] mV [0.5, 3] mV

Target 10 ms 144 ms 0.001 −50 mV −70 mV 1 mV 2 mV

Discovered 11 ± 2.6 ms 145.5 ± 4 ms 0.0011 ± 0.0004 −50 ± 7 mV −70 ± 1 mV 1± 0.1 mV 1.75 ± 0.4 mV

The table shows the values of parameters of the adaptive exponential integrate-and-fire model which were used to generate synthetic target data in the model finding runs together

with the search range used by the genetic algorithm for each parameter and finally the average parameter values discovered by the algorithm plus or minus a standard deviation across

20 runs. The average coincidence factor between the discovered models and the target data was 0.98±0.05 at a coincidence window width of 1 = 0.5 ms.

A

B

FIGURE 3 | Sample of data from the in-vitro L5 pyrmadial neuron

experiment. (A) Shows 2 s of current input which was injected during the

experiments. (B) Is the corresponding voltage trace from one of the 13

experimental trials.

1.5.1. Fitting to In-Vitro Intracellular Data

The model fitting procedure was tested on the publicly available
data from challenge A of the INCF quantitative single neuron
modeling competition, 2009 (Gerstner andNaud, 2009). The data
set consisted of a 38s voltage recording from regular L5 pyrami-
dal neuron of a rat responding to an in-vivo like current injection.
Random current injection starts at 17.5 s into each trial and con-
tinues for the remainder. A 2 s sample of the input current and a
corresponding voltage trace is illustrated in Figure 3. In order to
compare the performance of our algorithm in in-vitro data mod-
eling against a similar study, we tested out algorithm using the
same data and models as Rossant et al. (2010).

The 20.5 s segment of current injection data set was divided up
as follows; the first 10.5 s was used for model fitting and the the
last 10 s for validation. The spike times were extracted from the
voltage trace by using interpolation to find the times in the trace
at which the voltage crossed a threshold value.

The algorithm was run for each of five neuron models to find
the best parameters in each of the aIF, atIF, aEIF, a2EIF, and
Izhikevich models. The algorithm was set to run for 800 itera-
tions on each trial. The best average inter-trial coincidence factor
obtained from each run and the corresponding parameters were
recorded. We also studied the MAT model using the parameters
described in Kobayashi et al. (2009).

1.5.2. Fitting to In-Vivo Extracellular Data

For testing the auditory model, we used the publicly avail-
able Zebra Finch data set, “aa-2,” available on the collaborative

research in computational neuroscience (CRCNS) website (Gill
et al., 2006; Amin et al., 2010; Theunissen et al., 2011). The data
set consists of 445 sets of extracellular recordings of live anes-
thetized Zebra Finch responding to both conspecific songs and
noise. Each set consisted of between 10 and 20 auditory stimuli
with an average duration of 2̃ s and corresponding sets of spike
train responses to 10 repetitions of each stimulus. The exper-
iments which produced these data are described in Gill et al.
(2006). An example of 2 s of input and response data is illus-
trated in Figure 4. Figure 4A is a sound waveform, Figure 4B
shows the sound in spectrographic form and Figure 4C shows
the corresponding peri-stimulus time histogram obtained from
extracellular recordings of the response to 20 repetitions of the
sound stimulus.

Data consisting of 110 of the 445 electrode data sets was
selected from the full set for testing of the full model optimiza-
tion routine as follows; an ensemble average intrinsic reliability,
〈Ŵi〉, was first estimated for each of the 445 cells in the data
set by computing the intrinsic reliability between trials for each
stimulus with δ = 2 ms and then averaging across stimuli. The
cells with 〈Ŵi〉 greater than 0.1 were then selected for testing.
A coincidence factor of 0 would correspond to random chance
so 0.1 was deemed a sensible limit to eliminate highly noisy
data.

The spectro-temporal receptive field of each cell in the cohort
was computed using the normalized reverse correlation method
presented earlier using the STRFlab Matlab toolbox (David et al.,
2010). The STRFs were chosen to have 20 frequency bands
between 0 and 8 kHz and 40 evenly spaced time points with a
total temporal width of 40ms. The STRF for each cell was com-
puted using the Lyon’s cochleagram representation of the stim-
ulus (Lyon, 1982). Gill et al. (2006) demonstrated that this rep-
resentation yields STRFs with the highest predictive accuracy on
this data set when compared against STRFs computed from log
spectrogram and wavelet representations. The Lyon’s cochlea-
grams were computed using the Auditory Toolbox written by
Malcolm Slaney (Slaney, 1998). These STRFs were used as initial
conditions in the genetic algorithm.

Finally, the full model optimizationmethod was applied to the
110 data sets from the experimental data set as follows. First, each
data set was split in half to form training and validation sets. For
example, in the sets with 20 songs, 10 were used for validation
and 10 for training. The algorithm was run for a maximum of
600 iterations on each cell, using the average van Rossum func-
tion obtained by summing all the spike trains as the target. It
was observed that the algorithm generally stopped converging
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A

B

C

FIGURE 4 | Illustration of stimulus and response from an example

in-vivo cell. (A) Shows the raw sound waveform of 2 s of Zebra Finch song,

(B) shows a spectrographic representation of the sound, the y axis indicating

the frequency in kHz, and (C) shows the peri-stimulus time histogram of the

response of the cell.

after a few 100 iterations. This is how a limit of 600 iteration
was decided upon; no significant improvement was likely beyond
this.

The performance of the full model spike predictions were
benchmarked against the STRF rate models realized as a set of
spike trains by generating spikes from the rate using an inho-
mogeneous Poisson process (Lewis and Shedler, 1979). Both the
van Rossum distance and the coincidence factor were used as
performance measures. The expected coincidence factors were
evaluated between an inhomogeneous Poisson process with rate
r(t) and the set of experimental trials as follows. Following on
from Equation (34) this is

〈Ŵ〉 =
〈Nc〉 − 2f δNe

1
2 (Ne + 〈Nm〉)

1

1− 2f δ
(35)

The expected number of spikes generated by the inhomogeneous
Poisson process, 〈Nm〉, is just the integral of the rate over the

time
∫ T
0 r̃(t) dt. The value of 〈Ncoinc〉was estimated using aMonte

Carlo like method in which the number of coincidences was eval-
uated for 100 simulated Poisson spike trains with rate r̃(t) and the
average value was taken.

Expected van Rossum distances between the inhomogeneous
Poisson neurons and the target spike trains were calculated. This
can be accomplished by first filtering the Poisson neuron firing
rate with the exponential filter of the van Rossum distance. The
resulting function is equivalent to the expected function obtained
by filtering and averaging very large ensemble of Poisson spike
train realizations of the rate. Thus, the expected Van Rossum dis-
tance between a Poisson process with rate r̃(t) and a spike train u

is equal to

〈d(u, r̃(t))〉 =

√

∫ T

0
[u ∗ h(t)− r̃(t) ∗ h(t)]2 dt (36)

2. Results

An evolutionary algorithm for fitting spiking neuron models to
time varying signals has been presented. The system used a van
Rossummetric between spike trains as a fitness function. Initially,
the algorithm was applied to synthetic data to study its conver-
gence properties. The algorithmwas then applied to modeling in-
vitro data with several adaptive two variable neuron models. The
algorithm was then further tested on the optimization of a cas-
cade neuron model consisting of a receptive field and aEIF model
applied to auditory spike train data from zebra finch responding
to conspecific song.

The purpose of testing the algorithm on artificial target data
was to show that the algorithm was capable of finding, near
enough, a set of parameters which are known to exist somewhere
in the search space. Figure 5 shows the convergence behavior of
the algorithm in fitting an aEIF model to a data set consisting of
2 s of simulated aEIF response to a random current input. The
population best van Rossum distance and the coincidence factor
for the corresponding members were recorded at each iteration
and averaged over 20 runs for this plot. As can be seen, a near
perfect fit is achieved with a high degree of reliability. The coin-
cidence factor consistently rose to a value close to one between
the model and target on repeated runs of the algorithm on the
target data generated by an aEIF model. A stringent coincidence
window width of δ = 0.5 ms was used for this relatively easy
optimization problem; the quantitative single neuron modeling
competition used a value of δ = 2 ms in its benchmarking of fits
to real in-vitro data.

The target parameters and the values obtained by the search
algorithm are given in Table 2 together with the search range
used by the algorithm to initialize the population. It is apparent
that some variance exists in the parameters obtained although a
high degree of accuracy was achieved with the target parameters.
This could be due to the coincidence window of 0.5 being still
relatively large or due to models such as the aEIF being rescalable
to a dimensionless forms with fewer parameters (Touboul and
Brette, 2008).

The effect of varying the van Rossum distance timescale on
model convergence was investigated during the runs on artificial
target data. In Figure 5B we see the evolution of the population
best coincidence factor for different values of τ in the van Rossum
distance. The three curves show the average convergence rate of
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A B

FIGURE 5 | Convergence of the van Rossum distance and

coincidence factor in model finding runs. These simulations used

synthetic model data as targets. The convergence was measured and

averaged over 20 identical runs. The algorithm used the van Rossum

distance, d, between the experimental and model spike trains, u and ũ,

as the fitness function. The van Rossum distance is normalized by its

initial value. (A) shows the average performance of the algorithm. (B)

shows the convergence behavior of the coincidence factor with different

timescale choice in three cases; using a long timescale (T/2), a short

timescale (1/f ) and a varying timescale, decreasing from an initial value of

T/2 down to 1/f . The dotted lines show the standard deviation from the

mean (solid) lines.

the algorithm in three cases—using a constant long timescale, a
constant short timescale and a varying timescale.

Using a varying timescale consistently improved convergence
behavior over using a constant timescale. A short τ resulted in
a rapid initial climb which leveled off relatively early. A long τ

resulted in a slower rise in coincidence factor. The varying time
scale allows the correct firing rate to be quickly found in the early
stages of the search by using a wide timescale, leading to sharp
improvements early on. Later, with a narrower timescale, the
van Rossum distance switches to functioning more like a coin-
cidence detector and fine tunes the model. The effect of a varying
timescale on the resulting spike train functions is illustrated in
Figure 2.

The performance results of the model fitting studies on the
in-vitro data are summarized in Table 3. The best results for
each model are similar those obtained in the study by Rossant
et al. (2010) who used the same data. However, the exponential
integrate-and-fire neurons excelled in our experiments. Without
an adaptive threshold, the aEIF model is seen to perform con-
siderably better than the integrate-and-fire models with either
an adaptation current or an adaptive threshold, as can be seen
in Table 3. This is likely due to the advantages offered by the
exponential term in allowing fast spike initiation.

The a2EIF gave the highest predictive accuracy among the
models studied. The computational cost of the model is only
marginally higher than the aEIF model as the extra equation is
linear. The aEIF model does however converge to 90% of the
maximum achieved in considerably less iterations of the genetic
algorithm than the a2EIF model. This is illustrated in Figure 6A,
which shows the average number of iterations required on each
model to reach 90% of the maximum achieved coincidence fac-
tor for, and not again drop below it. For this reason we chose
to use the aEIF model in the in-vivo experiments, the results
of which are presented in the next section. This figure was
plotted because the coincidence factor does not consistently
increase with decreasing van Rossum distance. Instead, it fluc-
tuates up and down as changes which cause slight improvements
in van Rossum distance sometimes cause a drop in coincidence
factor.

TABLE 3 | Performance and computational cost.

〈Ŵ〉/Ŵi No Parameters Computational cost

aIF 0.63± 0.04 4 1.7

atIF 0.64± 0.06 5 1.8

aEIF 0.74± 0.06 9 8.3

a2EIF 0.78± 0.03 11 8.4

aEIF approximation 0.74± 0.06 9 5.6

a2EIF approximation 0.77± 0.03 11 5.7

MAT* 0.59± 0.02 5 1.1

Izhikevich 0.38± 0.03 5 2.1

The table shows the mean of the best coincidence factors recorded on each trial for sev-

eral different models on the Challenge A data set of the INCF quantitative single neuron

modeling competition. The figures are averages± a standard deviation across each of 13

trials and 10 parameter finding runs on each trial. The models were implemented with 4th

order Runge-Kutta numerical integration schemes. The relative cost figures indicate the

time taken to simulate that particular neuron model, with the required spike count, relative

to a simple integrate-and-fire neuron. The ‘approximation’ values for the aEIF and a2EIF

models were obtained using an approximation of the exponential term as described in

Schraudolph (1998). *means that we used the implementation of the model described in

Kobayashi et al. (2009) rather than our own code.

In Table 3 the computational cost figures are scaled relative
to a simple integrate-and-fire neuron responding to the same
input stimulus. The exponential term in the two exponential IF
neurons is the cause of their relatively high computational costs.
Series approximations of exponentials, as performed by standard
math libraries, require many floating point operations. A lower
order approximation of the exponential carefully designed for
the likely range of the exponent, as presented by Schraudolph
(1998), can speed these models up dramatically with negligible
changes in accuracy.

This approximation was tested. The performance and com-
putational cost figures obtained with this method are shown in
the table in brackets next to the figures for the aEIF and a2EIF
neurons obtained using calls to the standard exponential func-
tion in the C math library. A speed increase of more than 30%
is achieved with negligible change in predictive accuracy accord-
ing to the coincidence factor calculated at a resolution of 2ms.
However, the computational cost is still more than five times that
of a leaky integrate-and-fire neuron.
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A B

FIGURE 6 | (A) Shows the average number of iterations to reach and not

again fall below 90% of the maximum coincidence factor achieved on that

run plotted with the maximum achieved coincidence factors for each neuron.

We chose to plot the data in this way because the coincidence factor does

not increase monotonically with decreasing van Rossum distance. (B) Shows

the evolution of average population best coincidence factor averaged across

trials for each model used for modeling the in-vitro data set. Note that the

coincidence factor does not strictly increase because it is not the fitness

function, but rather, the van Rossum distance is. The dotted lines indicate the

standard deviation from the mean (solid) lines.

The MAT model was less computationally costly to simulate
than the other models we studied as it is amenable to an ana-
lytical solution. We used the code published by Kobayashi et al.
(2009) to simulate the MAT model results and this code cal-
culates the analytic solution of the integrate and fire neuron.
For the other spiking models, we used a 4th order Runge-Kutta
numerical integration scheme.

2.1. In-Vivo Neuron Modeling Results
The values of best coincidence factor and the best van Rossum
distance obtained from the STRF-aEIF model on the validation
data set are plotted in Figure 7 against corresponding estimates
of the reliability of the data for each cell, that is, the average inter-
trial coincidence factor and inter-trial van Rossum distance of
the data. In Figure 7A the coincidence factor is plotted against
the intrinsic reliability for each cell while in Figure 7B the van
Rossum distance is plotted against the “cluster size”; this is the
average inter-trial van Rossum distance of the set of experimental
validation spike trains.

For many of the cells, the algorithm found solutions close to
these theoretical values of the reliability of the data, particularly
so for van Rossum distances. These limits are not hard upper
limits however and models can exceed them in certain circum-
stances. For example, if a model spike train is found which lies
somewhere in the center of a space whose edges are defined by
the set experimental spike trains, then that spike train can have a
lower average distance from all the experimental trains than the
average inter-trial distance between the experimental trains. Such
a scenario is likely to occur when the experimental recordings are
particularly noisy and variable.

The predictive accuracy of the cascade STRF-aEIF model vs.
normalized reverse correlation STRFs realized as spiking neu-
rons using an inhomogeneous Poisson process is illustrated in
Figure 8. While there is considerable variation, in general it can
be seen from Figure 8A that the STRF-aEIF model on average
achieved a better coincidence factor with the validation data than
a STRF-Poisson cascade spiking model; it performed better in
70.6% of the data sets with an average performance factor of
Ŵ = 0.76± 0.08 vs. Ŵ = 0.61± 0.05.

The aEIF neuron model parameters obtained by fitting the
STRF-aEIF model are collected and the distribution of some of
these parameters are plotted in histograms in Figure 9. Several of
the parameters are also shown plotted against eachother in scatter
plots although no clear relationships were found and parameters
tended to take values centered around the initial regions used
by the algorithm. The slope factor of the exponential term, 1t ,
determines how big of an impact the exponential term has on the
dynamics of the model. Many of the estimated values of 1t are
quite close to zero and less than the sample value quoted by Brette
and Gerstner (2005) which suggests that the exponential term of
the aEIF models found here typically did not have as strong of
an effect in the model dynamics as the model used in Brette and
Gerstner (2005).

The runtime of the algorithm was on the in-vivo data was
very variable and dependent on the length of the training data
set, the spiking frequency, and on the choice of population size
and maximum iterations in the genetic algorithm. However, it
was generally a costly process. Typically, running the algorithm
for 1000 iterations with a population size of 240 took approxi-
mately half an hour on average using a desktop PCwith a 3.4 GHz
AMD athlon CPU and a tesla C1060 GPU. The GPU was used to
simulate and compute the fitness of each population member in
parallel on each iteration. A more universal version of the code
which did not require the GPU but instead used OpenMP direc-
tives to parallelize the code on the CPU, achieved results which
were several times slower. It took roughly 3 h to run the same
simulation on the CPU only.

3. Discussion

An optimization tool for generating models of spiking neu-
rons from both in-vitro and in-vivo electrophysiological data
has been presented. The optimization algorithm used is a
hybrid genetic algorithm, a heuristic optimization algorithm
capable of globally optimizing the parameters of a function
even when no gradient information is available. This is par-
ticularly useful with the nonlinear spiking neuron models
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A B

FIGURE 7 | Performance of the full model on 110 cell data sets

plotted against measures of the reliability of the data under two

metrics. (A) Shows the best coincidence factor plotted against the

intrinsic reliability for each cell. (B) Shows the best van Rossum

distance plotted against the cluster size—the average inter-trial van

Rossum distance of the experimental data set. +refer to the individual

data points; each +corresponds to an individual cell in the cohort of

cells studied.

A B

FIGURE 8 | Comparison of model predictions and normalized

reverse correlation predictions on the validation set under three

metrics; (A) the coincidence factor and (B) the van Rossum

distance. The average values of the coincidence factor scaled by the

intrinsic reliability were Ŵ = 0.76± 0.08 for the STRF-aEIF models and

Ŵ =0.61 ± 0.05 for the STRF-poisson model. The STRF-aEIF model

had an average better coincidence factor in 70.6% of cells. The

average van Rossum distances were 1.39 ± 0.05 for the STRF-aEIF

model and 1.50 ± 0.03 for the STRF-Poisson model with the

STRF-aEIF performing better in 59% of cases. +refer to the individual

data points; each +corresponds to an individual cell in the cohort of

cells studied.

A B C

D E F

FIGURE 9 | Histograms and scatter plots of aEIF parameters obtained

from the STRF-aEIF model optimization runs. The ratios on the x-axis in

panels (B,C) were chosen as they were presented as criterion for classifying

the firing type of aEIF neurons in Naud et al. (2008). The scatter plots show

the ratio of threshold to reset VT /Vr, the ratio of time constants τm/τw and

(A) shows the slope factor of the exponential term, 1T , in the aEIF model.

(D–F) show sample scatter plots of some of the parameters plotted against

each other which were plotted to see if there may be any correlations present.
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FIGURE 10 | Raster plot showing 2 s of spike trains in response to

Zebra Finch conspecific song. The first spike train, in red with the arrow

next to it, is a spike train generated by the cascade model. The 12 black

spike trains are individual trials from experimental recordings The cell is

“pupi01414_10,” taken from the CRCNS aa-2 data set (Theunissen et al.,

2011).

whose behaviors depend in a complicated way on their
parameters.

The van Rossum distance was used as a fitness function. A
continuous objective function is useful in a continuous parameter
space since incremental steps toward convergence lead to incre-
mental improvements in the value of the function. We found
that the choice of timescale in the van Rossum distance made it
an adaptable fitness function. A large timescale quickly narrows
the search to models with the correct firing rate while a shorter
timescale allows fine tuning of the model parameters.

Several other authors have studied optimization methods for
spiking neurons. Gerken et al. (2006) also used a genetic algo-
rithm. However, their work was restricted to a case where the
input current was known and the algorithm used the mean
squared error between the real and model I− f curves as a fitness
function rather than a spike train metric. Rossant et al. (2010)
applied an evolutionary algorithm, the particle swarmmethod, to
the same in-vitro spike train data as as is considered here and uses
the coincidence factor between spike trains as a fitness function;
however, they did not explore the in-vivo case.

Our results on the in-vitro data are roughly in agreement with
Rossant et al. (2010). We also saw that neuron models featuring
both adaptive and non-linear model components achieved a bet-
ter fit of the data than the other spiking models. The a2EIF model
presented here yielded the greatest predictive accuracy but was
themost costly to simulate and secondmost costly to fit. As noted
elsewhere (Jolivet et al., 2008b; Kobayashi et al., 2009; Rossant
et al., 2010), adaptation is a crucial ingredient in an accurate
model.

When we applied our algorithm to fit a STRF-neuron cascade
model to in-vivo extracellular data, the model was optimized by
evolving both the receptive field and the neuron parameters in
tandem. The resulting models had, on average, a greater pre-
dictive accuracy than receptive field estimates of the firing rate
in terms of the expected coincidence factor and van Rossum
distances of the rate models from the target data.

The optimized aEIF neuron model parameters do not vary
very much across all the cells studied: Figure 9 shows histograms
of some of the aEIF parameters found for each cell. It would be
interesting as future work to study the effect of optimizing the
STRFs with a constant set of typical neuronal parameters used

across all cells. In any case, the main benefit of a cascade model is
that introduces spike rate adaptation effects which are absent in a
linear rate response model.

An example raster plot showing a model response and corre-
sponding experimental spike train responses from a typical cell
from the in-vivo data is shown in Figure 10. The spike trains
generated by the model generally have fewer spikes than the aver-
age spike count of the experimental trials. This is because the
fitness function tends to favor spike trains with fewer but more
accurate spikes during periods of high variability in the target
data; a model cannot match the spike rate without increasing the
error. One solution to this would be to fit to a single target spike
train, such as the central spike train described in Julienne and
Houghton (2013).

A drawback of our method for fitting the in-vivo model is
that estimating STRFs using a genetic algorithm is computation-
ally costly: STRFs typically have several 100 parameters and a
large population of several 100 STRFs must be used in a genetic
algorithm. Nonetheless, the biological justification for the STRF
models relies on an interpretation of the STRF parameters as a
proxy for synapse strengths in the local neuronal circuit and the
model presented here demonstrates that that interpretation can
be usefully extended to an actual neuronal model.
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