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Reconstructing a map of neuronal connectivity is a critical challenge in contemporary

neuroscience. Recent advances in high-throughput serial section electron microscopy

(EM) have produced massive 3D image volumes of nanoscale brain tissue for the first

time. The resolution of EM allows for individual neurons and their synaptic connections

to be directly observed. Recovering neuronal networks bymanually tracing each neuronal

process at this scale is unmanageable, and therefore researchers are developing

automated image processing modules. Thus far, state-of-the-art algorithms focus only

on the solution to a particular task (e.g., neuron segmentation or synapse identification).

In this manuscript we present the first fully-automated images-to-graphs pipeline (i.e.,

a pipeline that begins with an imaged volume of neural tissue and produces a brain

graph without any human interaction). To evaluate overall performance and select the

best parameters and methods, we also develop a metric to assess the quality of the

output graphs. We evaluate a set of algorithms and parameters, searching possible

operating points to identify the best available brain graph for our assessment metric.

Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly

available data set. This provides a baseline result and framework for community analysis

and future algorithm development and testing. All code and data derivatives have been

made publicly available in support of eventually unlocking new biofidelic computational

primitives and understanding of neuropathologies.

Keywords: pipeline, framework, connectomics, graph error, computer vision, images to graphs, big data, electron

microscopy

1. Introduction

Brain tissue volumes imaged using electron microscopy today already contain many thousands of
cells that can be resolved at the scale of a single synapse. The amount of information is daunting:
in just 1mm3 of brain tissue, we expect petabytes of data containing 105 neurons and 109 synapses
(Braitenberg and Schüz, 1991). While this region is very small in physical volume compared to an
entire brain, it is roughly the scale of a cortical column, a hypothetical fundamental organizing
structure in the cortex (Mountcastle, 1957).
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Our goal is to transform large 3D electron microscopy
volumes of neural tissue into a detailed connectivity map, called
a connectome. This approach will directly estimate brain graphs
at an unprecedented level of detail. Each neuron is represented in
the graph as a node, and each synapse is represented as an edge
connecting these nodes (Figure 1). Manual human annotation,
while currently the most accurate method of reconstruction,
is unrealistic as volumes scale. A recent study estimated that
manual annotation of a cortical column requires hundreds of
thousands of person-years (Helmstaedter et al., 2011).

Therefore, an automated method to run algorithms at scale
is needed to realize the promise of large-scale brain maps. We
developed a novel ecosystem of algorithms, software tools and
web services to accomplish this task.

We also introduce a fully-automated images-to-graphs
pipeline and an assessment metric for the resulting graphs. This
metric allows us to directly assess the connectivity properties
of the graph, rather than relying on intermediate measures
(e.g., synapse precision-recall or segmentation pixel error). We
ran a grid search over a collection of parameters (i.e., both
individual modules and their settings) using our pipeline to
determine the best available result for analysis and interpretation.
Once this optimal operating point was determined, we estimated
the brain graph for a volume of neural tissue in our scalable
framework. We believe that existing error metrics are inadequate
to assess the overall quality of estimated graphs in high resolution
connectomics data. Assessing graph error directly, as a system
level evaluation (rather than component assessment), provides an
improvement in the state of the art.

1.1. Previous Work
Previous research methods have advanced the field of
connectomics in important ways, but none have provided
an end-to-end, automated, scalable approach. Several manual or
semi-automated approaches have been used to construct brain

FIGURE 1 | An illustration of the images-to-graphs process. Detected

synapses are superimposed on raw EM data (left); these are overlaid and

combined with multicolored neuron segments (middle) to estimate a graph

(right). Nodes are represented by neurons and edges by synapses. The data

shown here are a subset from a small, hand-labeled region of brain tissue.

The graph (right) therefore represents a gold-standard brain network from

this region of tissue using a standard graph layout (not corresponding to

spatial position).

circuits (Mishchenko et al., 2010; Bock et al., 2011; Takemura
et al., 2013). Other groups have produced automated algorithms
(Sommer et al., 2011; Nunez-Iglesias et al., 2013; Kaynig et al.,
2015) that solve important pieces of the overall puzzle (e.g.,
neuron segmentation, synapse detection). These modules
have generally been evaluated on small subvolumes without
considering the overall graph result; additional work is needed to
improve both algorithm accuracy and scalability for large graph
inference.

In building our images-to-graphs pipeline, we leveraged
previous work whenever available. To detect cell membranes,
we reimplemented the ISBI 2012 challenge-winning approach
(Ciresan et al., 2012), which framed membrane detection as
a per-pixel classification problem and obtained state-of-the-
art results using a small ensemble of Deep Neural Networks
(DNN). We segment the neuronal structures by incorporating
Rhoana (Kaynig et al., 2015), an open-source algorithm, which
selects and fuses candidate 2D contours into 3D objects
using conditional random fields (CRFs) and Integer Linear
Programming (ILP). We also integrate Gala (Nunez-Iglesias
et al., 2013), an agglomerative approach that combines super
pixels into neurons. Together these two methods represent the
two major approaches currently used in neuron segmentation;
other methods can be readily adapted to this framework if
desired. Scalable synapse detection (i.e., the edges in our
graph) is still an open problem. While partial solutions
exist (Becker et al., 2013; Kreshuk et al., 2014), they were
developed for specific imaging paradigms (e.g., isotropic, post-
stained). Therefore, we developed our own lightweight, scalable
synapse detector. Finally, the Open Connectome Project (Burns
et al., 2013) provides a high-performance spatial database
optimized for processing large neuroimaging volumes. These
tools facilitate scalable processing and provide significant
advances over a flat-file architecture in terms of data storage and
access.
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2. Methods

This manuscript describes both our overall framework and
infrastructure and also our images-to-graphs pipeline.

2.1. Framework
Our tools are built on a distributed processing framework which
leverages the LONI Pipeline (Rex et al., 2003) for workflow
management, and interfaces with the data and annotation
services provided by the Open Connectome Project (OCP)
(openconnecto.me). We provide an application programming
interface (API) which implements our data standard for high
resolution connectomics, and tools to enable rapid algorithm
development while simplifying the challenge of running at scale.
Our framework enables researchers to focus on developing
novel image processing techniques without considering data
management and processing challenges.

We are able to efficiently incorporate new methods by
extracting only core algorithm code (often a small fraction of the
original code base). We reuse our data management framework,
eliminating the need for researchers to rewrite solutions for file
handling and bookkeeping.

2.1.1. RAMON
An acknowledged challenge in the connectomics field is
annotation representation and its impact on software and
institution-level interoperability (Lichtman et al., 2014; Plaza
et al., 2014). As the field grows and data volumes increase, the
sharing of data through remote and programmatic interfaces and
the application of community developed algorithms and software
will become common.

Answering this challenge requires scene parsing, rather than
simply segmentation: the rich semantic annotations are critical
to inferring graph structure and understanding the function
and structure of neuronal circuits. We developed a standard
for annotation metadata, as summarized in Table 1, which we
call the Reusable Annotation Markup for Open coNnectomes
(RAMON).

RAMON defines a minimum set of annotation types
and associated metadata that capture important biological
information and build the relationships between annotations that
are necessary for connectome generation. Annotation metadata
is trivially extensible through custom, user defined key-value
pairs. This is not a formal ontology; instead it facilitates the
development of software and tools by providing a flexible, yet
reliable, standard for representing annotation data. For example,
our synapse annotation type has fields such as weight, type,
confidence, associated neural segments, and is extensible with
arbitrary, searchable key-value pairs.

2.1.2. Open Connectome Project (OCP)
Our approach for creating brain graphs from large image
volumes (images-to-graphs) leverages the Open Connectome
Project (www.openconnecto.me) infrastructure (Burns et al.,
2013).

The Open Connectome Project (OCP) is a distributed,
scalable data cluster, designed for spatial analysis and
annotation of high-resolution brain data. It supports

TABLE 1 | An overview of the current RAMON object types.

Type Description

SYNAPSE Junction between two NEURONs is used to

connect SEGMENTs when building a GRAPH

ORGANELLE Represents internal cell structures (e.g.,

mitochondria, vesicles)

SEGMENT A labeled region of a neuron; typically a

contiguous voxel set

NEURON Container for assembling SEGMENTs

NODE Sparse annotation format for tracing processes

or objects

SKELETON An (organized) collection of NODEs, often used

to represent a NEURON or arbor

ROI An attributed region of interest, often used for

atlases and other collections of labels

VOLUME Used to store pixel label information; inherited

by many other types

GENERIC Extensible, used to specify arbitrary,

user-defined information for a voxel set

Each object is used to provide labels and attributes to objects identified in the neural tissue.

This facilitates interoperability and efficient data storage, retrieval, and query processing.

data from multiple imaging modalities (e.g., electron
microscopy, light microscopy, array tomography, time
series) with the goal of providing a unified backend for
connectomics research. The system is designed using NoSQL
data-stores and data-intensive architectures. The spatial
index is partitioned, thus distributing the data across all
the data-nodes to maximize throughput and avoid I/O
interference.

OCP implements RAMON and provides publicly-accessible
RESTful (REpresentational State Transfer) web-services that
enable efficient data storage, retrieval and queries for images-to-
graphs. This infrastructure provides the capability to efficiently
view arbitrary data planes and access data subvolumes. Our
pipelines store the output of computer vision algorithms as a set
of queryable label and metadata annotations in an OCP spatial
database co-registered with the image dataset. OCP provides a
unified interface and backend for connectomics, and stores more
than 70 unique data sets and thousands of annotation projects.
These data sets constitute 50 TB on disk after compression, which
is equivalent to more than 100 TB of raw data.

2.1.3. Application Programming Interface
To enable rapid software development, we have created
Connectome Annotation for Joint Analysis of Large data
(CAJAL), an open source MATLAB Application Programming
Interface (API), which implements the RAMON standard. The
API provides classes for all RAMON annotation types, allowing
users to easily develop interoperable algorithms and analysis
tools. In addition to storing label data andmetadata, the RAMON
classes provide additional functionality such as tracking the
annotation’s global database location and visualizing a region of
interest.

The API also provides an easy-to-use interface to query,
upload, and download data from OCP services that abstracts
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complicated RESTful URL generation from the user. Many data
formats are supported for both image and annotation data,
including grayscale and multi-channel image data and integer
and floating point based annotations. The toolbox automatically
handles compression, chunking, and batching of annotation data
to optimize throughput and simplify software development.

2.1.4. Processing Infrastructure
Data and results were stored using the Open Connectome
Project. Our CPU compute cluster for images-to-graphs
evaluation and deployment had a peak usage of 100 cores
and 1 TB RAM. The overall cluster configuration consists
of AMD Opteron 6348 cores (2.8 GHz, 12-core/processor, 4
processors/node) and 256 GB RAM per node. For membrane
detection, we use a small GPU cluster containing 27 GeForce
GTX Titan cards with 6 GB RAM. We leverage Son of Grid
Engine (SGE) for task scheduling and the LONI Pipeline for
workflow management (Rex et al., 2003). We parallelize at a data
block level; each task is embarassingly parallel, and so we use
traditional scheduling methods.

2.1.5. Open Connectome Project Services
OCP uses a load-balancing webserver (2x Intel Xeon X5650
2.67 GHz 12 core/processor and 48 GB of RAM). This
webserver distributes jobs across three data servers running a
distributed database (each with 2x Intel Xeon X5690 3.47 GHz
12 core/processor and 48 GB of RAM). Additionally, 100 TB of
network mounted disk-space is available for storage (Burns et al.,
2013). An overall schematic of our infrastructure is shown in
Figure 2.

2.1.6. Distributed Block Processing
One major open challenge (e.g., in a file-based image system) is
scaling Vision algorithms to massive volumes. We resolve this
by extracting cuboids from large data volumes, accounting for
overlapped and inscribed regions, processing the block, and then
merging the annotations across the resulting cuboid boundaries.
The current implementation serially processes large block seams,
eliminating the need for transitive closure operations. As volumes
scale, a hierarchical approach may be desirable to increase
throughput (Figure 3).

2.2. Images-to-graphs Pipeline
Often computer vision and other analytic tools for connectomics
are written targeting a specific dataset, analysis product, or
research question, and are only run on a limited data volume.
Also, researchers invest much time in developing the required
support software to manage data and facilitate processing. This
results in code that is challenging to leverage and results that can
be difficult to share or reproduce. To leverage state of the art ideas
across the connectomics community, a flexible and robust system
is beneficial to integrate and evaluate disparate tools, especially
when scaling processing to massive data volumes.

We aimed to build a framework for connectomics processing
that was agnostic to the underlying algorithms and provided
reusablemodules for common steps such as volume dicing, image
data download, annotation upload, and annotation merging. By
leveraging RAMON, Open Connectome Project, our API, and
the LONI Pipeline workflow manager (Rex et al., 2003), we built

FIGURE 3 | An illustration of the distributed processing paradigm. Raw

image data (1) is divided into cuboids (2) based on user-specified parameters,

with the necessary padding to perform computation. After processing (3), the

annotations are inscribed and uploaded to OCP (4). Finally, processes are

merged across block seams (5), using a similarity metric of the userś choice.

FIGURE 2 | An overall view of the framework, illustrating a distributed processing framework. Data and annotation stores leverage the Open Connectome

Project, and interface with a high perforamnce compute cluster. A variety of tools are available to facilitate a distributed processing environment.
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a system capable of rapidly integrating, running, and evaluating
connecomics algorithms on a single workstation or on a high
performance compute cluster.

2.2.1. Assessment Measures
A variety of errormeasures have been proposed for connectomics
(e.g., warping error, adjusted Rand index, variation of
information, Nunez-Iglesias et al., 2013), but are limited by
their focus on an individual subtask of the entire images-to-
graphs pipeline. As we demonstrate, the optimal results for
a subtask may not translate to optimal results for the overall
pipeline.

As shown in Figure 4, even small neuron segmentation errors
that affect network connections are potentially very significant
in terms of the resulting graph, while large errors not affecting
topology may be much less significant. These small, significant
errors occur frequently on narrow, fragmented spine necks,
breaking connectivity between the synapse on the spine head and
the parent dendritic shaft (Kaynig et al., 2015).

To assess graph error, we first form the line graph, which is
the dual of the traditional graph, and represents connections
(i.e., paths) between terminals. In this formulation, the synapses

FIGURE 4 | Yellow objects represent synaptic junctions; other colors

are different neurons. The left panel shows true connectivity; the right panel

shows the effect of fragmenting neurons at the dendritic spine necks, which

produces a very small change in segmentation error, but a dramatic impact to

graph error.

become the graph nodes and the graph edges are constructed
from the neurons (Figure 5). A non-zero edge lij in the line graph
represents a path between synapse i and synapse j.

Line graphs are constructed for both the estimated
L{Gestimated} and true L{Gtrue} neuronal graphs, resulting
in square, undirected, binary matrices. To directly compare
the graphs, we augment both matrices so that every node (i.e.,
synapse) in both graphs has a direct correspondence. We first
find common synapses in the detected and true volumes by
spatially overlapping annotations. We then augment the graphs
with the synapses absent in either graph to create a superset
containing all true and detected synapses, leading to true and
test graphs of equal size (and corresponding nodes and edges).
This graph correspondence is much easier to determine in the
line graph (since synapses are small, compact objects) than in
the traditional graph formulation (which often contains many
neuron fragments).

We propose two graph error metrics; the first is simply the
Frobenius norm between the true and test graphs: (Equation 2).

Gerr = ||L{G∗
true} − L{G∗

estimated}||F (1)

This norm is defined (Golub and Van-Loan, 1996) as:

‖A‖F =

√

√

√

√

m
∑

i= 1

n
∑

j= 1

|aij|2 (2)

This metric is attractive in its simplicity, but has a few major
disadvantages. This measure is unbounded, and the error will
tend to increase with graph size; it is potentially misleading
because it rewards the disproportionately large number of true
negative edges in sparse graphs.

The second formulation computes the F1 score of the detected
edges in the line graph, compared to a truth baseline Section 2.2.1.
In this paradigm, true positive edges (TP) are occur in both the
true and test graphs; false positive edges (FP) are present in the
test graph and not in the true graph, and false negative edges
(FN) are true edges missed in the test graph. Similar to an object
detection setting, precision, recall, and the F1 score are computed

FIGURE 5 | A demonstration of the methods used to construct a line (edge-based) graph from a conventional node based network, by finding paths

between edges in the original graph.
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for the test graph:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1graph =
2× Precision× Recall

Precision+ Recall
(5)

Our metric is interpretable, because true connections are the
non-zero common entries. Furthermore, each incorrect entry
represents a false positive (spurious connection) or false negative
(missed connection). A connection between two synapses in a
line graph is equivalent to those synapses being coincident on a
neuron. This metric has scalability advantages over voxel-based
metrics, because it can be easily computed on large volumes and
can be used to characterize common errors. This measure is on
[0,1], and is robust to graph sparseness—true negatives do not
impact the metric, and this prevents a class of misleading results
(e.g., an empty graph).

For our application (and in this manuscript) we optimize
algorithm selection based on graph F1 score. Researchers
may choose a different optimization goal depending on
their application (e.g., maximizing recall with acceptably high
precision). A variety of metrics are computed (TP, FP, FN,
precision, recall, F1, Frobenius norm) for each graph and
available online supplement.

2.2.2. Algorithms
Our approach transforms an image volume of cortical tissue
into a wiring diagram of the brain. To assemble this pipeline,
we begin with membrane detection (Ciresan et al., 2012), and
then create three-dimensional neuron segments, using Rhoana
(Kaynig et al., 2015), Gala (Nunez-Iglesias et al., 2013), or a
watershed-based approach. These are the nodes in our graph,
and are compared using the Adjusted Rand index, computed by
comparing to neuroanatomist created ground truth, following
community convention.

To find the graph edges, we develop a lightweight,
scalable Random Forest synapse classifier (Gray Roncal et al.,
2015). We combine texture (i.e., intensity measures, image
gradient magnitude, local binary patterns, structure tensors)
with biological context (i.e., membranes and vesicles). We
pruned a large feature set to just ten features and used
this information to train a random forest. The pixel-level
probabilities produced by the classifier were grouped into
objects using size and probability thresholds and a connected
component analysis. This method requires substantially fewer
computational resources than previous methods (e.g., Becker
et al., 2013), which enables large-scale processing. A key insight
was identifying neurotransmitter-containing vesicles present
near (chemical, mammalian) synapses. These were located
using a lightweight template correlation method and clustering
(Figure 6). Performance was further enhanced by leveraging the
high probability membrane voxels (described above), to restrict
our search, improving both speed and precision. Our synapse
performance was evaluated using the F1 object detection score,

FIGURE 6 | Depiction of neurotransmitter-containing vesicles. The

presence of synaptic vesicles is the most important feature for our Random

Forest, and likely for many manual annotators.

computed as the harmonic mean of the precision and recall,
based on a gold-standard, neuroanatomist-derived dataset. We
took care to define our object detectionmetric to disallow a single
detection counting for multiple true synapses, as that result is
ambiguous and allows for a single detection covering the whole
volume to produce an F1 score of 1 (Gray Roncal et al., 2015).

Synapse and neuron association is completed by finding the
neuron labels (i.e., graph nodes) that overlap most frequently
with the labeled voxels from each synapse object (i.e., graph
edge). This association is recorded via bidirectional linkages in
the RAMON objects’ metadata fields. Metadata assigned to each
object can be traversed server side to construct a graph (Burns
et al., 2013), or the graph can be built programmatically at
small scales. Output graphs are converted via a web-interface
to a community compatible format of choice using MROCP
(Mhembere et al., 2013), such as GraphML.

2.2.3. Data
Our experiments utilize a large, publicly available volume of
mouse somatosensory (S1) cortex (Kasthuri et al., 2015), imaged
using scanning electron microscopy at 3 × 3× 30 nm per voxel
(8-bit data) (Hayworth et al., 2006), aligned and ingested into
the Open Connectome Project infrastructure. All images were
color corrected (Kazhdan et al., 2015) and downsampled by a
factor of two in the imaging plane. The entire raw data volume
is approximately 660 GB. The inscribed cube for our deployment
workflow is 6000 × 5000 × 1850 voxels (56 GB), or roughly
60,000 um3.

2.2.4. Training Pipeline
To prepare for algorithm evaluation and testing, we first need to
train a variety of algorithms used in the pipeline. For these tasks,
we select a data region separate from our evaluation region. Our
primary training region was a 1024 × 1024 × 100 voxel region
(known to the community as AC4). Gold-standard annotations
for both neurons and synapses exist for this volume, based
on expert neuroanatomist tracings. Our training tasks include:
selecting a template for our vesicle detection module; training
our deep-learning membrane classifier on 2D patches; building
a random forest classifier for our synapse detection module; and
training a Gala agglomerative classifier.
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FIGURE 7 | An overall view of the images-to-graphs Evaluation Pipeline, beginning with image data and ending with graph creation. Graphs are

estimated and evaluated for each combination of i segmentation experiments and j synapse detection experiments.

2.2.5. Evaluation Pipeline
To evaluate the optimal setting for generating graphs from
volumes of brain images, we construct a fully automated pipeline
to conduct a hyper-parameter search of different algorithms
and their parameters and evaluate them based on community-
suggested measures of synapse error, segmentation error, and
our novel graph error metric (Figure 7). Other metrics can be
straightforwardly added if desired. For evaluation, we use a
separate, previously unseen region of 1000 × 1000 × 100 voxels
(known to the community as AC3). Gold-standard annotations
for both neurons and synapses exist for this volume, based on
expert neuroanatomist tracings.

2.2.6. Deployment Pipeline
In this pipeline, we run on a large volume for connectomic
analysis (Figure 8). Based on the classifiers created in the training
workflows and the operating points found in the evaluation
pipeline above, we select an operating point and deploy our end-
to-end images-to-graphs pipeline as a reference implementation
over a large volume (the entire inscribed dataset).

3. Results

The images-to-graphs pipeline allows us to address the question
of graph quality and begin to optimize results. We take a systems
view of the connectomics problem and evaluate a set of hyper-
parameters (i.e., both entire algorithms and parameters within
algorithms) to determine the best operating point. In principle,
parameters across all modules can be explored; we limited our
experiment to variations in neuron segmentation and synapse
detection methods for simplicity.

3.1. Experiments
We initially performed a parameter sweep to determine the best
operating point for our chosen metric, and then applied those
parameter settings in a deployed setting.

3.1.1. Evaluation
We used our pipeline to examine the interaction and settings
of the segmentation algorithm and the synapse detector that
achieve the optimal graph F1 score. Our evaluation varied neuron
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FIGURE 8 | An overall view of the images-to-graphs Deploy

Pipeline, beginning with image data and ending with graph

creation. Modules in white are executed each time, modules that

are gray (darkly shaded) are executed once and not varied in our

analysis, and modules lightly shaded represent our parameter

space.

FIGURE 9 | Experimental Graph Based Error. 1856 graphs were

created by combining 16 synapse detector operating points (rows) with

116 neuron segmentation operating points (columns). The rows are

ordered by synapse F1 score, and the columns by segmentation

adjusted Rand index. The first row and column represent truth, and the

upper left corner of the matrix has an error of 0. Cell color reflects

graph error (clipped to show dynamic range), with a dark red indicating

lowest error and dark blue indicating highest error. Values shaded in

gray are not significant; the selected operating point (max F1 graph

score is circled in black.

segmentation parameters (e.g., membrane strength, thresholds,
number of segmentation hypotheses). Our synapse operating
points were chosen by sweeping over size and probability
thresholds. Combinations of these parameters were tested, and
the results are displayed as a matrix in Figure 9. We examined
1856 possible graphs, requiring approximately 8000 cluster jobs
and over 3 TB of data manipulation. The entire evaluation
workflow takes approximately 13 h.

After synapses and neurons were combined to construct a
graph, we evaluated the line graph error. A permutation test
was run to compute the null distribution of this test statistic.
Specifically, we calculate the graph error by uniformly sampling
a random graph with the same line graph density as the observed
graph for B = 10, 000 samples. The p-value is then the
value of the resulting cumulative distribution function, evaluated
at the test-statistic value of the observed graph. We chose a
p-value significance threshold of less than 0.001; non-significant
operating points are shown in gray in Figure 9.

Figure 9 shows the results, in sorted synapse and

segmentation error order. Each cell in the matrix represents
a single graph, and the optimal result is circled in the table.
The best result occurs at a segmentation ARI much worse
than optimal, and at the maximum synapse F1 score. It is clear
that constructing the best graph (according to our chosen
metric) is more complicated than simply choosing the point
with the best synapse F1 score and lowest Adjusted Rand
index segmentation error. Figure 10 further demonstrates the

FIGURE 10 | Plots showing the variability of graph error with

segmentation error (top) and synapse error (bottom), for the rows and

columns associated with the best operating point.

non-linear relationship between graph error and intermediate
measures. By considering the overall problem context, we can
select and tune the available algorithms to determine the best
result (i.e., operating point) for a given task, such as motif
finding. The optimal graph was computed using the Gala
segmentation algorithm with an agglomeration threshold of 0.8.
The synapse detection probabilities were thresholded at 0.95,
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and a connected component analysis was used to form the final
synapse objects. Objects with a size greater than 5000 pixels in 2D
or less than 1000 voxels in 3D were removed to reduce erroneous
detections. The optimal graph F1 score was 0.16, indicating that
significant improvement is needed.

3.1.2. Deployment
The deployment workflow provides a capability demonstration
and produced 12,234 neurons with non-zero degree and 11,489
synaptic connections in a volume of ≈ 60, 000 cubic microns.
Total runtime on 100 cores was about 39 h, dominated by the
block merging step, which is currently performed serially on each
seam. Membrane computation currently takes an additional 3
weeks on our small GPU cluster; this operation is embarassingly
parallel and recent advances suggest methods to dramatically
speed up this step (Masci et al., 2013).

4. Discussion

We have demonstrated the first framework for estimating brain
graphs at scale using automated methods. We recast the problem
as a graph estimation task and consider algorithm selection
and parameter tuning to optimize this objective by leveraging
a novel graph error metric. This work provides a scaffolding
for researchers to develop and evaluate methods for the overall
objective of interest.

We evaluate our pipeline across a set of parameters and
modules, leveraging a combination of published methods and
novel algorithms. Additional insights may be gained at larger
scales and through additional optimization. Although our error
metric currently considers only binary, unweighted graphs, there
are opportunities to extend this to apply to attributed graphs, as
well as to weight the metric by error types (e.g., number of false
positives or false negatives).

Automated results do not need to be perfect to draw
statistical conclusions, and errorful graphs may be used as
the basis for inference and exploitation of “big neuroscience”
challenges (Priebe and Sussman, 2012). Bias in errors is another
important factor in constructing exploitable graphs that is
not fully explored in this manuscript. With the ability to
efficiently compare combinations of different algorithms and
operating points, we can begin to answer the question of graph
quality and how to optimize the results. Having the ability to
examine the process from an end-to-end systems approach will

enable rapid improvement in graph quality. The infrastructure
demonstrated in this work provides a community testbed for
further exploration and at-scale computation. Although this
manuscript focuses exclusively on electron micrographs, our
framework is extensible to many other modalities, including
Array Tomography (Micheva and Smith, 2007), CLARITY
(Liu and Kao, 2009), and two-photon calcium imaging
data.

Data Sharing

All code, algorithms, documentation and data products are
open source and released under an Apache 2.0 license. These

are available at: i2g.io The brain graphs are produced in both
attributed edge and graphml format, and provided to the public
for download and analysis. Our analysis routines, such as those
included in Figure 9 and Figure 10 are also included in our
software repository.
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