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Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging

videos and extract biologically relevant information, for example the network structure

of the neurons therein. Fast motion correction is especially critical for closed-loop

activity triggered stimulation experiments, where accurate detection and targeting of

specific cells in necessary. We introduce a novel motion-correction algorithm which

uses a Fourier-transform approach, and a combination of judicious downsampling

and the accelerated computation of many L2 norms using dynamic programming and

two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is

comparable to that of established community-used algorithms, and it is more stable to

large translational motions. It is programmed in Java and is compatible with ImageJ.

OCIS codes: Machine Vision Algorithms 150.1135

Keywords: motion correction, calcium imaging, fourier transform, dynamic programming, mesoscale
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1. INTRODUCTION

Calcium imaging, first used to measure the activity of neurons in the early 1990s (Yuste and Katz,
1991), has been successfully applied throughout the nervous system. It allows us to measure the
activity of neurons in vivo, using either chemical or genetic calcium indicators, with confocal
microscopy, two-photon microscopy, or wearable imaging devices (Grienberge and Konnerth,
2012). As a result, it is an increasingly useful tool for identifying the neural circuits underlying
behavior. However, calcium imaging videos have challenging noise properties, including white
noise and motion artifacts which must be corrected in a preprocessing step before proper analysis
can be undertaken.

Motion correction is the first critical step in the analysis of calcium images. After movies
are motion-corrected, ROIs are identified, and time-activity graphs are made from each ROI. If
the motion-correction is low-quality, then the time-activity graphs suffer, and the reconstructed
networks may have errors. If the motion correction is slow, real time closed loop experiments
cannot be done while the mouse is in the microscope.

TurboReg (Thevanaz et al., 1998) is a commonly used algorithm for motion correction. It uses a
downsampling strategy, a prerequisite for speed, and a template image, necessary for accuracy. We
have independently developed a related method, called moco (MOtion COrrector), which adopted
both strategies, since correcting one image against the next in the stack results in unacceptable
roundoff errors. Other approaches use HMMs (Collman, 2010; Kaifosh et al., 2014) or other
techniques (Guizar-Sicairos et al., 2008; Li, 2008; Greenberg et al., 2009; Poole et al., 2015; Ringach,
unpublished). Guizar-Sicairos et al. (2008) is the only one similar mathematically to, and may be
slightly faster than moco, but it has accuracy problems (see Figures 2, 3).

moco uses downsampling and a template image, and it can be called from ImageJ. However, it is
faster than TurboReg (Thevanaz et al., 1998) at translation-based motion correction because it uses
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dynamic programming and two-dimensional fft-acceleration of
two-dimensional convolutions. Guizar-Sicairos et al. (2008) also
uses the fft approach with a different objective function that does
not require dynamic programming, so our approach is more
robust to corrupted data, (see Figures 2, 3). Image Stabilizer
is as fast for small images, but is very slow for standard-size
images. Running on our own datasets, moco appears faster than
all approaches compatible with ImageJ.

moco corrects every image in the video by comparing every
possible translation of it with the template image, and chooses
the one which minimizes the L2 norm of the difference between
the images in the overlapping region, D, divided by the area of D.
The fact that it is so thorough makes it robust to long translations
in the data. More complicated non-translation image warps are
usually unnecessary for fixing calcium images, which suffer from
spurious translations, which moco corrects, and spurious motion

TABLE 1 | This table compares the speed of moco to competing

algorithms.

Size moco TurboReg TurboReg Image

(slow) Stabilizer

512× 512× 1500 66 s 110 s 242 s 304 s

512× 512× 2000 90 s 170 s 298 s 464 s

512× 512× 6984 288 s 632 s 1303 s 2277 s

416× 460× 1000 35 s 71 s 132 s 41 s

256× 256× 2028 84 s 121 s 154 s 34 s

FIGURE 1 | Image registration with moco. 1.a. and 2.a. are first two

images of a long, badly corrupted video submitted to moco. 1.b. and 2.b. are

the two corrected images. Note that 1.a. and 1.b. are identical, since 1.a. is

used as the template image. However, 2.b. is registered by moco, moved to

the right to overlap 1.b., it matches it almost perfectly except for the

non-overlapping black rim. Images are 317.44 × 317.44mm.

in the Z-direction, something difficult to correct. Our approach
also uses cache-aware upsampling: when an image is aligned with
the template in the downsampled space, it must be jittered when
it is upsampled to see which jitter best aligns with the upsampled
template. We do this in such a way that data that is used recently
is reused immediately, making the implementation faster. Hence,
moco is an efficient motion correction of calcium images, and
is likely to become a useful tool for processing calcium imaging
movies.

2. MATHEMATICAL DEVELOPMENT

Let ai,j, for i = 1, . . . ,m and j = 1, . . . , n be an image in the
stack. Let bi,j be a “template” image against which all other images
are aligned, it is typically the first image, a particularly clear

FIGURE 2 | Image registration with two comparable algorithms. 1.a. is

the mean of all frames in a badly corrupted video. 2.a. is the of corrected video

using our implementation of the (Guizar-Sicairos et al., 2008) approach. 1.b. is

the mean of the corrected video using moco. 2.b. is the mean of the corrected

video using TurboReg (accurate mode), Thevanaz et al. (1998) 1.c. is the mean

of the corrected video using TurboReg (accurate mode). 2.c. is the mean of

the corrected video using Image Stabilizer. Note that moco and TurboReg

have superior performance, as noted by the sharper and brighter appearance

of the cell bodies. Images are 317.44 × 317.44mm.
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image, or the average of the images.We assume a is downsampled
if it is larger than 256 × 256. We want to pick (s, t) such that
max(|s|, |t|) < w, where w is input by the user, and

fs,t =
1

Area(Ds,t)

∑

(i,j)∈Ds,t

(ai+s,j+t − bi,j)
2

is minimal, whereDs,t is the set of ordered pairs of integers (i
′, j′)

such that 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n, 1 ≤ i′ + s ≤ m, and
1 ≤ j′ + t ≤ n. If we do this for every image a in the stack,
we have then motion corrected the video, and we are done, up to
a short upsampling step. No ROIs (regions of interest) are used,
we use the whole image in every frame in the stack. To upsample,
multiply the optimal (s, t) by 2 and do a local search to minimize
fs,t on the finer grid. Now,

Area(Ds,t)fs,t =
∑

(i,j)∈Ds,t

a2i+s,j+t +
∑

(i,j)∈Ds,t

b2i,j

−2
∑

(i,j)∈Ds,t

ai+s,j+tbi,j.

The first two sums can be computed via dynamic programming.
Let’s consider a when s and t are negative. Let

gs,t =
∑

(i,j)∈Ds,t

a2i+s,j+t .

We have that

gs,t = gs−1,t + gs,t−1 − gs−1,t−1 + a2m+s,n+t .

Hence, the first two sums can be computed for all (s, t) in O(mn)
time, which is unaffected by a constant amount of downsampling.
It suffices to compute for all (s, t) such that max(|s|, |t|) < w,

hs,t =
∑

(i,j)∈Ds,t

ai+s,j+tbi,j.

Let b̂ be b rotated 180 degrees. Using MATLAB notation, let

ã = fft2([[a, zeros(m,w)]; zeros(w, n+ w)]),

b̃ = fft2([[b̂, zeros(m,w)]; zeros(w, n+ w)]).

Commas denote horizontal concatenation, semicolons denote
vertical concatenation, and zeros(x, y) is an x× ymatrix of zeros.
For equally sized matrices X, Y , let Z = X ⊙ Y mean Zi,j =

Xi,jYi,j. Then

ifft2(ã⊙ b̃)

is a rearrangement of h. Since fft2’s are fast, that means h can
be computed for all (s, t) in O(mn log(mn)) time. Hence, after
upsampling, the entire video can be aligned in O(mnT log(mn))
time, where T is the number of slides in the video. This includes
an O(mn) pixel-by-pixel search for the optimum of fs,t over all
possible (s, t) pairs.

After (s, t) are chosen to minimize fs,t , they are multiplied by
twomultiple times to upsample. Every time they aremultiplied by
2, f2s+u,2t+v are computed for u, v ∈ {0,−1, 1} to see which u and
v are minimal. These nine evaluations of f are done with a cache-
aware algorithm for speed. The following flowchart describes the
algorithm.

3. RESULTS

In Table 1 we compare moco in speed to TurboReg (Thevanaz
et al., 1998) on its translation mode, using both the “fast”

FIGURE 3 | Analysis of spurious translations by moco and a similar algorithm. Left and right images i right show differences in displacement in the first and

second dimensions as a function of time in moco and (Guizar-Sicairos et al., 2008). The video on which they were applied was a real calcium image with added

horizontal and vertical spurious translations, to make the task more difficult. moco and (Guizar-Sicairos et al., 2008) generate different translations, and the differences

in the translations found are plotted. The left plot shows the y-translations that moco makes minus the y-translations that (Guizar-Sicairos et al., 2008) makes. This

difference is typically zero, but there are notable exceptions. The right plot does the same thing for x-translations. Note how moco detects many more translations.
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and “accurate” settings. We also compare it to Image Stabilizer
using its default settings (Li, 2008) (it can be made faster by
changing the settings but the accuracy is poor). We perform the
comparison on several real calcium imaging videos, which we say
arem× n×T if they contain T slides of sizem× n. If the images
are larger than 256 × 256, we downsample once, otherwise, we
do not downsample. We have found that dowsampling 3 and 4
times causes severe errors so we avoid those settings. In addition,
we have compared moco to TurboReg on synthetic images with
severe translational motion artifacts and have found that moco
is slightly more accurate. All times are in seconds. The template
used for every video is the first image in the video for both
moco and TurboReg. moco uses a maximum translation width
of min(m, n)/3 in both the i and j directions.

As is clear from the Table 1, moco is faster than its most
used current method, TurboReg. It may be marginally slower
than (Guizar-Sicairos et al., 2008), but Figures 2, 3 prove that a
code we have created to have similar results to Guizar-Sicairos
et al. (2008) is inaccurate. Figure 1 shows the first two images
of a corrupted video on the first row. moco corrections are on
the second row. It is clear that moco can fix the image motion,
even though the problems with it are severe. Figure 2 shows
the mean image from a corrupted video (i.e., add every image
in the stack together via matrix addition and then divide the
resulting matrix by the number of images in the stack), and
the mean image of moco and TurboReg corrections, as well

as the correction from our MATLAB version of the (Guizar-
Sicairos et al., 2008) algorithm. Note that the (Guizar-Sicairos
et al., 2008) algorithm artificially fades the image, indicative of
poor alignment, whereas our algorithm and TurboReg are crisp,
indicating good alignment. Figure 3 shows the differences in
x and y displacement done by moco and the (Guizar-Sicairos
et al., 2008) algorithm in attempt to correct a corrupted calcium
imaging video with added spurious translations.
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