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During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from

the environment, while connectedness between brain areas is also decreased. Evidence

indicates, that these dynamic connectivity changes are delivered by microstructural

elements of sleep: short periods of environmental stimuli evaluation followed by sleep

promoting procedures. The connectivity patterns of the latter, among other aspects of

sleep microstructure, are still to be fully elucidated. We suggest here a methodology for

the assessment and investigation of the connectivity patterns of EEG microstructural

elements, such as sleep spindles. The methodology combines techniques in the

preprocessing, estimation, error assessing and visualization of results levels in order to

allow the detailed examination of the connectivity aspects (levels and directionality of

information flow) over frequency and time with notable resolution, while dealing with the

volume conduction and EEG reference assessment. The high temporal and frequency

resolution of the methodology will allow the association between the microelements and

the dynamically forming networks that characterize them, and consequently possibly

reveal aspects of the EEG microstructure. The proposed methodology is initially tested

on artificially generated signals for proof of concept and subsequently applied to real

EEG recordings via a custom built MATLAB-based tool developed for such studies.

Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy

volunteers indicate a prevailing pattern of interactions between centroparietal and frontal

regions. We demonstrate hereby, an opening to our knowledge attempt to estimate

the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element

connectivity” methodology we propose. The application of the latter, via a computational

tool we developed suggests it is able to investigate the connectivity patterns related to

the occurrence of EEG microstructural elements. Network characterization of specified

physiological or pathological EEG microstructural elements can potentially be of great

importance in the understanding, identification, and prediction of health and disease.

Keywords: EEG-element connectivity, EEG microstructure, time-frequency analysis, imaginary part of coherence,

sleep spindle connectivity
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INTRODUCTION

Sleep is a physiological process categorized in cycles, stages,
and furthermore characterized by its microstructural aspects
and elements, such as the K-complex and the sleep spindle.
The microstructural architecture of EEG has previously been
proven to play a crucial role in the understanding of the
neurophysiological and functional aspects of sleep (Nicholas
et al., 2002).

Sleep spindles are prominent EEG rhythms observed during
non-rapid eye movement (NREM) sleep (Kim et al., 2012).
They are oscillatory EEG activities in the sigma frequency band
(∼11–16Hz) of fusiform morphology that last around 0.5–
3 s (De Gennaro and Ferrara, 2003; Iber et al., 2007; Lüthi,
2013). Two types of sleep spindles have been recognized;
fast spindles at 14–15Hz maximal in centroparietal regions
and slow spindles at 12–13Hz predominant in frontal areas
(Gibbs and Gibbs, 1950; Zeitlhofer et al., 1997). The spectral
frequency of both types characterizes individual subjects and
may be inherited (Van Dongen et al., 2005). Sleep spindles
have been associated with cognitive faculties (Fogel and Smith,
2011) and intelligence (Knoblauch et al., 2003), with normal
aging processes (Crowley et al., 2002) and various disease states
(e.g., schizophrenia, Parkinson, Alzheimer, mental retardation,
abnormal maturation) but also with recovery processes as in post
brain stroke (De Gennaro and Ferrara, 2003; Ferrarelli et al.,
2010; Urakami et al., 2012). Furthermore, It has been shown
in animal studies that sleep spindles play a significant role in
sensory-motor brain development (Khazipov et al., 2004) and in
the induction of long-term potentiation (Rosanova and Ulrich,
2005). Moreover, spindles have long been recognized as gating
sensory information in the thalamus and thus promoting sleep
maintenance in a noisy environment (De Gennaro and Ferrara,
2003; Lüthi, 2013). Based on their close temporal coupling
to hippocampal sharp-wave ripples and slow-oscillation up-
states, sleep spindles are now considered to be significantly
involved in sleep-dependent memory consolidation (Schabus
et al., 2004; Diekelmann and Born, 2010). Furthermore, during
NREM sleep, the brain is considered to be relatively disconnected
from the environment mainly because thalamocortical neurons
fall into a hyperpolarisation and rhythmic bursting mode
(Steriade, 2003). Such activity leads to the generation of sleep
spindles in the cortex. The inhibitory “gating” by spindles of
exteroceptive (Dang-Vu et al., 2011) and interoceptive (Landis
et al., 2004) sensory perception, preserves the sleep state
and thus enables sleep’s restorative role as well as memory
consolidation unperturbed by any on-going activity outside the
brain. Experiments in rats have shown that the response of
prefrontal pyramidal cortical neurons following to hippocampal
input stops during sleep spindles (Peyrache et al., 2011).
This suggests that thalamic inputs in burst mode can recruit
massive intracortical inhibition, which may itself produce a local
differentiation of the cortical area concerned, regardless of the
input source. Furthermore, it has been claimed that during
NREM sleep there is a decrease in brain inter-area connectivity
(Massimini et al., 2005). In view of the above, it could be
interesting to further investigate the role played by sleep spindles

in this interregional connectivity change to provide insights
into the mechanisms underlying sleep maintenance and memory
consolidation.

The already “octogenarian” study of spindles has been greatly
accelerated in the digital era and most recently by the support
of brain imaging and advanced quantitative EEG analysis tools
for automatic detection, topographical, and spectral analysis at
scalp and intracranial electrode space as well as non-invasive
source localization (Dehghani et al., 2011; Frauscher et al.,
2015). The latter reports show that in contrast to long-standing
views of spindles as synchronous global events (Loomis et al.,
1935; Contreras et al., 1997), scalp EEG spindles are generated
by the asynchronous activity of diverse focal cortical sources
rather than widespread synchronous oscillations. Furthermore,
time-frequency correlation techniques reveal very interesting
dynamics of spindle occurrence. Spindles occur throughout the
episodes of NREM sleep, mostly apparent in NREM2 with
temporal dynamics intra-cycle, i.e., appearing at NREM-REM
transitions (Vyazovskiy et al., 2004; Halász and Bodisz, 2013)
as well as across sleep cycles, i.e., appearing at later rather than
earlier sleep cycles. They have a reciprocal relationship with delta
activity (Dijk et al., 1993) and sustain effects of sleep deprivation,
circadian factors and aging (De Gennaro and Ferrara, 2003).
In addition, spindles are involved in trans-frequency grouping
(Steriade, 2006) and modulation with both slow (Spoormaker
et al., 2011), and gamma band cortical oscillations (Ayoub et al.,
2012), and show a still cryptic association to hippocampal ripples
(Clemens et al., 2011; Peyrache et al., 2011). They also have
a very dynamic interaction with K-complexes (Kokkinos and
Kostopoulos, 2011; Kokkinos et al., 2013).

Notwithstanding these advances, the cortical interaction
networks that concern sleep spindles and their propagation
amongst the various cortical areas still remain uncertain.

EEG connectivity measures that aim to assess the prevailing
interconnected regional patterns of EEG records and include
coherence (Nunez et al., 1997), directed transfer function (DTF;
Kamiñski and Blinowska, 1991), partial directed coherence
(Sameshima and Baccalá, 1999), synchronization likelihood
(Stam and Van Dijk, 2002), phase lag index (Stam et al., 2007),
imaginary part of coherence (Nolte et al., 2004) have been
developed in the last years (David et al., 2004; De Vico Fallani
et al., 2008).

Connectivity methodologies that focus on EEG
microstructural elements of short duration (∼s) have not
yet been widely addressed and could possibly be able to provide
with valuable insight with regards to underlying functional
interregional mechanisms.

In this study, we describe a scalp EEG connectivity
methodology designed for the investigation of microstructural
EEG elements, as used in the development of a MATLAB-based
tool. In this process, the topics of volume conduction, EEG
reference problem and the directionality of information flow
between cortical areas are being addressed.

We tested coherency and related estimates (i.e., Imaginary
part of coherence) with respect to frequency, phase,
directionality, the volume conduction, and EEG reference
problems using artificially generated signals in order to provide
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with an overall proof-of-concept for the proposed approach. We
furthermore test the role of a number of trials in the calculation
of coherence with regards to statistical significance and suggest
an error assessment approach for the suggested methodology.

Finally, we attempt to estimate the connectivity patterns
formed due to the fast sleep spindle occurrence in five healthy
subjects using a custom-built MATLAB-based connectivity tool.

METHODS

Coherency and Coherence Estimates
Coherency is a widely used measure for characterizing linear
dependence between a pair of stochastic processes as well as a
quantitative measure of their phase consistency. Let si(f ) and
sj(f ) represent the complex Fourier transforms of two stochastic
processes xi(t) and xj (t). For N epochs of the segmented time
series, the cross-spectral density function Sij

(

f
)

of i and j for a
single n epoch is defined as:
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and the auto spectral density function (single epoch power
spectrum) as:
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where ∗ indicates the complex conjugate.
The cross-spectral density function estimation over N epochs
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The coherency estimated upon n epochs is defined as the cross-
spectrum normalized by the auto spectral density functions of
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Ŝi
(

f
)

Ŝj
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Coherence is defined as the absolute value of coherency i.e., the
normalized amplitude of the complex cross-spectrum number:

Cohi j
(

f
)

=
∣

∣

∣
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The expectation value for coherences can only be adequately
estimated as an average over a sufficiently large number of epochs
(Figure A1; Nunez et al., 1997). Conditionally, the confidence
intervals depend on the normalized RMS error, which may be
approximately given by (Equation 6).

ec2 =
√

2/N
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∣

∣
Ĉ
∣

∣

∣

(6)

Connectivity of Microelements and the
EEG Microstructure
The main interest of connectivity studies is to estimate networks
that generally characterize a subject or a group of subjects by
averaging over long periods of recordings of multiple datasets of
each subject or group of subjects.

Lack of extended bibliography and standardization for the
estimation of connectivity for short duration EEG elements
prompted us to initially test coherence and its imaginary part
over artificially generated signals in MATLAB with respect to
its basic well-known functions. Next, we investigate possible
solutions for the volume conduction and EEG reference
problems in order to propose a methodology for similar EEG
studies. We hereby, show preliminary results for the sleep spindle
related connectivity patterns as calculated in five subjects with the
use of a custom MATLAB-based tool we developed in order to
apply the proposed methodology.

We note here that in the case of “EEG-element connectivity,”
we are interested in the dependence of connectivity as a function
related to an identified EEG microstructural element in time and
frequency.

Methodology
The connectivity investigation of the EEG microstructure should
ideally be able to determine levels of interregional interactions,
determine the directionality of information flow and recognize
significant results while dealing with the volume conduction and
EEG reference problems at an adequate level.

At the tool-development level, investigation of the results
over frequency and time should be accessible by global
parameterization of the connectivity maps over frequency, time,
and threshold domains. Moreover, easy adjustability for error
assessment and statistical significance (α-level of significance)
should also be provided.

Prepossessing for the Element Coherence Estimation
The periodogram-inspired estimators of cross and power spectra
for a pair of signals suffer from very high variance, which
consequently causes the magnitude squared coherence (MSC)
to fail. In order to calculate meaningful coherence estimates,
averaging approaches such as Welch’s method (Welch, 1967) are
being used where the EEG recordings are being segmented into
length L epochs, with R offset so that (n− 1)R + L ≤ Q, where
Q is the total data length and n the number of segmented epochs.
In this manner, a frequency resolution of Df (Hz) (Equation 7) is
obtained for the MSC. Consequently, the increase in the number
of epochs improves the coherence estimation accuracy as the
resolution in the frequency domain drops.

Df = n/L (7)

If only the signals are considered stochastic processes, then to
further improve the coherence estimates one would average over
multiple K periods in time repeating the above process in order
to calculate an improved mean coherence value. Although the
EEG signals can never be considered stationary, we proceed
with the latter step as we focus on specific elements rather than
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whole EEG recordings: for the estimation of mean coherence K
relatively identical element trials with well-defined and specific
wave characteristics (i.e., amplitude, duration, frequency) are
being selected. Hence, by being able to use the mean MSC we
can more accurately estimate correlations with greater resolution
over frequency and time. An Increased number of trials in the
calculation drive the level of interaction and phase estimators
of coherence to specifically relate with the element under
investigation.

Volume Conduction
Volume conduction in EEG recordings significantly affects
coherence estimators. Electrical activity of the cortex disparately
spreads across scalp electrodes at some distance from its
generators allowing the same cortical activity to be measured by
multiple neighboring electrodes at the same time i.e., with zero
phases.

To exclude volume conducted EEG activity coherence values
that refer to signal correlations with 0-lag phase are adjusted to
zero. The fundamental assumption about 0-lag activity is that an
observed scalp potential has no time lag to the underlying source
activity, which is widely accepted (Stinstra and Peters, 1998).
Therefore, we hypothesized here that volume conduction does
not cause time lag, with the latter being only present in causal
physiological processes. In theory, a neuron can send action
potentials through recurrent collaterals to several equidistant
neurons with conventionally zero time lags. In practice though,
this is rather unlikely to happen in a large enough number of
neurons that are recorded by the EEG sensors and differentiate
among other asynchronous potentials.

This methodology employs the imaginary part of coherence
(Nolte et al., 2004) as the estimator, which stands for the
perpendicular presented to the real axis values of a complex
number, positively increasing in magnitude to the left. In
this way, when the correlated activity of a pair of signals is
simultaneous i.e., has zero lag identical activity, the estimator’s
values are adjusted to zero. Such values can generally be
attributed to volume conduction.

z = x+ y i = reiϕ = r (cosϕ + isinϕ) (8)

r = |z| =

√

x2 + y2 (9)

ϕ = arg (z) (10)

Directionality of Information Flow
Coherency can also be considered as an estimator of
synchronisations as 1ϕ = ϕι − ϕj between the signals in
channels i and j at a specific frequency that is essentially
measured. The sign of the phase between the two compared
signals can suggest possible directionality of the information
flow between the two areas. For a pair of correlated signals at
a specific frequency, the earlier activated one is considered as
causal to the other, and vice versa. In general, if the imaginary
part of the coherence is positive, then x and y are interacting and
x is earlier than y, indicating that information is flowing from x
to y (Nolte et al., 2004).

The EEG Reference Problem
Phase reversal in a sequential bipolar montage refers to the
opposite and simultaneous deflection of pens in channels that
contain a common electrode (Hirsch and Brenner, 2010).

The reference electrode is often positioned within the active
array of electrodes especially in clinical practice. Such a choice
creates phase reversal deflections in the EEG signals.

A simplified approach to this problem would describe the
measuring of electrical activity for a t moment in time.

VAB = −

∮ B

A
E · dl = −

Q

4πǫ
(1/rA − 1/rB). (11)

where E is the electric field created by a point charge Q, at a
distance rA and measured in respect to the electric potential at
a distance rB. In order to adequately measure VA in a way that
its value can be used for reference purposes a position must be
chosen where the potential is close or equal to zero and more
critically constant over time.

VAB = VA − VB = VA − 0 = VA, as rB → ∞ then 1/rB= 0
(12)

However, if the reference electrode is placed near electrically
active areas i.e., within the EEG sensor array it is rather prone
to change its potential value over time. More specifically, when
a high in amplitude EEG element Vevent(t) takes place, the
reference electrode’s initial VB value is shifted to V ′

B (Equation
13) affected by the volume conducted Vevent(t):

V ′
B = VB +

1

ex
Vevent (t) 6= constant,where x

=
∣

∣distance
(

reference− event
)
∣

∣ (13)

Consequently, all channel measurements of the EEG are being
affected by a phase reversed Vevent value by being measured with
respect toV ′

B (Equation 13) essentially in relation to each sensor’s
distance from the element.

Artifactual values caused by poor choice of reference are
simultaneous and have opposite polarity (Equation 14) to the
original EEG element due to volume conduction and in relation
to the symmetry of electrode array that is defined by the position
of the reference electrode.

ϕreflection = −π (14)

The imaginary part of a complex number such as coherency is
zero for −π (180◦). Hence, it can be speculated the suggested
methodology is not prone to the EEG reference problem. This is
further demonstrated by simulation signals shown in the results
section.

Statistical Significance and Error Assessment
True coherencies can never be granted for experimental data
related to unknown probability density functions of associated
stochastic processes (De Munck et al., 1992; Nunez et al., 1997)
and only estimates are possible. Here we seek for an accurate
model to assess errors, not by making assumptions that relate
to the probability distribution of the noise process, but rather by
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simulating the real acquired data in order to answer inferential
questions and detect meaningful signal activity buried in the
noise of unknown distributions.

A bootstrap-based approach is being employed here (Zoubir
and Boashash, 1998; Zoubir and Iskander, 2007) designed for
the evaluation of significance for EEG-element connectivity
that approximates the distribution function of our estimator
originating from the original data:

For the frequency data of a κ element epoch Sx
(

f
)

, Sy(f )
calculated from the collected EEG data, random samples
Sx⋆

(

f
)

, Sy⋆(f ) are drawn using a pseudo random
number generator with replacement from Sx

(

f
)

=

{dx
(

f , 1
)

, . . . , dx(f , n)} and Sy
(

f
)

= {dy
(

f , 1
)

, . . . , dy(f , n)}
of n periodograms. The resampling by replacement takes place
over all selected κ element trials in a 1-by-1 scheme, populating
the model with a full set of resampled trials that originate
from each collected element in order to simulate precisely the
calculation and characteristics of the proposed connectivity
estimator. Z Coh⋆

yx(f ) bootstrap statistics derive from a large Z
number of repetitions of the above procedure. For the confidence
interval estimation of a given a level of significance, where
P(Cl(|CYX(ω)|

2)≤|CYX(ω)|
2≤Cu(|CYX(ω)|

2) = 1 − a, the percentiles of

the ordered distribution of all bootstrap estimates are calculated.
Based on substitution and simulation principles, we suggest,

that this model can adequately answer inferential questions:
we determine the confidence bands and adjust to zero all
values of our original estimates that could possibly (α-level)
occur randomly (null hypothesis), as approximated by the
above procedure. The bootstrap approach to similar applications
has recently been proven to be more accurate (Zoubir and
Iskander, 2007) than other (Wang and Tang, 2004) and well-
established methods (Enochson and Goodman, 1965), including
large coherences and non-Gaussian data.

Visualisation of Results
The estimation of bivariate interactions between electrical
activities acquired by distinct scalp regions is presented in
connectivity maps showing values of interaction over frequency
and time domains for all possible combinations of selected scalp
electrodes. The above allow the detailed investigation of possible
alternation of patterns for different frequencies and over time.

More specifically in the connectivity maps, each point of the
x and y axes represents a specific scalp electrode location of
the EEG recording system. Each box represents connectedness
between two different scalp electrode locations, as labeled above
each box. x and y axes of each box represent time and frequency

respectively. Time and frequency limits are set according to the
time-frequency plots of the sleep spindles (Table 1). Levels of
connectedness are shown in relation to the color intensity with
different shades of either red or blue (values shown in color
bar). Furthermore, positive and negative information flow is
represented in warm (red) and cold (blue), respectively. Taking
the example of a box labeled as “F1-F2,” red color refers to
high level of interaction between the two regions with the
information flowing from the F1 toward F2 scalp electrode
locations, whereas blue color stands for high level of interaction
with the information flowing from the F2 toward F1.

Subjects and Procedures
Five individuals (3 females) aged between 24 and 33 years
volunteered to participate in this study. All participants were
good sleepers, without any difficulties in falling or remaining
asleep during the night. They were all in good health and free
from medication at the time of study. None of the subjects
reported a history of neurological or psychiatric disorder, or
disordered sleep. Subjects kept a 7-day sleep diary, and were
instructed to follow their regular sleep schedule, and refrain
from alcohol and caffeine at least 3 and 1 days respectively,
prior to the experiment. Menstrual phase was not controlled
for the female subjects. All participants read and signed an
informed consent form, which described in detail the procedures
and purposes of the study. Subjects were instructed to arrive
at the laboratory ∼1 h prior to their usual bedtime, the latter
calculated as a 7-day bedtime average based on their sleep
diaries. Each of them spent one whole night in the laboratory,
in an air-conditioned soundproof temperature controlled dark
Faraday-cage room that was intentionally not monitored to
avoid potential sleep disturbances owing to the feeling of being
watched. No pharmacological substance was used to induce
sleep. Before sleep, subjects were instructed to keep their eyes
closed and relax for a period of 2min. Night sleep recording
began after the subjects willingly switched off the room lights,
as were instructed to do when they felt like falling asleep,
and ended with their spontaneous wake up in the morning.
Electrophysiological signals were monitored in an adjacent room
and overnight communication with the subjects was established
vocally through a microphone–speaker console system. In the
morning, all subjects reported to have had a comfortable and
undisturbed sleep.

All procedures described were approved by the University of
Patras Committee for Ethics in Research.

TABLE 1 | Fast sleep spindles oscillatory frequency characteristics.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Sex Female Female Male Male Female

Age 27 26 24 27 33

Number of fast spindles 120 279 150 109 240

Frequency of maximal power (Hz) 15.20 13.45 14.05 13.15 14.55

Lower frequency limit (Hz) 14.00 12.30 12.80 12.05 13.45

Upper frequency limit (Hz) 16.45 14.65 15.30 14.30 15.70
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Recording
All-night sleep was recorded using 58 EEG tin electrodes
according to the extended international 10–20 system (FP1,
FPZ, FP2, F3A, F4A, F7, F5, F3, F1, FZ, F2, F4, F6, F8, C5A,
C3A, C1A, CZA, C2A, C4A, C6A, T3, C5, C3, C1, CZ, C2,
C4, C6, T4, T3L, TCP1, C3P, C1P, PZA, C2P, C4P, TCP2, T4L,
T5, P5, P3, P1, PZ, P2, P4, P6, T6, CB1, P3P, P1P, PZP, P2P,
P4P, CB2, O1, OZ, O2) using an electrode cap (ElectroCap
International, Eaton, OH, USA), that provided inter-electrode
spacing of 4.5 cm. EEG electrode inputs were ear lobe referenced
and grounded over the FZA position. A bipolar derivation of
oblique electrooculogram was used to detect eye movements,
for which electrodes were placed 1 cm above the right outer
cantus and 1 cm below the left outer cantus, and a bipolar
EMG from the upper masseter muscle was used to track muscle
tone changes. Impedance of all electrodes was kept below 10
kOhms for most of the night. Physiological parameters were
AC recorded, amplified at a total gain of 1000, band-pass
filtered at 0.05–500Hz and digitized through a 16-bit resolution
A/D converter, which provided an accuracy of 0.084 uV/LSB,
at a sampling frequency of 2500Hz by a Synamps system
(Neuroscan, Charlotte, NC, USA), and stored on hard disk. The
50-Hz notch filter was not applied during recording. Subject
movements during sleep were detected by a sensitive motion
detector placed over the bed area that produced a 2-s Transistor-
Transistor Logic signal every time movement occurred. The
motion detectors signal was recorded as an external trigger and
was stored along with the electrophysiological signals as an event
channel.

Scoring and Selection
Manual sleep staging was performed by visual inspection of
the EEG recordings along with EOG and EMG channels using
the criteria of Rechtschaffen and Kales (1968), taking into
consideration the propositions of the AASM Visual Scoring
Task Force (Silber et al., 2007) and the DGSM Task Force
(Rodenbeck et al., 2006), and keeping a time resolution of one
second.

The sleep spindle was identified as a >500-ms train of
11–16-Hz waves. Fast sleep spindles were identified according
to the definition of Gibbs and Gibbs (Gibbs and Gibbs,
1950). Fast spindles (>13Hz) exhibit a symmetric bilateral
distribution over centroparietal areas. All of the fast spindles
were selected from only NREM stage II periods of the whole-
night sleep of our subjects. All of the selected fast spindles
were preceded and followed by at least 1 s of silent EEG
background i.e., not preceded or followed by any external
events or EEG elements (K-complexes, Vertex waves, delta
waves etc.).

Sleep staging and scoring were performed and validated
across 3 independent reviewers. Sleep staging and scoring was
performed manually rather than automatically in order to
provide with overall proof of concept for the methodology.

Analysis
Manual cursor marking offered by Scan software (Neuroscan,
Charlotte, NC, USA) was used to create event channels. NREM

stage II epochs from the whole night sleep recording and free
of any movement and other artifacts were selected. Precise
time-markers were then placed over the most prominent first,
middle and last negative peak of the oscillatory elements
under study. For all markers, the peak was marked over
the record of the Cz electrode, where fast spindles are
prominent.

Event-related data were further processed by a custom-
made MATLAB-based (The Mathworks, Natick, MA, USA)
software suite developed at the Neurophysiology Unit. FFT-
based event-related time-frequency analysis was performed
for each selected element within a time-window centered
(time = 0.00) at the marked element, from 0.05 to 20Hz
at a step of 0.05Hz. More specifically, fast spindles were
analyzed in a time-window of −1.00 to 2.5 s. Fine analysis
resulted in averaging the time-frequency plots (Figure 3)
for all trials of each subject. The power spectral density
(PSD) values appear as the dB magnitude of the spectral
analysis that is as 10 × log(10) [POWER(Uv∧2)] over
the selected time interval. No filter was applied to the
processed electrophysiological data. All frequency and PSD
values were measured over the PZ electrode unless otherwise
stated.

The connectivity maps were estimated by the use of a custom-
built MATLAB-based tool featuring the suggested methodology,
which combines specific techniques at the six levels of pre-
processing, correlation, and directionality estimation, control of
EEG volume conduction and reference problems and statistical
analysis.

RESULTS

Evaluation of Techniques
As a proof of concept, we examined coherence on
computationally generated signals prior to application on
real EEG data. For a set of time series with known characteristics
we tested the methods with regards to the parameters of
phase (see Appendix) and number of trials under calculation
and moreover with regard to the volume conduction and
reference electrode problem. In Appendix, we present further
tests on the detection of correlations between simultaneously
occurring signals with various frequency components (see
Section Coherence for Zero Lag Correlations and Coherence for
Signals with Different Frequencies in Appendix) and signals with
a constant time shift (see Section Coherence for Non-zero but
Constant Lag Signals in Appendix).

We define here as x, y, z sinusoid time series of 14, 14, and
15Hz frequency, respectively. Random noise of relatively low
amplitude is added to y, z. All signals consist of 2500 samples per
second.

For the calculation of coherence estimates, the short-time
Fourier transforms using Hamming window of 2048 samples
with 2000 overlap and 0.05 step is applied.

Mean Magnitude Squared Coherence Over κ Trials
It has been shown (Nunez et al., 1997; Appendix A
in Supplementary Material) that Coherence is able to
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detect correlations of a pair of signals in the frequency
spectrum. However, as discussed in methods, estimates
can take conditionally high values for non-true frequencies

(Figure A1). We demonstrate here coherence behavior
when multiple κ trials (Figure 1, Figure A1) are taken into
consideration.

FIGURE 1 | Mean coherence in K-trials: (Top left) Coherence between 10 trials of x and y signals, (top right) power spectrum of x, (bottom left) top

images compared: it is expected for coherence changes to take place at frequencies that characterize the elements of interest.

FIGURE 2 | Imaginary Part of Coherence and the reference problem: In the above image (top) the x (in blue), y (in green), z (in red) sinusoid time series

are shown, with z preceding x and y. (Bottom left) Coherence between y and x Cyx (1ϕ = π ) (in green) is almost equal to the Coherence between z and x Czx

(1ϕ = −π/4) (in red). (Bottom right) The Imaginary Part of Coherence between y and x ICyx (1ϕ = π ) (green) gets zeroed for correlated frequencies due to the phase

shift of 1ϕ = π which has been described as a common characteristic of the EEG reference problem effect (see Section The EEG Reference Problem). The Imaginary

Part of Coherence for z and x pair ICzx (ϕ = −π/4) (in red) takes high negative values for correlated frequencies, characterizing the preceding of z with regards to x.
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When mean coherence is calculated for K = 10 trials of
x and y the variance of coherence is significantly reduced
shifting non-meaningful (i.e., non-true) coherencies to zero.
This improved result is due to the averaging and normalization
over a greater number of trials, as expected by the equation of
normalized RMS error (Equation 6).

Thus, as trials increase in number, the non-meaningful values
of mean coherence decrease making the estimates more accurate.
In this way, the proposed EEG-element methodology calculated
over a large K number of selected element trials (see Section
Prepossessing for the Element Coherence Estimation) gives
results supported by robust descriptive statistics while further
allowing the estimation of coherence with greater resolution over
time and frequency domains.

Reference Electrode and the Imaginary Part of

Coherence
The Imaginary part of coherence is not subject to artifactual
phase-reversed potentials related to defective positioning of the
reference electrode (see Section Methodology):

For sinusoid signals (Equations 15–17), generated accordingly
in order to simulate the EEG reference problem, the Coherence
and Imaginary Part of Coherence between y–x and z–x time series
are being calculated.

x (t)= 10 sin
(

2π ft
)

, where f= 14Hz (15)

(t) = x (t + ϕ1) + noise, ϕ1 = π (16)

z (t) = x (t+ϕ2) + noise, ϕ2 = π/4 (17)

We hereby, show that by using the Imaginary part of coherence
with the proposed methodology, faulty values addressed to the

EEG reference problem get adjusted to zero (Figure 2 bottom
right), while directionality is being addressed by the use of
the phase, which essentially gets calculated in the estimation of
coherence (Figure 2 bottom right).

Connectivity Patterns of the Sleep Spindle
We note here, that it is meaningful to initially observe
connectivity values for frequencies that characterize the elements
of interest (Figure 1 bottom).

For five healthy volunteers the first peak of each sleep spindle
that occurred at the second stage of sleep has been manually
annotated. We measured the characteristic frequency band of the
sleep spindles of each subject using the average spectrogram of all
annotated sleep spindles.

Time-Frequency Analysis and Characteristic

Frequency Bands
In the average spectrograms of the sleep spindles of each subject
data-tips were placed at the maximal, upper, and lower frequency
limits (Table 1) according to significant power changes per color-
bar (Figure 3).

Estimation of Connectivity in Fast Sleep Spindles
The estimation of connectivity patterns characterized by the
sleep spindle for all possible pairs of electrodes is estimated
using the proposed methodology via a custom MATLAB-based
tool. The level of significance has been set at α = 0.05
with Z = 1000 number of bootstrap resampled estimates
approximation.

Connectivity Maps of Healthy Subjects
Connectivity maps for all subjects suggest the posterior and
frontal regions to be strongly interacting when the fast sleep

FIGURE 3 | Sleep Spindle Spectrogram: average spectrogram of sleep spindles for subject 1 in the PZ electrode. The maximum and approximate

upper-lower power changes have been manually annotated in the graphs.
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FIGURE 4 | Connectivity patterns: connectivity maps for subjects 1 (upper) and 5 (lower). The patterns between the two subjects appear almost identical

while matching the patterns of subject 3. In all subjects 1, 3, and 5 the posterior regions appear to be causal to the frontal.
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spindle function is on going, with all subjects showing the
involvement of similar scalp-EEG electrodes (Figure 7). More
specifically the connectivity maps showed interactions with
prominent involvement of the OZ/P3/PZ/P4 and F3/FZ/F4.

Two groups were formed according to the directionality
of information flow. In subjects 1, 3, and 5 show high
interaction levels appear between posterior and frontal areas,
with information flowing toward the latter (Figures 4, 5).
Subjects 1 and 5 interaction and information flow patterns appear
to be almost identical. Moreover, the regions that relate to the
F8–T4 and OZ areas appear to be strongly interconnected.

The interaction patterns in subjects 2 and 4 appear
to be very similar (Figure 6). A strong interaction pattern
between centroparietal and frontal regions is revealed, with the
information flowing from frontal to posterior areas. The area
related to the OZ electrode appears to be strongly interconnected.

In all subjects, the sleep spindle appears to significantly
increase the connectedness of regions with a prevailing pattern
(Figure 7) and three highly interconnected nodes (OZ, F8, T4)
have been revealed.

Although the connectivity regional interaction patterns are
similar in all subjects a clear differentiation between subjects is
revealed with regards to the directionality of information flow. In
subjects 1, 3, and 5 the information appears to mostly flow from
centroparietal (OZ, P3, PZ, P4) toward frontal (F3, FZ, F4) and
left frontotemporal regions (F8, T4). Conversely, in subjects 2

and 4 centroparietal regions (OZ, P3, PZ, P4) receive information
from centro-frontal areas (F7, F3, FZ, F4, F8).

DISCUSSION

Summary
In this study we suggest a methodology for the connectivity
investigation of EEG microstructural elements. We evaluated its
qualities via artificially generated signals and proceed with its
application onmicrostructural sleep elements using the proposed
scalp-EEG connectivity methodology. We address the problems
of EEG reference and volume conduction while estimating
the bidirectional interregional interaction levels over time and
frequency.

Details
We approach the estimation of interregional aspects that
characterize this sleep phenomenon from a frequency-oriented
angle (Wendling et al., 2009). Firstly, we describe the techniques
of the methodology. We test the latter on artificially generated
signals with regard to the volume conduction problem, the
reference electrode problem and information flows. Finally, we
calculate and present preliminary results for the connectivity
patterns of the fast sleep spindle as acquired from the whole night
sleep EEG recordings of five healthy subjects.

FIGURE 5 | Connectivity map of subject 3 appears to be similar to the patterns of subject 1 and 5 in Figure 4.
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FIGURE 6 | Connectivity map for subjects 2 (upper) and 4 (lower). The involvement of areas similar to the ones in subjects 1, 5, and 3 is evident. For both

subjects 2 and 4, OZ appears to be a strongly interconnected area. With regards to directionality, the information appears to move from frontal toward posterior areas.
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FIGURE 7 | Average absolute connectivity pattern across all subjects:

the occurrence of sleep spindle significantly connects posterior and

frontal areas. The existence of three highly interconnected nodes - OZ, T4,

and F8, is also evident.

Methods Discussion
Coherency is a linear measure that detects correlations in the
frequency spectrum for a pair of signals. Considering a system
as stationary, the cross-spectrum on which coherency mostly
relies on completely determines the dynamics. DTF (Baccalá and
Sameshima, 2001) that can be considered a generalized approach
to Granger Causality (Kamiñski et al., 2001; Chávez et al., 2003;
Hesse et al., 2003) is vulnerable to additive noise, while the
direction of information flux estimated from the asymmetry of
Granger causality can also be sensitive to asymmetric noise levels
(Nolte et al., 2004).

It has been shown in the past (Quian Quiroga et al., 2002)
that the performance of other synchronization measures outside
of coherence, namely non-linear interdependencies, phase
synchronizations, mutual information and cross-correlation do
perform in the same way and are valuable in the study of brain
processes complementing the conventional visual inspection of
the EEG. Here, coherence has been chosen for its ability to trace
synchronizations limited to specific frequency bands, something
of great importance in the connectivity characterization of EEG
features with specific frequency signatures.

The involvement of thalamus in the generation of sleep
spindles via thalamocortical circuits is widely known. It is difficult
to infer anything about interactions between the cortex and
deeper brain structures by the use of scalp EEG recordings
alone. Here we focus on the characterisation of networks
that correspond to the scalp-EEG electrode space. Differences
between the coherency estimates at scalp electrode space and at
intracranial source level are unavoidable but do not necessarily

invalidate EEG cognitive or medical studies of robust coherency
changes Nunez et al., 1997. However, connectivity findings at
the EEG electrode space can generally suggest gross potential
relationships and therefore, hypotheses related specifically to
brain regions have to be further assisted by analysis at the level
of brain sources i.e., by MEG estimations (Zeroualli et al., 2014)
or intracranial recordings (Frauscher et al., 2015).

The study of well-specified EEG elements allow us to calculate
coherency in an advantageous way allowing for better accuracy
and time-frequency resolution.

The Imaginary part of Coherence was chosen as the coherency
estimate since it has been shown to be able to eliminate ‘self-
interaction’ values caused by volume conduction and estimating
information flow through phase lags among the time series.
We show here how it could possibly be able to better interpret
connectivity by potentially eliminating correlation values related
to the EEG reference problem.

A bootstrap approach was designed for the statistical analysis.
The latter is proved to be a powerful method of modeling
since it offers better accurate than other (Wang and Tang,
2004) and well-established methods (Enochson and Goodman,
1965), including large coherence and non-Gaussian data
(Zoubir and Iskander, 2007).

Statistics and Error Assessment
Coherency is a method featuring statistical normalization with
respect to the diagonal elements of cross-spectrum. We have
shown that coherency values not related to the element of interest
drop with the increase in number of trials. This study’s results,
rely on the robust coherence changes due to the occurrence of
fast sleep spindles and the clear regional patterns revealed.

Application of inappropriate statistical tests can result to
erroneous estimates (Nunez et al., 1997; Ioannidis, 2005;
Lambdin, 2012). We strongly base our study on descriptive
statistics (Trafimow and Marks, 2015) and by the usage
of large sample sizes (i.e., trials of elements) we aim for
increased accuracy in our methodology. Moreover, we apply
a bootstrap-based analysis designed for the purpose of our
study. Such statistical technique can be considered an accurate
model for answering inferential questions by using the already
acquired data in order to adequately simulate the systemic and
neurophysiological element-related attributes of the EEG signals.

CONCLUSIONS

Our results mainly correlate with the frequency signatures
and the duration of sleep spindles suggesting similar regional
network patterns for all subjects. In some subjects, a second
network appears to get activated shortly after the occurrence
of the sleep spindle for alpha band frequencies. This promotes
the investigation of the proposed topographical maps across
frequency and time domains outside of the bands that purely
characterize the element under investigation, where we expect a
network to form.

This methodology can be useful in the estimation of
connectivity focusing patterns in any transient repeating
EEG phenomena of short duration, such as sleep spindles,
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K-complexes or spike wave discharges. In particular, focusing on
the sleep spindles paradigm, the high time resolution may allow
the correlation of transient modulations in spectral frequency
(shown by MEG studies to occur during the course of spindles)
with the associated changes in EEG connectivity (Zeroualli et al.,
2014).
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APPENDIX

Coherence for Zero Lag Correlations
We estimated the coherence values between an x sinusoid time
series of 14Hz frequency, y sinusoid of 14Hz frequency with
random noise of low power added to the second one. Both signals
have 2500 samples per second (fs = 2500Hz).

In order to estimate coherence, we calculate the short-time
Fourier transform using Hamming window of 2048 samples with
2000 overlap and 0.05 step.

Coherence for the x-y pair for k = 1 trial, takes its maximum
value (1) (Figure A1, left) for the frequency band of about 14Hz
whereas for the rest of the frequency spectrum, it fluctuates
between 0 and 0.8 values. On the other hand, when k = 10 trials
are taken into the calculation of coherence between x and y, the
coherence values attributed to noise appear to be significantly
reduced fluctuating between 0 and 0.3 (Figure A1, right).

It is critical to mention here that the activity of the two signals
show no differences in phase as they occur simultaneously. We
deliberately address zero-lag, i.e., synchronous correlated activity
to the volume conduction effect.

Coherence for Signals with Different
Frequencies
We test Coherence between x and z, where z a sinusoid time series
of 15Hz frequency and random noise of low power (Figure A2).

Coherence takes its minimum values for the frequency band
about 14 and 15Hz, where the two signals differentiate with
regards to their frequency components. Outside that band
coherence fluctuates between 0 to 0.8 values, which apparently
can be addressed to similarities between x and the random noise.

Coherence for Non-zero but Constant Lag
Signals
We test coherence between χ and y, where y was steadily time
lagged by 1ϕ = π /4. Coherence here takes its maximal value (1)
(Figure A3) for the frequency band of about 14Hz. We therefore
show that coherence estimates the correlations of two processes
that keep their time-phase constant, i.e., are phased-locked.

FIGURE A1 | Coherence between x and y signals: coherence values for 1 trial (left) Coherence values for 10 trials (right). The coherence values attributed

to noise appear to be significantly reducing as the number of trials increase.

FIGURE A2 | Coherence for x and z pair: very low coherence values

can be observed for the non-correlated frequencies, whereas

coherence takes up to 0.8 values due to random correlations between

the random noise and x in the frequency domain.

FIGURE A3 | Coherence and phase delay: coherence values between x

and y signals time shifted by 1ϕ = π/4.
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