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Data-driven neuroscience aims to find statistical relationships between brain activity and

task behavior from large-scale datasets. To facilitate high-throughput data processing

and modeling, we created BrainLiner as a web platform for sharing time-aligned,

brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity

and data related to behavior with the same salience, aligning both behavioral and

brain activity data on a common time axis. This facilitates learning the relationship

between behavior and brain activity. Using a common data file format also simplifies

data processing and analyses. Properties describing data are unambiguously defined

using a schema, allowing machine-readable definition of data. The BrainLiner platform

allows users to upload and download data, as well as to explore and search for data

from the web platform. A WebGL-based data explorer can visualize highly detailed

neurophysiological data from within the web browser, and a data-driven search feature

allows users to search for similar time windows of data. This increases transparency, and

allows for visual inspection of neural coding. BrainLiner thus provides an essential set of

tools for data sharing and data-driven modeling.

Keywords: data sharing, database, search, neuroscience, neuroinformatics, web service, machine learning, neural

decoding

1. INTRODUCTION

Data-driven science allows patterns in data collected from complex systems to be elicited without
relying on explicit assumptions about the structure or interactions of elements within a system. In
neuroscience, neural encoding and decoding based on data-driven prediction models have been
shown to be useful approaches for revealing the neural representations of sensory, motor, and even
subjective information (Pereira et al., 2009; Naselaris et al., 2011). Neural decoding approaches
have demonstrated the efficacy of using statistical prediction models trained with brain activity
associated with a task to decode subjective contents of task parameters (Kamitani and Tong, 2005),
move robotic limbs (Wessberg et al., 2000; Hochberg et al., 2006, 2012; Schwartz et al., 2006),
reconstruct visually presented stimuli (Miyawaki et al., 2008), and elicit the contents of dreams
(Horikawa et al., 2013). Neural encoding approaches, on the other hand, have shown that brain
activity can be matched to databases of images (Kay et al., 2008) and videos (Nishimoto et al.,
2011).

While data-driven approaches have proven useful for revealing to some extent the structure of
information representation in the brain, performing experiments is costly and time consuming, and
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often has an associated moral cost, such as when experiments
result in the death or reduced lifespan of animals. To maximize
the benefit of performing these experiments to society, it is
imperative that researchers share their data openly to allow not
only the validation of methodology, but also to enable other
researchers to develop and test new data-driven algorithms that
attempt to decipher the activity of the brain.

Often people who are experts in algorithms and data mining
do not have backgrounds in neuroscience or access to facilities
where they could perform experiments to collect data. To
promote the development of new techniques of analyzing
neurophysiological data, it is important to provide access to
data sets across many conditions and recording modalities. This
can lead to the development of new algorithms that can find
patterns and trends in data without relying on large amounts
of domain knowledge. This may help solve many problems
in neuroscience, including uncovering the neural correlates of
consciousness (Poline et al., 2012).

Many platforms for neurophysiological data sharing exist,
such as CRCNS1 (Teeters and Sommer, 2009), the INCF G-
Node2 (Herz et al., 2008), INCF Data Space3, INCF Japan
Node4, Neurotycho5, EEGBase 6, OpenfMRI7, CARMEN8, and
NeuroVault9 (Gorgolewski et al., 2015), but none of these focuses
on explicitly providing behaviorally aligned brain activity data
for assisting data driven neuroscience and neural decoding. To
remedy this, we implemented http://BrainLiner.jp, as a platform
to facilitate data sharing for neuroscience. The BrainLiner
platform not only provides a way to freely share data among
researchers, but also allows researchers to perform a data-driven
similarity search.

In this contribution, we present the BrainLiner platform for
sharing neurophysiological data, our schema-based data format,
data explorer, and our unsupervised, data-driven similarity
search algorithm. Our search algorithm extracts spectral features
from data at varying temporal resolutions and calculates the
Pearson correlation to quantify the similarity between two time
points within files shared on BrainLiner. Verifying the search
algorithm on rat electrocorticographic data demonstrates that the
algorithm can find brain activity that corresponds to a similar
behavioral task.

2. THE BRAINLINER PLATFORM

BrainLiner (http://BrainLiner.jp) is an online web portal for
sharing, as well as searching time-aligned neurophysiological and
stimulus/behavioral data. The name BrainLiner emphasizes the
focus on supporting data-driven neuroscience by sharing brain
activity data that are time-aligned with data about the task and

1http://crcns.org/
2http://www.g-node.org/
3http://www.incf.org/resources/data-space
4http://www.neuroinf.jp/
5http://neurotycho.org/
6https://eegdatabase.kiv.zcu.cz/home-page
7https://openfmri.org/
8http://www.carmen.org.uk/
9http://neurovault.org/

FIGURE 1 | The BrainLiner platform combines brain activity and

behavioral data that are time-aligned on the same axis. In this example,

behavioral data are represented as colored blocks, where each block is a

different task condition; data in the figure are schematic.

FIGURE 2 | Hierarchical structure of BrainLiner projects. Files and

information about experimental hardware and subjects are grouped into data

folders. Data files must be in .h5 format, whereas supplementary files can be

any arbitrary data form. Data folders are grouped into projects.

behavior of the subject from which the data were recorded, as
in Figure 1. For example, if a human subject viewed images
presented at 3-s intervals with 64-channel electrocorticography
(ECoG) recording, then information about the images presented
at each time point should be aligned with the ECoG brain activity
data; data about the task and behavior are of equal importance.

The core of the BrainLiner platform is the portal at http://
BrainLiner.jp. This was programmed from scratch using Java
for the server, mySQL to store metadata, and HDF5 to store
project data. Researchers can log into the web portal via their
Google account, without needing to register another username
and password to remember. Once logged in, users can upload
data and documents describing their data and experimental
conditions. All data are organized into projects and folders. As
shown in Figure 2, data files are uploaded to folders within
projects and published papers related to the data can be
associated with a project. Data files are arranged in a common
format and are further decomposed into groups of brain activity
and behavioral data (Section 3).

On the BrainLiner web portal, users can execute text-based
search queries against indexed text data, as shown in Figure 3.
Text data that are searchable on BrainLiner include project
titles and descriptions, descriptions inside data files, and text
within supplementary files, such as Portable Document Format
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FIGURE 3 | Result screen of the BrainLiner platform for a text-based search query.

(PDF) files. Text-based information retrieval is a relatively well-
understood field, and indeed many open source libraries exist
for text search (BrainLiner uses Hibernate Search10 with Apache
Lucene11). In addition to textual search, BrainLiner also supports
data-driven similarity search, described in Section 4, where users
can search for similar data within data files.

If users find a project that interests them, they can preview
data files in the project in order to gain an understanding of the
type of data available. Previewing data can be done within the web
browser, using the WebGL data explorer, shown in Figure 7A.
The data explorer can be used to grasp whether a data file is of
interest to a user without the need to download a file and view it
locally. Even without registering an account or logging in, anyone
can search for, explore, and download data.

3. BRAINLINER DATA FORMAT

All data files on BrainLiner use a common data format. This
enables efficient data analysis because once the format of one file
is understood, all data files available on BrainLiner can then be
easily used without having to learn a new structure for each file.
The data visualization and search features take as input files in
the BrainLiner data format, so uploaded data files must be in the
correct format when uploading.

10http://hibernate.org/search/
11http://lucene.apache.org/

One of the main objectives of the BrainLiner platform is to
enable neural decoding approaches. To achieve reliable decoding
results, contemporary machine learning requires large amounts
of labeled data. The common data format used for BrainLiner was
created in accordance with the philosophy that brain activity and
behavioral data should be given equal salience and should also be
aligned on a common time axis. The BrainLiner format is based
on a schema of defined terms12, and as such, users can annotate
their data with meta information that unambiguously describes
the structure and type of data, such as the task (e.g., stimulus
task) or modality of recording data [e.g., electrocorticography
(ECoG) data]. This standardized, schema-based data format is
based on Hierarchical Data Format 5 (HDF5)13, allowing files
downloaded from BrainLiner.jp to be readable in a variety of
programming languages and environments, such as MatLab,
Python, R, C++, and Java, and across many different platforms.
HDF5 also supports data compression, allowing files to be
transmitted quickly over the Internet.

The central unit of organization within BrainLiner data files
is called a group. As shown in Figure 4A, a data file can have
many groups, each attached to the root of the file. Each group can
have an HDF5 dataset called data, timespans, and/or timestamps.
Whereas, the former can be used to store time-series data, such as
brain activity or behavioral movement data, the timespans group

12http://brainliner.jp/1.0
13http://www.hdfgroup.org/
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FIGURE 4 | The BrainLiner common data format. Filled, black boxes denote HDF5 groups, words proceeded by a “/” denote HDF5 properties. (A) A file can

contain multiple “groups,” each of which has an HDF5 dataset called “data,” “timespans,” and/or “timestamps.” (B) Users can specify properties for each “group” in

“props.”

can be used to store an array of starting and ending times, and
the timestamps group can be used to store an array of timestamps,
such as the timings of neural spikes or instantaneous events.

Users can specify properties associated with a group, by
creating a sub-group called props. Properties available in the
BrainLiner schema are shown in Figure 4B, and follow the
camel-case naming convention (e.g., samplingRate). Users are
free to choose from the pre-defined properties and only include
the properties they need to describe their data. The only

properties that are required are the title and type properties. The
type property defines the modality of the brain activity recording
equipment (e.g., fMRI, ECoG, etc.) or task (e.g., stimulus or
physical movement). Information about the type of data in a
dataset can enable automated processing of the data by software
to do advanced functions, such as meta-analyses, adapting the
display of data, or data-driven search. Each property defined in
props is an HDF5 dataset, where the valid names of properties are
defined in the BrainLiner schema or a custom schema provided
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by the user. Under the props group, roi and stats groups can
also be optionally created, and contain HDF5 datasets with any
arbitrary name, with the same dimensions as the data dataset. To
support data provenance, free text describing how the data were
created and processed can be explained under the preprocessing
group.

In addition, the file itself can have properties associated with
the root, located under the fileHeader group. These properties
describe the experiment and also the subject the data was
collected from.

When deciding how to group experimental data into groups,
it is important to choose data that have the same temporal and
semantic structure. Figure 5 shows a flow chart for deciding
whether data should be in the same group or if a new group
should be created for a set of data. The specifics of how data are
divided into groups is up to the creator of the file, but a good
heuristic for grouping data is that if data have the same time
span, sampling rate, and are of either the same brain recording
modality (if brain data) or are data for the same type of behavior
or stimulus (e.g., visually presented stimuli), then the data should
be in the same group. The data explorer (Section 4.1.4) and
data search feature (Section 4) depend on the structure of the
files to automatically create preview files and search indices, so
the design of how data are structured is important for having
meaningful results.

All data on BrainLiner are in a common file format, facilitating
data processing and meta-analyses. Files are all in the standard
HDF5 format, meaning that once data processing scripts or
programs have been written once, they should be extensible to
all the files on BrainLiner with a similar structure. To create files
in the BrainLiner format, users should first decide how to group

FIGURE 5 | Heuristics for grouping data into groups within a file. While

the grouping of data is up to the file creator, it is recommended to follow these

heuristics.

their data according the heuristics in Figure 5 and then construct
an HDF5 file according to the format in Figure 4. Creating HDF5
files can be done in a variety of programming languages using
libraries such asH5py14 in Python, for example. Example code for
creating and reading BrainLiner format HDF5 files an be found
at https://github.com/ATR-DNI/BrainLinerDataFormat and we
encourage users to upload and share their file processing and
analysis code with the community.

3.1. Data Licensing
When users upload data to BrainLiner, they can license data in
one of three ways: (1) Open Database Commons Public Domain
and Dedication License (PDDL)15, (2) Open Database Commons
Attribution License (ODC-BY) 16, or (3) choose a custom license,
where users can write any arbitrary license for their data. Licenses
are described as follows.

• Open Database Commons Public Domain and Dedication

License (PDDL). PDDL is similar to the well-known CC-
0 license (https://creativecommons.org/publicdomain/zero/1.
0/), in that users licensing their data under PDDL put the
data out freely without any restrictions whatsoever. This allows
creative uses of data that the original author may not have
envisioned.

• Open Database Commons Attribution License (ODC-BY.)

ODC-BY allows anyone to freely use uploaded data, with the
only restriction being that data have to be cited when used.
Users who choose this license can specify exactly how they
want to be cited. This is useful for cases when uploaded data
are related to a published study and it is desirable that anyone
who uses the data cites the study.

• Custom License. For special cases where PDDL or ODC-BY
will not work, users can write their own license and apply it to
their data.

4. DATA SIMILARITY SEARCH

To allow people to find patterns in data files, we created an
unsupervised data similarity search feature. The targeted use case
for this feature is for a user to both confirm that a data file is of
high quality and to explore a data file to find interesting vectors
for analysis. The design and implementation details are explained
in subsequent sections and Section 4.2 provides some validation
for our method.

As described in the previous section, having a consistent,
common data format can enable advanced, automated analyses
of data files on BrainLiner. This includes the ability to extract
features, index, and search data, enabling data-driven search.
Recently, the ability to retrieve data similar to given input data
has been brought to the mainstream through image search
(Shrivastava et al., 2011) and music search (Wang, 2003).
Whereas, text-driven search often exploits knowledge of natural
language syntax and grammar (Jackson and Moulinier, 2007),
data-driven search often relies on the structure of the data being

14https://github.com/h5py/h5py
15http://opendatacommons.org/licenses/pddl/1.0/
16http://opendatacommons.org/licenses/by/

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2016 | Volume 10 | Article 3

https://github.com/ATR-DNI/BrainLinerDataFormat
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/h5py/h5py
http://opendatacommons.org/licenses/pddl/1.0/
http://opendatacommons.org/licenses/by/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Takemiya et al. BrainLiner for Sharing Brain-Behavior Data

targeted for information retrieval. For example, many image-
based search methods extract features from images and use those
to form an input query to find similar features (Batko et al., 2010).
Music search tools exploit patterns in spectral powers of songs
(Wang, 2003) in order to quickly find similar data.

Because BrainLiner aims to support neural decoding, we want
to enable data-driven similarity search in order to quantify the
similarity of neural activity related to behavioral data within
shared files. Previous work by Tomen et al. (2012) quantized
features extracted from spectral powers into binary vectors
that could then be quickly compared via dice coefficients.
While this approach could search data quickly, quantizing the
data into binary vectors was a memory- and computationally
expensive process. Therefore, we reconsidered how to implement
the data-driven similarity search, focusing on developing a
method that can find task-related data in an unsupervised way,
while achieving good performance with respect to memory and
computational complexity.

While contemporary deep learning approaches can use
techniques such as convolutional neural networks to exploit
spatially correlated patterns to retrieve similar images without
explicitly specifying the features used (Krizhevsky et al., 2012)
or to do visual object recognition (Cadieu et al., 2014), these
approaches require considerably large amounts of data and

computational resources. Therefore, the BrainLiner data search
feature was designed and implemented to quickly do a similarity
comparison between time windows, without needing to process
large amounts of data to enable searching.

4.1. Design and Implementation
For the BrainLiner data similarity search, we decided to
focus primarily on electrocorticography (ECoG) data [though
electroencephalography (EEG) data are also supported]. With
performance in mind, we implemented an unsupervised, data-
driven similarity search tool in the BrainLiner data explorer that
can find similar time windows of data for given, input time
windows. Figure 6 shows an overview of the BrainLiner data-
driven similarity search algorithm. Via the web interface, first a
user views a file using the data explorer (described in Section 2).
Next, the user selects a time span of data in the previewer as the
input query, consisting of a start and an end time. The query
is then looked up in the index of data for the file, and all time
windows of data within the file that meet our similarity criteria
(see Section 4.1.2) are returned and displayed in the data explorer.

4.1.1. Feature Extraction
First, for each file, ECoG and EEG data channels are split up
into time windows spanning the entire duration of the recording.

FIGURE 6 | WebGL data explorer showing task stimulus and the first six channels of a data file (top) and the preprocessing steps for the data-driven

similarity search algorithm (bottom). The input search query is shown as a yellow rectangle and the returned results are displayed as green rectangles in the data

explorer. The bar of colored rectangles at the top of the data explorer denotes a behavioral data channel, with each colored rectangle representing a stimulus of a

different type, with the same types being the same color.
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Four time window durations were considered: 500ms, 1, 1.5, and
5 s. Time windows for each time scale were grouped into separate
sets. For each time window, spectral powers were calculated
using the Fast Fourier Transform (FFT). High gamma spectral
powers between 60 and 100Hz were then summed for each
time window and z-score normalized for each ECoG and EEG
electrode channel.

Thus, for each time window of data in a file, the number of
features extracted is exactly n, where n is the number of channels.
This has the effect of greatly compressing the data used in the
similarity calculation. For example, 1 s of 64-channel ECoG data
recorded at 10,000Hz would be only a single length-64 vector of
numbers for the 1 s time resolution, instead of 64,000 numbers.

Once the features are extracted from data for a file for all time
windows, the pair-wise similarity between all time windows is
then calculated.

4.1.2. Similarity Computation
After feature extraction, the data within each time window
are represented as an n-length feature vector, where n is the
number of ECoG and/or EEG channels within a file. For all
pairs of time windows at each of the five time resolutions,
the similarity between the feature vectors is calculated as the
Pearson correlation between the two vectors. While calculating
correlations between all time windows is a computationally
intensive task, this only ever has to be done once for each file,
as the results are stored in an index.

4.1.3. Data Indexing
After calculating the pairwise similarity between all time
windows of ECoG and EEG data, the similarities between time
windows are indexed for each file. Due to the large amount of
data on BrainLiner, correlations between every time window for
each file cannot be feasibly stored in memory for quick retrieval.
To get around this, p-values are calculated for the Pearson
correlations and data are stored sparsely as spans of p-values. As
shown in Figure 6, the index consists of two lists: p-values and
starting indices for time windows. To further reduce the data
being searched, only positive correlations are stored in the index.

These enhancements allow the size of the index to grow
linearly at O(n) in the worst case where every other time window
is correlated with a two-tailed p ≤ 0.05. In practice the index
size increases much lower than the linear case, as related brain
activity tends to occur in temporal clusters. By using pre-defined
sizes for time windows for which correlations are calculated, it is
possible that there could be a bias to high correlations for some
pairs of time windows based on the temporal structure of the
task. However, by binary quantizing the results as significantly
correlated or not based on the estimated p-value, small biases
should not change the outcome of the results being displayed.

Because we calculate the Pearson correlation between all pairs
of time windows, in the future we hope to expose the raw
correlation values via a programmatic API so that programs
can take advantage of the similarity search to enable complex
analyses. Future work should also consider using information
about task structure in the indexing and search process in a
semi-supervised manner.

4.1.4. User Interface and Data Explorer
The data search was implemented as an asynchronous REST web
service in Python using Tornado17. The REST interface takes
as input the unique file identifier, the start time, and length of
the query. From the length, the time scale for which results are
returned is automatically determined. That is, the time scale that
is the largest, yet still less than or equal to the length of the query,
is used. For example, if the query length is 600ms, then the 500ms
time scale is used.

The user interface of the data explorer was implemented using
vispy.js18, which uses WebGL to display hundreds of thousands
of data points in real time. Users can zoom in and out with
their mouse, and also freely pan the data. Figure 7A shows an
example of the data explorer. When in search mode, the user
can click and draw an input query (yellow) and the results will
be shown in green. Because time series data are the input to
the search, the search query is only drawn on top of time series
data groups, whereas the results are drawn from the top to the
bottom of the screen, in order to allow people to find and explore
connections between task and behavioral information. The bars
at the top of the figure shows different stimulus conditions and
recorded behavior. These are time-aligned with the time series
brain activity data, so in the data explorer, the user can view both
the behavioral and task data along with the brain activity data.

If a file is searchable (has a data search index), then
automatically a large “search” button and a “search help” button
will be displayed. Clicking on the search button enables the data
search mode. From there, a user can click and drag to select
time windows of data, which will automatically be queried for
search and the results will be displayed as green time windows
that overlay the time series data in a file.

4.2. Data Search Validation and Results
As a sample demonstration of the efficacy of the data search
method for finding similar brain activity related to a task, we used
data from Toda et al. (2011)19, where a rat had its eyes stimulated
with a visual grating, while a 32-channel ECoG array recorded
brain activity. For session 1 of rat LE010, there were 1148 time
windows of 1.5 s. We calculated the pairwise correlation (Pearson
r) between all pairs of time windows of 1.5 s. Each time window
was then, in turn, set as an input query time window, and we
then used scikit learn (Pedregosa et al., 2011)20 to calculate the
true positive and false positive rates for the query, by varying the
threshold for the correlations with all the other time windows.
The true positive rate was defined as TP

(TP+FN)
, where TP is the

number of true positives and FN is the number of false positives;
the false positive rate was FP

(FP+TN)
, where FP is the number of

false positives and TN denotes the number of true negatives.
All the results for each query time window were then averaged.
This was done to simulate what real queries would return, for
each time window of data. The receiver-operating characteristic

17http://www.tornadoweb.org/
18https://github.com/vispy/vispy.js
19http://brainliner.jp/data/brainliner/Rat_Eye_Stimulation
20http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.

html
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FIGURE 7 | Results for the rat experiment: (A) data explorer showing a search query (yellow rectangle) and results (green rectangles) for the session 1

file for rat LE010, and (B) ROC curve for rat LE010 (dashed line denotes chance level).

(ROC) curve for the averaged false positive and true positive rates
is shown in Figure 7B.

The results show that the unsupervised, data-driven similarity
search algorithm can retrieve time windows of the same task as an
input query time window, suggesting that the search algorithm
uses features that are relevant to experimental task. While this
example is very simple and further analyses should be done with
more data sets in the future, it does show the potential for the
data driven search as being able to retrieve similar time windows
of data.

5. DISCUSSION

To help drive the progress of data-driven neuroscience
approaches, the BrainLiner platform was created to share time-
aligned brain and behavioral data on a unified time line.
BrainLiner gives equal salience to both brain activity and data
about the behavior and/or task, which can help researchers
train statistical models to learn how brain activity represents
stimuli and gives rise to behavior. Toward this end, data from
previous neural decoding experiments are publicly available on
BrainLiner, all in a standardized file format that allows one to
readily process the files.

The new, schema-based data format used on BrainLiner offers
both flexibility to people creating data files and well-defined
meaning. This can facilitate automatic data analyses because
once programs are written to process the format, all the files
on the web portal can be processed in the same way. In the
future, NIF ontologies21 could potentially be linked to the schema
definitions, which will allow knowledge-based software to do
automatic inference and find new connections inside data.

The WebGL data explorer allows people to find interesting
patterns in data from within a web browser. An unsupervised,
data-driven similarity search allows users to find similar time

21http://www.neuinfo.org/

windows of data within a file. Brain activity, behavioral, and task
data are all shown in a unified view within the data explorer,
uniting all the traditionally separated data together.

The data-driven similarity search that is incorporated into the
WebGL data explorer is a new feature created for BrainLiner. It
allows people to discover patterns within a single data file, which
may lead to ideas for new types of analyses.

Right now high-gamma spectral powers alone are used for the
search, which work well for ECoG data, but may have trouble
with EEG data because of noise within the frequency bands
used. Future work should study pertinent features from a large
database and try to incorporate different features for EEG and
ECoG. Future work should also expand the search method across
multiple files. Cross-file search should be readily implementable
for fMRI, as fMRI data can be converted to standard brain
spaces like MNI and then activity can be compared at the same
coordinates in the brain. Comparing features across data of other
modalities will require further research.
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