
METHODS
published: 11 March 2016

doi: 10.3389/fninf.2016.00008

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2016 | Volume 10 | Article 8

Edited by:

Andrew P. Davison,

Centre National de la Recherche

Scientifique, France

Reviewed by:

Padraig Gleeson,

University College London, UK

Emilia Entcheva,

Stony Brook University, USA

*Correspondence:

Benjamin D. Evans

benjamin.evans@imperial.ac.uk

Received: 04 November 2015

Accepted: 19 February 2016

Published: 11 March 2016

Citation:

Evans BD, Jarvis S, Schultz SR and

Nikolic K (2016) PyRhO: A Multiscale

Optogenetics Simulation Platform.

Front. Neuroinform. 10:8.

doi: 10.3389/fninf.2016.00008

PyRhO: A Multiscale Optogenetics
Simulation Platform
Benjamin D. Evans 1*, Sarah Jarvis 2, Simon R. Schultz 2 and Konstantin Nikolic 1

1Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering,

Imperial College London, London, UK, 2Centre for Neurotechnology, Institute of Biomedical Engineering, Department of

Bioengineering, Imperial College London, London, UK

Optogenetics has become a key tool for understanding the function of neural circuits and

controlling their behavior. An array of directly light driven opsins have been genetically

isolated from several families of organisms, with a wide range of temporal and spectral

properties. In order to characterize, understand and apply these opsins, we present

an integrated suite of open-source, multi-scale computational tools called PyRhO. The

purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins

by automatically fitting a minimal set of experimental data to three-, four-, or six-state

kinetic models, (ii) to simulate these models at the channel, neuron and network levels,

and (iii) provide functional insights through model selection and virtual experiments in

silico. The module is written in Python with an additional IPython/Jupyter notebook based

GUI, allowing models to be fit, simulations to be run and results to be shared through

simply interacting with a webpage. The seamless integration of model fitting algorithms

with simulation environments (including NEURON and Brian2) for these virtual opsins

will enable neuroscientists to gain a comprehensive understanding of their behavior and

rapidly identify the most suitable variant for application in a particular biological system.

This process may thereby guide not only experimental design and opsin choice but also

alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way,

we expect PyRhOwill help to significantly advance optogenetics as a tool for transforming

biological sciences.

Keywords: optogenetics, opsin, Python, Jupyter, PyRhO, spiking neurons, NEURON simulator, Brian simulator

1. INTRODUCTION

Optogenetics is a biotechnology which renders excitable cells light-sensitive by inserting genes
which, upon expression, create light-activated ion channels known originally as rhodopsins (Nagel
et al., 2003; Boyden et al., 2005). Over the last 10 years optogenetics has found widespread
application, initially in neuroscience (Zhang et al., 2006; Adamantidis et al., 2007; Arenkiel et al.,
2007; Han and Boyden, 2007; Yizhar et al., 2011), but increasingly also in more distal areas of
physiology such as cardiac science (Arrenberg et al., 2010; Boyle et al., 2013), intracellular signaling
(Airan et al., 2009), and gene transcription (Konermann et al., 2013). Applications to date have
included control of motor cortex (Aravanis et al., 2007), cortical circuit mapping (Wang et al., 2007;
Zhang et al., 2007; Ayling et al., 2009; Petreanu et al., 2009; Klapoetke et al., 2014), optoelectronic
neuroprosthetic devices (for example retinal Lagali et al., 2008; Degenaar et al., 2009; Busskamp
and Roska, 2011 or cochlear prostheses, Hernandez et al., 2014), regulation of the symptoms

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2016.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00008&domain=pdf&date_stamp=2016-03-11
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:benjamin.evans@imperial.ac.uk
http://dx.doi.org/10.3389/fninf.2016.00008
http://journal.frontiersin.org/article/10.3389/fninf.2016.00008/abstract
http://loop.frontiersin.org/people/46972/overview
http://loop.frontiersin.org/people/187214/overview
http://loop.frontiersin.org/people/134/overview
http://loop.frontiersin.org/people/42082/overview

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

of neurodegenerative disorders (e.g., Parkinson’s Gradinaru et al.,
2009), closed loop control of epileptic seizures, peripheral nerve
stimulation (Arlow et al., 2013), and novel cardiac pacemaker
technology (Bruegmann and Sasse, 2015), to name just
a few.

In an effort to develop more effective and tailored opsins,
hybrids and genetic mutants are continually being created
(Berndt et al., 2008; Lin et al., 2009; Hegemann and Moglich,
2011; AzimiHashemi et al., 2014). Experimentally characterizing
these new variants is a lengthy process requiring substantial effort
before they can be harnessed to address questions in neuroscience
(Chow et al., 2010; Gunaydin et al., 2010; Lin, 2011; Chuong et al.,
2014). The problem is further compounded when considering the
number of combinations between opsins (with total variations
now in the hundreds, Zhang et al., 2011) and target cell types.
Experimentally testing each combination of opsin and target cell
type of interest is practically impossible, effectively limiting the
use of optogenetics as a tool.

Theoretical understanding of the underlying mechanisms of
optogenetics has developed over the past 10 years (Hegemann
et al., 2005; Feldbauer et al., 2009), which has led to
a deeper understanding of the biophysical mechanisms of
the photosensitization agents which form the foundations of
optogenetics (Hegemann et al., 2005; Bamann et al., 2008;
Ernst et al., 2008; Nikolic et al., 2009; Stehfest and Hegemann,
2010). Furthermore, the design and engineering of optogenetic
devices must start with models of the underlying molecular
mechanisms of opsin behavior in cells (Gradinaru et al., 2007;
Nikolic et al., 2007; Shoham and Deisseroth, 2010; Foutz et al.,
2012; Williams et al., 2013). Computational modeling is thus
core to understanding how light induced ionic transport across
cell membranes can be tailored for different applications: from
probing cellular physiology to creating new treatments for
neurological and psychiatric illnesses.

The quest to both expand and refine optogenetics as an
effective tool for neuroscience and other areas of physiology
requires multiple levels of analysis: from molecular modeling
through kinetic models and even network level models. To aid
in this effort we propose PyRhO; an integrated suite of open-
source, multi-scale computational tools to characterize opsins,
then rapidly develop and conduct virtual experiments with them
in silico.

PyRhO offers several integrated computational tools for
analysing and experimenting with (rhod)opsins in a virtual
environment:

1. The first tool will automatically fit a choice of models to
experimental data, extracting the parameters that describe the
functional dynamics of the opsins.

2. The second tool can then take these extracted parameters (or
alternatively use default values) and simulate a wide range of
experimental protocols to reproduce the photo-response of
the opsin of interest. These protocols are typically voltage-
clamp experiments and include common engineering inputs
such as steps, ramps, and chirps, along with more tailored
protocols such as pairs of increasingly spaced pulses for
evaluating the recovery process.

3. These models and protocols can be run on several simulation
platforms spanning multiple scales (to model isolated opsins
or transfected neurons) including:

a. Pure Python for simple channel-level voltage clamp
experiments;

b. NEURON for morphologically detailed models of
optogenetically transfected neurons;

c. Brian2 for simulating whole networks with transfected
groups of neurons.

4. A Graphical User Interface (GUI) for easy navigation through
all tools, running of virtual experiments and sharing of results.

In this way, PyRhO allows the investigator to simulate opsin
dynamics on multiple scales from sub-cellular channels, to
individual neurons and finally the dynamics of whole networks.
This will help to elucidate the link between the biophysics of
opsins and the functional implications of their use in a particular
biological system.

The tools are written in Python due to its rapidly growing
popularity across the sciences, readability, modularity and
large array of open-source modules (Muller et al., 2015). An
accompanying GUI running in IPython/Jupyter (Pérez and
Granger, 2007) has also been developed to facilitate more
interactive exploration of the models for both experimental
and pedagogic purposes, requiring virtually no programming
experience. In addition to controlling the fitting routines, the
GUI also exposes the integrated simulators (e.g., NEURON).
Furthermore, this self-logging, notebook-based approach has
been identified as a particularly promising medium for sharing
models and reproducing results in computational neuroscience
(Topalidou et al., 2015).

Simulations based on these virtual opsins will enable
neuroscientists to gain insight into their behavior and rapidly
identify the most suitable variant for application in a particular
biological system, not only guiding choice, but also opsin
development. Understanding gained from biologically realistic
simulations may provide ideas of how to alter the opsin’s genetic
code to generate new mutants. These new variations can then
be characterized and simulated within PyRhO to determine their
suitability for a particular application.

Here, we describe the structure of PyRhO and demonstrate
a sample of its capabilities, illustrated through snippets of code
and its GUI. We demonstrate the use of PyRhO in fitting
models to Channelrhodopsin-2 (ChR2) data and present results
for typical illumination strategies and experimental protocols
designed to tease apart the effects of key model parameters. We
finish with a discussion of the main benefits of using PyRhO, its
limitations to date and planned future developments to extend its
capabilities.

2. MATERIALS AND METHODS

PyRhO is written as a Python module and released as an
open-source project under the revised BSD license. Download
and installation instructions can be found with the code at

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

PyRhO’s GitHub repository (https://github.com/ProjectPyRhO/
PyRhO), along with example notebooks and a link to the project’s
website containing further information. A virtual machine with
all dependencies installed and examples ready to run is also
available, such that the GUI can be used with a minimum of
set-up and virtually no programming experience.

Themodule is comprised of several integrated components for
fitting model parameters to experimental data and for simulating
the models at multiple scales. Fitting data is an optional step
since PyRhO is initialized with default parameters, allowing the
user to immediately experiment with simulating the three types
of opsin models in order to better understand their dynamics.
If the required data are provided to the fitting algorithms
however, the parameterized models may be run through the
stimulation protocols to efficiently characterize the opsins in
silico, or determine their suitability for a particular application
based upon their dynamics.

2.1. Implementation
PyRhO is implemented as a Python package called pyrho

which builds upon popular scientific Python modules including
scipy, numpy, matplotlib, and lmfit. Additionally, if
optogenetic simulations in detailed morphological models of
individual (or a few) neurons are required, NMODL files (Hines
and Carnevale, 2000) are provided for use with NEURON (Hines
et al., 2009). Similarly, for network-level simulations PyRhO has
been integrated with the Brian simulator (Goodman and Brette,
2008, 2009) and includes model descriptions suitable for use with
Brian2.

The simulation architecture is designed around three layers
of abstraction: models, protocols and simulators. These layers

are illustrated in the work-flow schematic of Figure 1 along
with the other major components of PyRhO. Each layer
contains families of classes to create a uniform interface
for each subclass, for example, the differences in setting
the light-dependent transition rates of the three models are
shielded from the user by endowing each opsin model subclass
with the method setLight(). A similar approach is taken
with the other layers providing a common set of member
variables and methods, making usage consistent and providing
a framework for future development of new subclasses (i.e.,
additional kinetic models, stimulation protocols, and simulation
platforms).

2.2. Photocurrent Model
Adetailed understanding of how the channel is gated and the ions
are conducted is still lacking, although some recent studies have
elucidated important aspects of the pore formation and ionic
transport (Feldbauer et al., 2009; Kuhne et al., 2014) We assume
that all light-sensitive ion channel currents (I) can be expressed
in the classic form:

I = g · (v− E) , (1)

where g is the channel conductance, v the membrane voltage and
E is the reversal potential for the specific opsin type. Generally
speaking the ionic conductance is a complex function of light flux
(φ(t)), wavelength (λ), and the opsin’s photocycle, membrane
voltage, temperature (T), and intracellular and extracellular pH
(Gradmann et al., 2011). We use a simplified empirical form for
the channel conductance, introduced by Hodgkin and Huxley,
expressing it as a product of a constant (g0, in our case this

FIGURE 1 | Schematic of the PyRhO work-flow. Model parameters may be user supplied, initialized with defaults, or optionally derived from data. The user then

selects the number of states in the model, the stimulation protocol and the simulation engine to start running virtual experiments.

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2016 | Volume 10 | Article 8

https://github.com/ProjectPyRhO/PyRhO
https://github.com/ProjectPyRhO/PyRhO
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

TABLE 1 | Summary of opsin models.

States Transitions Parameters Pros Cons

3 3 11 Efficient analytic solution Single exponential off-phase decay

4 7 17 Balance of detail and efficiency Lacks short-pulse dynamics

6 9 19 Most detailed dynamics Computationally expensive

is maximum conductance at v = −70mV), and a numerical
coefficient (f > 0):

g = g(φ, λ, v,T, pH, t) = g0 · f (φ, λ, v,T, pH, t) , (2)

In this version of PyRhO we have implemented the photocycle
and membrane voltage dependencies and assumed that these two
contributions can be separated:

g = g0 · fφ(φ, t) · fv(v) . (3)

These two dependences are considered to be the most relevant
for physiological electrolyte conditions, when temperature and
pH are considered to be fixed. Other dependencies will be
implemented in the next version of PyRhO.

2.3. Photocycle Models
At the core of PyRhO are three functional Markov models of
opsin kinetics, namely the three-, four- (Nikolic et al., 2009),
and six-state (Grossman et al., 2013) models. We note that very
similar models have been investigated in several other studies
(Gradmann et al., 2002; Nagel et al., 2003; Hegemann et al., 2005;
Ishizuka et al., 2006; Bamann et al., 2008; Ernst et al., 2008; Foutz
et al., 2012; Williams et al., 2013) but used our earlier models as
a starting point as we have since extended them and unified their
notation. These models vary in complexity providing a range
in the trade-off between biological accuracy and computational
efficiency to choose from. The key features of these models,
including an outline of their strengths and weaknesses, are
summarized in Table 1 with accompanying illustrations in
Figure 2. Since their original formulation, the models have
been extended to encompass additional parameter dependencies,
better fit the experimental data and use a consistent notation,
with the full model descriptions given in Table 2. An analytic
solution for the three-state model was also calculated and is
included in the Appendix.

Both four- and six-state models assume that there are two
open states (O1 andO2, see Figure 2), with channel conductances
gO1 and gO2 , respectively. The Photocycle factor in Equation (1)
has the form:

fφ(φ) = O1 + γO2 , (4)

where O1 and O2 are the fractions of opsins in two open states in
the interval [0, 1], and γ = gO2/gO1 . In contrast, the three-state
model assumes only one open state (O) making the photocycle
factor simply: fφ(φ) = O.

FIGURE 2 | The three-, four-, and six-state functional Markov models

of opsins.

2.4. Voltage Dependence
Here, we assume that the membrane voltage affects only
the ion-channel conductance but not the channel kinetics.
By investigating experimental results for Channelrhodopsin-2
steady-state current vs. clamped voltage, the I–V curve shows
inwardly rectifying behavior (Bamberg et al., 2008). We have
previously found that an exponential function gives a good fit for
this dependency (Grossman et al., 2011), therefore for the voltage
factor in Equation (1) we adopt the form:

fv(v) =
v1

v− E
·

(

1− e
− v−E

v0

)

, (5)

where v0 and v1 are fitting parameters, along with E, the
channel’s reversal potential. The exponential dependence on
v transforms into a linear dependence for large values of v0

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

TABLE 2 | Opsin model equations.

States Functional state equations Light-dependent transitions Conductance factors

3

Ċ = Gr (φ)D−Ga (φ)C

Ȯ = Ga (φ)C−GdO

Ḋ = GdO−Gr (φ)D

C+O+ D = 1

Ga (φ) = ka
φp

φp + φ
p
m

Gr (φ) = kr
φq

φq + φ
q
m

+ Gr0

fφ (φ) = O

fv (v) =
1− e−(v−E)/v0

(v − E)/v1

4

Ċ1 = Gd1O1 +Gr0C2 −Ga1 (φ)C1

Ȯ1 = Ga1 (φ)C1 +Gb (φ)O2 −
(

Gd1 +Gf (φ)
)

O1

Ȯ2 = Ga2 (φ)C2 +Gf (φ)O1 −
(

Gd2 +Gb (φ)
)

O2

Ċ2 = Gd2O2 −
(

Gr0 + Ga2 (φ)
)

C2

C1 + O1 +O2 + C2 = 1

Ga1 (φ) = k1
φp

φp + φ
p
m

Gf (φ) = kf
φq

φq + φ
q
m

+Gf0

Gb (φ) = kb
φq

φq + φ
q
m

+Gb0

Ga2 (φ) = k2
φp

φp + φ
p
m

fφ (φ) = O1 + γO2

fv (v) =
1− e−(v−E)/v0

(v − E)/v1

6

Ċ1 = Gd1O1 + Gr0C2 − Ga1 (φ)C1

˙I1 = Ga1 (φ)C1 − Go1 I1

Ȯ1 = Go1 I1 + Gb (φ)O2 −
(

Gd1 + Gf (φ)
)

O1

Ȯ2 = Go2 I2 + Gf (φ)O1 −
(

Gd2 +Gb (φ)
)

O2

˙I2 = Ga2 (φ)C2 − Go2 I2

Ċ2 = Gd2O2 −
(

Gr0 +Ga2 (φ)
)

C2

C1 + I1 +O1 +O2 + I2 + C2 = 1

Ga1 (φ) = k1
φp

φp + φ
p
m

Gf (φ) = kf
φq

φq + φ
q
m

+Gf0

Gb (φ) = kb
φq

φq + φ
q
m

+Gb0

Ga2 (φ) = k2
φp

φp + φ
p
m

fφ (φ) = O1 + γO2

fv (v) =
1− e−(v−E)/v0

(v − E)/v1

which cause the exponent to be small and the expression in
Equation (5) reduces to fv(v) ≈ v1/v0 = const, i.e., no
direct dependence on membrane voltage, which may be a more
appropriate form for some opsins. The expression given by
Equation (5) therefore generalizes to both cases for appropriate
choices of the parameters v0 and v1.

Furthermore, since the voltage dependence factor is defined
to be equal to 1 at −70 mV (fv(−70 mV): = 1), the value of v1 is
related to the other parameters through the following equation:

v1 =
70+ E

e
70+E
v0 − 1

(6)

This relationship is used as a constraint in the fitting procedures
described below.

2.5. Model Fitting
PyRhO incorporates novel fitting algorithms with which each
of the opsin models may be parameterized when given an
appropriate set of data. The fitting algorithms use the lmfit
module (Newville et al., 2014) which in addition to providing
access to a variety of optimization algorithms, enables numerical
bounds to be placed on parameter values as well as algebraic
constraints. Parameters may also be manually fixed if, for
example, they have been directly measured experimentally. Once
the algorithm has finished, a Parameters object is returned,
populated with the extracted parameter values whichmay then be

saved or used as the basis for simulations. Plots of photocurrents
simulated with these derived parameters are drawn over the
experimental data (with residual error) to allow for visual
comparison of the resultant fits.

2.5.1. Characterization Data
In order to characterize each model, a set of voltage-clamped
photocurrents are required, ideally collected from HEK cells to
eliminate the confounding effects of other ion channels which
may be present in neurons. To capture all currently modeled
variable dependencies, data from three stimulation protocols are
necessary, listed below by themodel properties which they reveal.
In the event of scarce data or uncharacterized variables which the
user does not intend to vary, we describe the minimum set of
data for the fitting procedure below and discuss the implications
for the resultant model.

• Voltage dependence: {E, v0, v1}. Long light pulse (fixed flux)
to steady-state, vary voltage clamp potential (e.g., in steps of
30 mV: Vclamp = {−100,−70,−40,−10, 20, 50, 80}mV, n ≥
5). Voltage clamp values should not be too close to E as this
may cause distortions in the fitting algorithms. The software
will automatically find the plateau values Iss, plot Iss vs. Vclamp,
and find the fitting parameters for the function fv(v) given by
Equation (5). An example is shown in Figure 3.
• Recovery rate: {Gr0}. Two long light pulses with varying inter-

pulse-interval (IPI), Voltage clamp: −70 mV. Light on (first

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 3 | Photocurrent plots from the “rectifier” protocol with accompanying steady-state current and fitted f(v) plots.

pulse)—light off for e.g., tIPI = {0.5, 1, 2.5, 5, 10} s—light on
(second pulse). The software will automatically find the peak
values for each recording, align the data to the end of the first
pulse and fit an appropriate exponential curve of the form
Ipeak(t) = Ipeak0−a·e

−Gr0·tIPI .We note here that this expression
is strictly speaking correct only when both O1 and O2 states
are empty. Consequently a is left as a free fitting parameter
and very short values for tIPI should be avoided to prevent
the distortions caused by the faster transitions. An example for
wild-type ChR2 is given in Figure 4, where tIPI & 100ms.
• Flux dependence: Off-curve: {Gd(1,2), [Gf 0,Gb0]}; On-curve:
{All other parameters}. Voltage clamp (preferably): −70 mV,
long pulse to steady-state, (e.g., T≈500 ms) plus decay of off-
curve. Vary light intensity from near threshold to saturation
(e.g., φ = {0.1, 0.5, 1, 5, 10, 50, 100} mW/mm2, n ≥ 5).
The recorded off- and on-curves are automatically fitted.
An example set is shown in Figure 5 with more details of
the algorithm given in Appendix Section (Model-Dependent
Fitting Procedures).

Additionally the six-state model requires one or more very short
pulses in order to characterize the opsin activation rates which
model the lag in transitioning to conductive states upon light
stimulation:

• Opsin activation rate: {Go1,Go2} One or more short pulses,
voltage clamp: −70 mV. Vary pulse length, e.g., 0.5, 1, 2, 3,
varied up to 10 ms. PyRhO will automatically find the time
of the peak current and use an iterative formula to estimate
Go1. We initially assume Go2 = Go1. Further details of
the algorithm are given in Appendix section Six-state opsin
activation rate fitting (Step 1b.).

All light pulses should be “rectangular” (step functions) in that
they have a sharp onset and offset. Examples of each protocol are

included in PyRhO with illustrations provided in Figures 3–7.
The duration of the on- and off-phases should also be kept
approximately equal since the optimizer will effectively weight
the contributions of each according to the relative numbers of
data points. Additional parameter dependencies will be added
in the future which may require additional data sets for a full
characterization of the models.

2.5.2. Minimal Data Requirements
In general, the most important data are those described for
characterizing the flux dependence, which may be considered
to be the “minimal set.” If this set consists of only a single
photocurrent, the fitting algorithms will fix the parameters
which model the flux dependence (φm, p and q) to the
initial values supplied (along with fixing those describing other
uncharacterized variables) and tune the remaining parameters
to return a model fit for that specific flux. This is not
recommended however, as the model is under-constrained by the
data (typically resulting in a poorer fit than when using a whole
set of photocurrents) and is unlikely to generalize well to new
experimental conditions. For best results, the flux dependence
photocurrents should be measured at light intensities spanning
several orders of magnitude as described above.

If variations in other parameters or short pulses are of interest
then the additional data should (ideally) be collected as described.
However, if obtaining the data for a full characterization of
the model is not possible, the pre-set default values should be
adequate for most practical purposes.

2.5.3. Data Format
Each voltage-clamp recorded photocurrent should be loaded into
a PhotoCurrent object as follows:
pc = PhotoCurrent(I=i0, t=t, pulses=[[t_on,

t_off]], phi=2e15, V=-70)

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 4 | Photocurrent plots from the “recovery” protocol with fitted peak recovery function.

FIGURE 5 | The six-state model fit to a set of six ChR2 photocurrents using the same model parameters.

Here, I is the array of photocurrent values in nanoamperes,
t is the corresponding array of recording times (or a scalar
representing the time-step) in milliseconds, pulses is a nested
list of n lists (or an n × 2 array), where n corresponds to
the number of pulses and each inner list contains the on-time
and off-time for each pulse in milliseconds, phi represents the
stimulating flux value in photons ·mm−2 · s−1 and V is the clamp
voltage in millivolts (or “None” if the voltage was not clamped).

The PhotoCurrent class contains methods which
automatically check the data and extract the key features from it,

which may then be accessed as properties of the object with the
. operator. Any properties which are data-derived are suffixed
with “_,” for example, the peak and steady-state current are
accessed with pc.peak_ and pc.ss_, respectively. These
photocurrents may easily be plotted, along with their main
features and the light stimulus using the plot()method.

The PhotoCurrent objects are then combined into
ProtocolData objects. These sets of photocurrents also
provide several convenient methods for plotting and extracting
parameters from the data set as a whole.

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 6 | The three- and four-state models fitted to the first two ChR2 photocurrents for comparison (the six-state fits are omitted since they are

almost indistinguishable from the four-state fits at this time scale). While both models capture the major features of the data, the four-state (and six-state)

models produce a higher quality of fit, particularly during the post-peak inactivation phase (where the three-state curves tend to over-shoot the data) and the

deactivation (off) phases which are better described by a double rather than a single exponential decay process.

stepPD = ProtocolData(protocol="step",

nRuns=1, phis=[1e14,1e15,1e16,1e17,1e18],

Vs=[-70])

for iPhi, phi in enumerate(phis):

for iV, V in enumerate(Vs):

pc = PhotoCurrent(Is[iPhi][iV], t,

pulses, phi, V)

stepPD.addTrial(pc)

Finally, the data sets are combined into a dictionary using the
protocol names as keys:

ChR2DataSet = {"step" : stepPD,

"recovery" : recovPD,

"rectifier" : rectiPD,

"shortPulse" : shortPD}

This dictionary contains all the data necessary to parameterize all
three models, however, if only the three and four-state models are
of interest then the "shortPulse" protocol may be omitted.

2.5.4. Fitting Procedure and Algorithms
Once the data have been loaded into the appropriate structures,
the fitting algorithms may be called with the fitModels()
function.
fp = fitModels(ChR2dataSet, nStates=6,

params=initialParams)

This procedure returns a Parameters object (from the lmfit
module) with the calculated values and plots the resultant model
fits over the experimental photocurrents. The entire set of ChR2
data are shown fitted to the six-state model for each flux value

spanning two orders of magnitude (φ = [2.21 × 1015, 2.65 ×
1017] photons ·mm−2 · s−1) with the same set of parameters in
Figure 5. The lowest and highest intensity photocurrents are also
shown in Figure 6 with the model fits for both the three- and
four-state models for direct comparison. The six-state model fits
are not replotted here as they only exhibit a significant difference
to the four-state fits for short pulses, as illustrated in Figure 7.

Having fit a model, it may be easily characterized by plotting
how the light-dependent transition rates vary as a function of
flux (based on the Hill equation) along with light-independent
transition rates as shown in Figure 8. An individual fit is
shown in more detail with the residual error for φ = 2.21 ×
1015 photons ·mm−2 · s−1 in Figure 9. To provide insight into
the model’s kinetics, PyRhO also offers state variable plots. The
evolution of the six-state model corresponding to the fit in
Figure 9 is given in Figure 10.

In general terms, the fitting algorithm first finds the model-
independent variables such as the dark recovery rate and
voltage dependence factors, proceeding through “off-curve”
parameters by fitting a double exponential decay function,
optionally fitting opsin activation rates for the six-state model
and finally optimizing across a set of “on-curves” to find
any remaining parameters. Due to the inherent variability and
imprecision in experimental measurements there is an optional
second optimization phase over the entire set of photocurrents
simultaneously. The values found for the dark parameters
{Gd(1,2), [Gf 0,Gb0]} (and opsin activation ratesGo(1,2) if relevant)
are used as the initial values, lower and upper bounds are
calculated as 50 and 200% of these values, respectively (set by a
hyperparameter) and the model is then re-optimized to achieve
an overall better fit. The main sub-routines of the algorithm are

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 7 | The four-state and six-state models simulated with ChR2-derived parameters for short-duration pulses. With the four-state photocurrents (A),

the peak occurs at the end of the on-phase. This can be seen most clearly in the plot of Pulse duration vs. Time of peak (B) where all points lie on the diagonal. For the

six-state photocurrents however, the peaks lag behind the end of the illumination periods slightly (D), due to the transitions to and from the model’s extra intermediate

states. The inactivation phases (A,D) and magnitude of the peaks (C,F) can be seen to be very similar for both models. For the six-state model, the peak-lag effect

can also be observed to diminish as the pulse duration increases (E), demonstrating the practical equivalence of the two models for long stimulation periods.

given in Algorithm 1 with more detail for each process given in
the Appendix.

When fitting the three-state model, a double exponential is
fit (with two corresponding decay rates Gd1 and Gd2) which are
then weighted by their coefficients (Islow and Ifast) and combined
to form a single exponential. The mean of these values is then
calculated across a set of N photocurrents (Equation 7) and this
value is then used in subsequent parts of the fitting algorithm.

Gd =
1

N

N
∑

n=1

Islown
× Gd1n + Ifastn × Gd2n

Islown
+ Ifastn

. (7)

2.5.5. Verification
In order to test the algorithms, synthetic data was generated using
the parameter values derived from fitting the six-state model
to the ChR2 experimental data. The fitting procedure was then
applied to these synthetic photocurrents to compare the newly
derived parameters with the known values used to generate the
synthetic data. The results of these two fitting processes using the
“powell” optimization algorithm are shown in Table 3 (along
with the values used as initial estimates).

We first note that many of the computed parameters are
very close to the true (original) values (all but two are within
±5% of the original values), especially in the context of the

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 8 | Transition rate plots for the six-state model fit to ChR2 data (on log-log axes) where light-dependent transitions are shown with solid lines

and light-independent transitions are shown with dashed lines.

Algorithm 1 Fitting algorithm

1: function FITMODEL({DataSet}, {initParams})
2: if “rectifier" in {DataSet} then
3: (E, v0, v1)← fitVoltageRectifier(Vc, Iss)

4: g0 ← fitConductance(v,E,maxφ(Ip))
5: if “recovery" in {DataSet} then
6: Gr0 ← fitPeakRecovery(tp, Ip)

7: (Gd(1,2), [Gf 0,Gb0])← fitOffCurves({Iφ[toff :]})
8: (φm, k(1,2), p, [Gr1,Gf 0, kf , q,Gb0, kb, γ,Go(1,2)])

← fitOnCurves({Iφ[ton : toff]})
9: if postFitOptimization is True then

10: ({All parameters})← fitCurves({Iφ})

degree of experimental noise and measurement error which
would typically accompany recordings of real neuronal data. One
notable exception is Go2 which is hard to fit in a single-pulse
protocol since all opsin models are assumed to be in their fully
dark-adapted (ground) state i.e., C1 = 1.

While there are other differences between some of the original
and computed parameters, these may potentially be accounted
for by numerical precision issues and the high-dimensional
parameter space of the six-state model being under-constrained
by the data. For example, a decrease in one parameter may
be compensated for by an increase in another such that only
latent variables are affected and the fit in the observable current
is still good. Inspecting the model fit plots appears to confirm
this, as the residual error is very low across the whole set
of generated verification photocurrents—at most ±0.5% of the
steady-state current and usually considerably less. The entire
set of photocurrents fitted to the synthetic data are plotted
in Figure 11 and show a very close correspondence to the

target (synthetic) photocurrents across the whole set of stimulus
intensities.

2.6. Computational Simulation
2.6.1. Simulations Procedure
To programmatically simulate the opsin, a model, protocol and
simulator object must first be created (see Figure 1). The model
and protocol are then loaded into the simulator which configures
the simulation environment for that particular choice of opsin
and protocol (e.g., by setting the numerical time-step according
to the shortest stimulation period). The simulator object can
then be run and plotted with the appropriate methods as shown
in the following example, where a six-state model is used with
the ChR2 parameters and run through the rectifier protocol
(described below). In this example the protocol is run on the
NEURON simulator, (rather than the default Python simulator)
and the default ChR2 parameters are loaded from the module’s
modelFits dictionary, which contains some pre-fit model
parameter sets for several common opsins.

from pyrho import *

nStates = "6" # 3, 4 or 6

ChR2params = modelFits[nStates]["ChR2"]

RhO = models[nStates](ChR2params)

Prot = protocols["rectifier"]()

Sim = simulators["NEURON"](Prot, RhO)

Sim.run()

Sim.plot()

Alternatively, when using the PyRhO GUI, the model,
protocol and simulator are simply selected from drop-
down lists, (optionally parameters may be changed),

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 9 | An example six-state model fit to ChR2 data (at φ = 2.21 × 1015 photons · mm−2
· s−1) with the accompanying residual error expressed as

a percentage of the steady-state current.

FIGURE 10 | The six-state model’s internal states. This figure corresponds to the example fitting plot (Figure 9) and shows the evolution of the internal states

through time (A,B) shows alternative representations of the same data) along with the occupancy proportions at the initial conditions (C), peak (D) and

steady-state (E).

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

TABLE 3 | Comparison of parameters found in fitting to those used to

generate the fitting data.

Parameter Initial Experimental Computed Difference

g0 (pS) 2.5e4 2.76e+04 2.77e+04 +0.0464%

γ (1) 0.05 8.33e-16 0.00369 1: +0.00369

φm (ph. ·mm−2 · s−1) 3.5e17 5.07e+17 5.02e+17 −0.983%

k1 (ms−1) 10 18.5 18.2 −1.3%

k2 (ms−1) 3 3.75 4.07 +8.68%

p (1) 1 0.982 0.981 −0.0921%

Gf0 (ms−1) 0.04 0.0365 0.0365 +0.149%

kf (ms−1) 0.1 0.121 0.121 −0.601%

Gb0 (ms−1) 0.02 0.0146 0.0143 −1.99%

kb (ms−1) 0.15 0.133 0.131 −1.31%

q (1) 1 1.45 1.45 −0.196%

Go1 (ms−1) 2 1.93 1.93 +0.0256%

Go2 ([ms−1) 2 2.65 3.38 +27.7%

Gd1 (ms−1) 0.1 0.108 0.108 +0.453%

Gd2 (ms−1) 0.01 0.0111 0.0115 +3.96%

Gr0 (ms−1) 0.00033 0.00033 0.00033 −0.0585%

E (mV) 0 0 3.9e-08 1: +3.9e-08

v0 (mV) 43 43 43 −2.16e-08%

v1 (mV) 17.1 17.1 17.1 +0.00889%

then simulated and plotted by clicking the “Run”
button.

Each type of object will be initialized with default
parameters (in the form of Parameters objects)
unless passed a different set upon initialization e.g., RhO

= models[nStates](params6s). Alternatively,
parameters may be set after creation using methods such
as .setParams() or .updateParams() for partial sets.

2.6.2. Protocols
PyRhO comes with several preconfigured and customizable
simulation protocols for exploring the dynamics of the models.
These include typical system analysis stimuli such as delta
functions, step functions and sinusoids, as well as chirps and
specialized protocols designed to probe particular features of
the opsins including voltage-dependence (rectifier), opsin
activation (shortPulse) and dark recovery (recovery).

2.6.3. Simulators
PyRhO’s simulation layer serves to perform house-keeping tasks
necessary to prepare different simulation environments to use
a particular opsin model in a “system” of interest and apply
a particular protocol to it. Currently, three simulators are
available in PyRhO: Brian2 for neural networks, NEURON for
detailed morphological neurons and (pure) Python for basic
opsin channel dynamics. This selection of simulators provides
PyRhO with a way to seamlessly span multiple scales of modeling
with the same parameterized opsins; from individual channels to
whole brain regions.

When using simulators other than “Python,” additional
parameters may be specified. For example, the NEURON

simulator has additional parameters such as “v_init” (the cell

membrane potential initialization value), “CVode” (a boolean
value for activating variable time-step solvers), and “cell” (a
hoc file specifying the neuron’s morphology). This allows existing
simulations created in NEURON to be conveniently transfected
(augmented with opsins) and run within the PyRhO framework.
While models may be fit to data and then seamlessly inserted
into one of these simulators within the same environment, if
desired the NMODL files and Brian equations may be accessed and
exported as a starting point for creating stand-alone simulations.

An example of implementing opsins within the NEURON

environment is shown in Figure 12 where ChR2 expressing cells
are illuminated with a 150 ms light pulse. The six-state equations
were used to model the ChR2 additions and implemented via
the NMODL file RhO6.mod, adapted from the description in
Grossman et al. (2013).

PyRhO also incorporates the Brian2 spiking neural network
simulator. The opsin is represented with a set of ODEs which
use the parameters specified in the RhodopsinModel object.
As an example we show simulation results for a neural network
which consists of 140 leaky integrate-and-fire neurons, separated
into three feed-forward layers. The first group has neurons which
express ChR2 and that layer has a set of random connections with
the next layer, with 20% connectivity and 1ms conduction delays
(with the same specifications for connectivity between the second
and third layers). Figure 13 shows raster plots of the spiking
neurons in all three layers.

2.7. Graphical User Interface
To make PyRhO usable without any programming background,
a graphical user interface (GUI) has been written which runs
in Jupyter (formerly IPython; Pérez and Granger, 2007). This
runs in a browser-based notebook meaning that it could be
easily configured as a server and made accessible to an entire
laboratory or classroom without requiring local installations
on each machine. Since both figures and text results appear
embedded in the notebook after the code used to produce them,
this makes the interface self-documenting and a particularly
useful means of sharing models (Topalidou et al., 2015).

A screenshot of the GUI is given in Figure 14 showing the
simulation tab for the three-state model. In addition to the
parameter fields, the model states diagram is also embedded in
the GUI with the equations which describe the opsin’s behavior
rendered in LaTeX. Similarly, the parameters for each protocol
and each simulator are shown on other tabs for easy modification
of their values. On the fitting tab, there are also sub-tabs for
each of the models, with their respective sets of parameters
including tick-boxes to fix parameters and fields for numerical
bounds and algebraic constraints to be passed to the fitting
algorithms.

3. DISCUSSION

PyRhO has been written to be an integrated suite of intuitive,
flexible, open-source and multi-scale computational tools for
analysing and simulating opsins. In keeping with the open-
source community’s ethos, it builds upon existing libraries
for numerical (NumPy), scientific (SciPy, lmfit) and plotting

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 11 | The six-state model (re-)fitted to synthetic data generated from parameters derived from six ChR2 photocurrents. It can be seen that the

model fits (black lines) almost perfectly fit each synthetic photocurrent using a unified parameter set.

FIGURE 12 | Cell membrane potential for a simple Hodgkin–Huxley neuron transfected with a six-state opsin model of ChR2 and simulated in

NEURON.

routines (Matplotlib). It also incorporates several freely available
simulators, namely NEURON and Brian2, with work to
incorporate PyNEST underway.

3.1. Classes of Opsin
While the models were developed with rhodopsins and the
fitting and simulation demonstrations are illustrated using ChR2
data, in principle the tools should work just as well with other
classes of opsin. Essentially the opsin models represent non-
linear dynamical systems (second order for the three-state model

and n − 1th order for the n-state model in general). As such
they are capable of capturing the three main classes of dynamics
in response to a step input: under-damped, over-damped and
oscillatory (ringing) currents. While PyRhO can fit and simulate
all three cases, interestingly, only the first two types of response
have been observed so far (for low and high intensity stimulation,
respectively).

For inhibitory opsins observed so far, while the sign of the
current changes, the dynamics remain qualitatively the same,
meaning that the fitting and simulation routines should be just

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

FIGURE 13 | Raster plots for a three-layer network of leaky integrate-and-fire neurons simulated with Brian2 where the first layer has been

transfected with a six-state model of ChR2.

FIGURE 14 | Screen shot of the PyRhO GUI (in expanded view) showing the run bar at the top for running simulations and the models tab below where

parameters may be adjusted.

as effective. However, for fitting, it may be necessary to adjust
the starting values for some parameters to help the algorithms
achieve good results. The main changes we anticipate would be

in parameters that are extraneous to the the core dynamics (that
is, those not described by the differential equations) such as the
reversal potential, (E) which may be measured through standard

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

electro-physiological techniques and possibly the parameters
tuning the voltage rectification curve (v0 and v1).

3.2. Extensibility
Given the way that PyRhO has been constructed around several
layers of abstraction, extending the capabilities with more
models, simulators or protocols is relatively straightforward.
Nested classes (and sub-classes) act as templates guiding
development while inheritance of methods and attributes
facilitates code reuse in line with open-source software
development best practices. As more data is collected, the library
of parameterized models may be contributed to, making more
characterized opsin variants available for other optogeneticists to
simulate.

In broader terms, PyRhO has potential as a framework to be
generalized to incorporate other types of stimulation, including
for example electrical and magnetic. The simulator and protocol
layers could potentially remain largely unaltered allowing it
to relatively easily grow into a neural stimulation platform
with neuro-engineering applications beyond the scope of just
optogenetics.

3.3. Limitations
The fitting algorithms rely upon optimization methods to extract
several parameters and hence are subject to the standard issues
associated with such procedures, including sensitivity to initial
conditions and settling in local minima. To ameliorate these
issues, the lmfit module is used to provide several useful
facilities including imposing bounds on the parameters and
algebraic constraints. Individual parameters may also be fixed
and the fitting procedures rerun to optimize over the remaining
free parameters, possibly with a new set of initial conditions.
Measuring and then fixing physiological parameters in this way,
such as the reversal potential E, will help the optimization
algorithms and considerably improve the resultant model fit.

Additionally there are limitations due to the more specific
nature of the models used. For example, the routine for
estimating g0, the biological scaling parameter for the cell’s
conductance, is systematically under-estimated. This should be
the maximum conductance of the cell (voltage clamped to
−70 mV) assuming full occupancy of the (primary) open-state.
However, in simulations this condition is never achieved in the
models, with maximum occupancy dependent on the model
parameters, typically found to be around 0.8 for wild-type ChR2
(Nikolic et al., 2009). We therefore calculate a conservative
correction factor to yield a better (albeit imperfect) estimate and
make the user aware of the issue so that they may override and fix
the values returned from the fitting function as necessary.

We note however that these limitations are not major,
especially in the context of experimental and measurement
inaccuracies and so do not significantly detract from the
usefulness of PyRhO’s fitting algorithms.

3.4. Future Work
One natural development for PyRhO would be to extend the
models (and fitting algorithms) to include additional parameter
dependencies defined in the introduction, Equation (3), such

as spectral absorption fλ(λ), temperature fT(T|Q10), and pH
fpH(pHint, pHext) factors for the channel conductance, as well as
the effects of temperature and pH on the photocycle kinetics.
This would allow the simulations to capture more of the variation
and enhance the tools’ ability to engineer the response to a target
outcome or compensate for adverse experimental conditions.

The unconstrained nature of the parameter Go2 also suggests
that there may be scope for additional models. For example,
a simpler five-state model (similar to the six-state model but
without I2 and its associated transitions) may be able to capture
the experimental data as well as the six-state model with a less
arduous fitting process andmore stable resulting parameters (less
sensitive to initial choices). In the first release however, we have
used the six-state model for the sake of greater generality.

Another route for future development would be to
incorporate other simulators for example PyNEST (Eppler
et al., 2008), allowing greater flexibility for users to choose
the simulator they are most comfortable with or which offers
alternative features and performance benefits. Ultimately
this process could be continued to interface with PyNN
(Davison et al., 2009) and other simulator-agnostic model
description languages such as NeuroML (Gleeson et al., 2010)
and NineML (Gorchetchnikov et al., 2011). Furthermore,
PyRhO could be combined with the software for optical
pattern generation and data acquisition NeuroPG (Avants
et al., 2015), to create a complete neural engineering tool for
optogenetics.

While there is always scope to add additional protocols,
a particularly interesting approach may be to allow networks
of neurons to be transfected with several types of opsin
and stimulated with multiple wavelengths of light (Han and
Boyden, 2007). This could also be supplemented with a more
detailed model of the optics of light-tissue interactions as
previously implemented for an individual cell in NEURON
(Foutz et al., 2012) or interfaced with OptogenSIM for whole
brain simulations (Liu et al., 2015). These would be particularly
useful additions to PyRhO’s neuro-engineering capabilities,
allowing stimuli to be more accurately sculpted. In the meantime,
users of PyRhO should be mindful of the attenuating effects of
light scattering and absorption (or equivalently a spectral shift)
from passing through other tissue (particularly in vivo) which
are not currently explicitly accounted for. These effects may
result in a lower effective flux intensity than specified which
may shift the “true” value of φm recovered from the fitting
procedures.

In summary, we have presented and verified a new integrated
suite of open-source computational tools for optogenetics.
PyRhO has been demonstrated to characterize opsins from
experimental photocurrents, fitting kinetic model parameters to
yield a functional understanding, helping to guide opsin choice
and development. These models have been demonstrated in
simulations across multiple scales, from channels to networks,
by harnessing popular simulators such as NEURON and Brian2.
PyRhO is also provided with a Jupyter browser-based GUI to
facilitate its use and aid in model sharing. We have outlined some
of its chief strengths along with its limitations and plans for future
improvements. By releasing these tools as open-source, we hope

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

that other computational neuroscientists will contribute features
and expertise, accelerating progress in the rapidly growing field
of optogenetics.

AUTHOR CONTRIBUTIONS

BE designed and wrote the software module and GUI. KN
and BE developed the opsin models. BE and KN developed
the model fitting algorithms. BE primarily wrote the article,
ran the tests, analyzed the data and plotted the figures with
participation from KN. BE, KN, SJ, and SS contributed to
the project concepts, manuscript comments and discussion of
results.

FUNDING

This work was supported by theUKBiotechnology and Biological
Sciences Research Council (BBSRC) grant BB/L018268/1 and
the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/N002474/1.

ACKNOWLEDGMENTS

We would like to thank Matthew Grub and Juan Burrone for the
ChR2 photocurrent data used to illustrate the fitting algorithms.
We would also like to thank Pepe Herrero for designing the
PyRhO logo.

REFERENCES

Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., and de Lecea, L.

(2007). Neural substrates of awakening probed with optogenetic control of

hypocretin neurons. Nature 450, 420–424. doi: 10.1038/nature06310

Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., and Deisseroth, K.

(2009). Temporally precise in vivo control of intracellular signalling. Nature

458, 1025–1029. doi: 10.1038/nature07926

Aravanis, A. M., Wang, L.-P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider,

M. B., et al. (2007). An optical neural interface: in vivo control of rodent motor

cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4,

S143–S156. doi: 10.1088/1741-2560/4/3/s02

Arenkiel, B. R., Peca, J., Davison, I. G., Feliciano, C., Deisseroth, K., Augustine,

G. J., et al. (2007). In vivo light-induced activation of neural circuitry in

transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218. doi:

10.1016/j.neuron.2007.03.005

Arlow, R. L., Foutz, T. J., and McIntyre, C. C. (2013). Theoretical

principles underlying optical stimulation of myelinated axons

expressing channelrhodopsin-2. Neuroscience 248, 541–551. doi:

10.1016/j.neuroscience.2013.06.031

Arrenberg, A. B., Stainier, D. Y. R., Baier, H., and Huisken, J. (2010). Optogenetic

control of cardiac function. Science 330, 971–974. doi: 10.1126/science.1195929

Avants, B. W., Murphy, D. B., Dapello, J. A., and Robinson, J. T. (2015). NeuroPG:

open source software for optical pattern generation and data acquisition. Front.

Neuroeng. 8:1. doi: 10.3389/fneng.2015.00001

Ayling, O. G. S., Harrison, T. C., Boyd, J. D., Goroshkov, A., and Murphy, T. H.

(2009). Automated light-based mapping of motor cortex by photoactivation

of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224. doi:

10.1038/nmeth.1303

AzimiHashemi, N., Erbguth, K., Vogt, A., Riemensperger, T., Rauch, E.,

Woodmansee, D., et al. (2014). Synthetic retinal analogues modify the spectral

and kinetic characteristics of microbial rhodopsin optogenetic tools. Nat.

Commun. 5, 1–12. doi: 10.1038/ncomms6810

Bamann, C., Kirsch, T., Nagel, G., and Bamberg, E. (2008). Spectral characteristics

of the photocycle of channelrhodopsin-2 and its implication for channel

function. J. Mol. Biol. 375, 686–694. doi: 10.1016/j.jmb.2007.10.072

Bamberg, E., Bamann, C., Feldbauer, K., Kleinlogel, S., Spitz, J., Zimmermann,

D., et al. (2008). Channelrhodopsins: Molecular Properties and Applications.

Washington, DC: Society for Neuroscience.

Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., and Deisseroth, K. (2008).

Bi-stable neural state switches.Nat. Neurosci. 12, 229–234. doi: 10.1038/nn.2247

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).

Millisecond-timescale, genetically targeted optical control of neural activity.

Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Boyle, P. M., Williams, J. C., Ambrosi, C. M., Entcheva, E., and Trayanova, N. A.

(2013). A comprehensive multiscale framework for simulating optogenetics in

the heart. Nat. Commun. 4, 1–9. doi: 10.1038/ncomms3370

Bruegmann, T., and Sasse, P. (2015). Optogenetic cardiac pacemakers: science or

fiction? Trends Cardiovas. Med. 25, 82–83. doi: 10.1016/j.tcm.2014.10.016

Busskamp, V., and Roska, B. (2011). Optogenetic approaches to restoring

visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21, 1–5. doi:

10.1016/j.conb.2011.06.001

Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., et al.

(2010). High-performance genetically targetable optical neural silencing

by light-driven proton pumps. Nature 463, 98–102. doi: 10.1038/nature

08652

Chuong, A. S., Miri, M. L., Busskamp, V., Matthews, G. A. C., Acker, L. C.,

Sørensen, A. T., et al. (2014). Noninvasive optical inhibition with a red-shifted

microbial rhodopsin. Nat. Neurosci. 17, 1123–1129. doi: 10.1038/nn.3752

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009). PyNN: a common interface for neuronal network simulators.

Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Degenaar, P., Grossman, N., Memon, M. A., Burrone, J., Dawson, M., Drakakis,

E., et al. (2009). Optobionic vision: a new genetically enhanced light on retinal

prosthesis. J. Neural Eng. 6:035007. doi: 10.1088/1741-2560/6/3/035007

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).

PyNEST: A convenient interface to the nest simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Ernst, O. P., Sánchez Murcia, P. A., Daldrop, P., Tsunoda, S. P., Kateriya, S., and

Hegemann, P. (2008). Photoactivation of channelrhodopsin. J. Biol. Chem. 283,

1637–1643. doi: 10.1074/jbc.M708039200

Feldbauer, K., Zimmermann, D., Pintschovius, V., Spitz, J., Bamann, C., and

Bamberg, E. (2009). Channelrhodopsin-2 is a leaky proton pump. Proc. Natl.

Acad. Sci. U.S.A. 106, 12317–12322. doi: 10.1073/pnas.0905852106

Foutz, T. J., Arlow, R. L., and McIntyre, C. C. (2012). Theoretical principles

underlying optical stimulation of a channelrhodopsin-2 positive

pyramidal neuron. J. Neurophysiol. 107, 3235–3245. doi: 10.1152/jn.

00501.2011

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Goodman, D. F. M., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Gorchetchnikov, A., Cannon, R., Clewley, R., Cornelis, H., Davison, A.,

De Schutter, E., et al. (2011). NineML: declarative, mathematically-

explicit descriptions of spiking neuronal networks. Front. Neuroinform.

Conference Abstract: 4th INCF Congress of Neuroinformatics. doi:

10.3389/conf.fninf.2011.08.00098

Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., and Deisseroth, K.

(2009). Optical deconstruction of parkinsonian neural circuitry. Science 324,

354–359. doi: 10.1126/science.1167093

Gradinaru, V., Thompson, K. R., Zhang, F., Mogri, M., Kay, K., Schneider, M. B.,

et al. (2007). Targeting and readout strategies for fast optical neural control in

vitro and in vivo. J. Neurosci. 27, 14231–14238. doi: 10.1523/JNEUROSCI.3578-

07.2007

Frontiers in Neuroinformatics | www.frontiersin.org 16 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

Gradmann, D., Berndt, A., Schneider, F., and Hegemann, P. (2011). Rectification

of the channelrhodopsin early conductance. Biophys. J. 101, 1057–1068. doi:

10.1016/j.bpj.2011.07.040

Gradmann, D., Ehlenbeck, S., and Hegemann, P. (2002). Modeling light-induced

currents in the eye of chlamydomonas reinhardtii. J. Mem. Biol. 189, 93–104.

doi: 10.1007/s00232-002-1006-8

Grossman, N., Nikolic, K., Toumazou, C., andDegenaar, P. (2011).Modeling study

of the light stimulation of a neuron cell with channelrhodopsin-2mutants. IEEE

Trans. Biomed. Eng. 58, 1742–1751. doi: 10.1109/TBME.2011.2114883

Grossman, N., Simiaki, V., Martinet, C., Toumazou, C., Schultz, S. R., and Nikolic,

K. (2013). The spatial pattern of light determines the kinetics and modulates

backpropagation of optogenetic action potentials. J. Comp. Neurosci. 34, 477–

488. doi: 10.1007/s10827-012-0431-7

Gunaydin, L. A., Yizhar, O., Berndt, A., Sohal, V. S., Deisseroth, K., andHegemann,

P. (2010). Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392. doi:

10.1038/nn.2495

Han, X., and Boyden, E. S. (2007). Multiple-color optical activation, silencing,

and desynchronization of neural activity, with single-spike temporal resolution.

PLoS ONE 2:e299. doi: 10.1371/journal.pone.0000299

Hegemann, P., Ehlenbeck, S., and Gradmann, D. (2005). Multiple photocycles of

channelrhodopsin. Biophys. J. 89, 3911–3918. doi: 10.1529/biophysj.105.069716

Hegemann, P., and Möglich, A. (2011). Channelrhodopsin engineering

and exploration of new optogenetic tools. Nat. Methods 8, 39–42. doi:

10.1038/nmeth.f.327

Hernandez, V. H., Gehrt, A., Reuter, K., Jing, Z., Jeschke, M., Mendoza Schulz, A.,

et al. (2014). Optogenetic stimulation of the auditory pathway. J. Clin. Invest.

124, 1114–1129. doi: 10.1172/JCI69050

Hines, M., Davison, A. P., and Muller, E. (2009). Neuron and python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hines, M. L., and Carnevale, N. T. (2000). Expanding neuron’s repertoire

of mechanisms with nmodl. Neural Comput. 12, 995–1007. doi:

10.1162/089976600300015475

Ishizuka, T., Kakuda, M., Araki, R., and Yawo, H. (2006). Kinetic evaluation of

photosensitivity in genetically engineered neurons expressing green algae light-

gated channels. Neurosci. Res. 54, 85–94. doi: 10.1016/j.neures.2005.10.009

Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A.,

Cho, Y. K., et al. (2014). Independent optical excitation of distinct neural

populations. Nat. Meth. 11, 338–346. doi: 10.1038/nmeth.2836

Konermann, S., Brigham, M. D., Trevino, A. E., Hsu, P. D., Heidenreich, M., Le,

C., et al. (2013). Optical control of mammalian endogenous transcription and

epigenetic states. Nature 500, 472–476. doi: 10.1038/nature12466

Kuhne, J., Eisenhauer, K., Ritter, E., Hegemann, P., Gerwert, K., and Bartl, F.

(2014). Early formation of the ion-conducting pore in channelrhodopsin-2.

Angewandte Chemie 54, 4953–4957. doi: 10.1002/anie.201410180

Lagali, P. S., Balya, D., Awatramani, G. B., Münch, T. A., Kim, D. S., Busskamp,

V., et al. (2008). Light-activated channels targeted to on bipolar cells restore

visual function in retinal degeneration. Nat. Neurosci. 11, 667–675. doi:

10.1038/nn.2117

Lin, J. Y. (2011). A user’s guide to channelrhodopsin variants: features,

limitations and future developments. Exp. Physiol. 96, 19–25. doi:

10.1113/expphysiol.2009.051961

Lin, J. Y., Lin, M. Z., Steinbach, P., and Tsien, R. Y. (2009). Characterization of

engineered channelrhodopsin variants with improved properties and kinetics.

Biophys. J. 96, 1803–1814. doi: 10.1016/j.bpj.2008.11.034

Liu, Y., Jacques, S. L., Azimipour, M., Rogers, J. D., Pashaie, R., and Eliceiri,

K. W. (2015). Optogensim: a 3d monte carlo simulation platform for

light delivery design in optogenetics. Biomed. Opt. Exp. 6, 4859–4870. doi:

10.1364/BOE.6.004859

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and Davison,

A. P. (2015). Python in neuroscience. Front. Neuroinform. 9:11. doi: 10.3389/

fninf.2015.00011

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P.,

et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective

membrane channel. Proc. Natl. Acad. Sci. U.S.A. 100, 13940–13945. doi:

10.1073/pnas.1936192100

Newville, M., Stensitzki, T., Allen, D. B., and Ingargiola, A. (2014). LMFIT: Non-

Linear Least-Square Minimization and Curve-Fitting for Python. Zenodo. doi:

10.5281/zenodo.11813

Nikolic, K., Grossman, N., Grubb, M. S., Burrone, J., Toumazou, C., and Degenaar,

P. (2009). Photocycles of channelrhodopsin-2. Photochem. Photobiol. 85,

400–411. doi: 10.1111/j.1751-1097.2008.00460.x

Nikolic, K., Grossman, N., Yan, H., Drakakis, E., Toumazou, C., and

Degenaar, P. (2007). “A non-invasive retinal prosthesis - testing

the concept,” in Engineering in Medicine and Biology Society, EMBS

2007. 29th Annual International Conference of the IEEE (Lyon),

6364–6367.

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive

scientific computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.

2007.53

Petreanu, L., Mao, T., Sternson, S. M., and Svoboda, K. (2009). The subcellular

organization of neocortical excitatory connections.Nature 457, 1142–1145. doi:

10.1038/nature07709

Shoham, S., and Deisseroth, K. (2010). Special issue on optical neural engineering:

advances in optical stimulation technology. J. Neural Eng. 7:040201. doi:

10.1088/1741-2560/7/4/040201

Stehfest, K., and Hegemann, P. (2010). Evolution of the

channelrhodopsin photocycle model. Chemphyschem 11, 1120–1126. doi:

10.1002/cphc.200900980

Topalidou, M., Leblois, A., Boraud, T., and Rougier, N. P. (2015). A long journey

into reproducible computational neuroscience. Front. Comput. Neurosci. 9:30.

doi: 10.3389/fncom.2015.00030

Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., et al.

(2007). High-speed mapping of synaptic connectivity using photostimulation

in channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 104,

8143–8148. doi: 10.1073/pnas.0700384104

Williams, J. C., Xu, J., Lu, Z., Klimas, A., Chen, X., Ambrosi, C. M., et al.

(2013). Computational optogenetics: empirically-derived voltage- and light-

sensitive channelrhodopsin-2 model. PLoS Comput. Biol. 9:e1003220. doi:

10.1371/journal.pcbi.1003220

Yizhar, O., Fenno, L.E., Davidson, T. J, Mogri, M., and Deisseroth,

K. (2011). Optogenetics in neural systems. Neuron 71, 9–34. doi:

10.1016/j.neuron.2011.06.004

Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni,

A., et al. (2011). The microbial opsin family of optogenetic tools. Cell 147,

1446–1457. doi: 10.1016/j.cell.2011.12.004

Zhang, F., Wang, L. P., Boyden, E. S., and Deisseroth, K. (2006).

Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods

3, 785–792. doi: 10.1038/nmeth936

Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K.,Watzke, N., et al. (2007).

Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639.

doi: 10.1038/nature05744

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Evans, Jarvis, Schultz and Nikolic. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 March 2016 | Volume 10 | Article 8

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

APPENDIX

Three-State Analytic Solution
The analytic solution for arbitrary initial conditions (C0,O0,D0)
is as follows:

C(t) =
GdGr

λ1λ2
+

(λ1 − Gd − Gr)

Gdλ1ξ
· ζ1 · e

−λ1·t

−
(λ2 − Gd − Gr)

Gdλ2ξ
· ζ2 · e

−λ2·t (A1)

O(t) =
GaGr

λ1λ2
−

(λ1 − Gr)

Gdλ1ξ
· ζ1 · e

−λ1·t

−
(λ2 − Gr)

Gdλ2ξ
· ζ2 · e

−λ2·t (A2)

D(t) =
GaGd

λ1λ2
+

1

λ1ξ
· ζ1 · e

−λ1·t

−
1

λ2ξ
· ζ2 · e

−λ2·t (A3)

with the following definitions:

ξ =

√

G2
a + G2

d
+ G2

r − 2 · (GaGd + GaGr + GdGr)

λ1,2 =
1

2
·
(

(Ga + Gd + Gr)± ξ
)

ζ1,2 = C0 · [Gd · Ga]+ O0 ·
[

Gd · (Ga − λ1,2)
]

+ D0 ·
[

Gr · (λ1,2 − Ga − Gd)
]

Note also that λ1 · λ2 = GaGd + GaGr + GdGr i.e., the sum of
products.

Model-independent Fitting Procedures
Prior to fitting the specific parameters of a chosen model, several
fitting processes are performed to find parameters common to all
models:

1. If a set of voltage clamp data are provided over a range
of potentials, the steady-state currents are used to fit
the rectification function, fv(v), (Equation 5) yielding the
parameters E, v0, and v1:

a. The Iss values are first fit to the function fv(Vclamp) ·
(Vclamp − E) to find an initial estimate for v0 and a value
for Ewhere the polarity of the steady-state currents changes
(along with a dummy parameter comprising g0·fφ ·v1, which
is discarded).

b. The reversal potential, E, is fixed and the steady-state
currents are converted to conductances: g = Iss/(Vclamp −

E). These conductances are then normalized by dividing
by the conductance calculated at Vclamp = −70 mV to
produce an array of conductance factors.

c. The conductance factors are fit to the function fv(Vclamp)

with the constraint v1 = (70+ E) /
(

e
70+E
v0 − 1

)

to

calculate and fix the parameters E, v0 and v1.

2. All photocurrents in the dataset recorded at −70 mV are
scanned to find the highest peak. This value is used to calculate
an initial estimate for g0 (according to the formula g0 =
Ipeak,max/(−70− E)) to aid the optimization routines.

3. If the recovery protocol is included in the dataset (pairs of
pulses with a range of inter-pulse-intervals) then the peak
currents of the second pulses are extracted along with the
times and the initial peak and steady-state current. These
values are then aligned to the end of the first pulse (where
the current is Iss0) and fit to the exponential recovery function:
Ipeak(t) = Ipeak0 − a · eGr0·t . This yields the dark recovery rate
constant, Gr0.

These parameters are then fixed (except for the estimate of g0)
and passed to the model-specific fitting routines.

Model-dependent Fitting Procedures
Each model is fit with broadly the same three-stage fitting
procedure consisting of Off-curve parameters, then On-curve
parameters and finally re-optimizing:

1a. Fit bi-exponential functions to the Off-curves to find
parameter values for the light-insensitive decay rates: {Gd1,
Gd2, Gf 0, Gb0} for the four- and six-state models [detailed
in Section Four- and Six-state Model Off-curve Fitting
(Step 1a.)], or Gd for the three-state model (described in
Equation 7),

1b. [Six-state only] Fix the values for the parameters from Step
1a then calculate activation rates Go1 and Go2 [detailed in
Section Six-State Opsin Activation Rate Fitting (Step 1b.)],

2. Fix the values for the parameters found in Step 1 and fit the
On-curves to find the remaining parameters governing the
light-dependent transitions,

3. Using the values found in Steps 1 and 2 as initial values,
relax all parameter values to freely vary within a range (by
default between 50 and 200% of the initial values) and refit
the model across the set of whole photocurrent curves (on-
and off-phases).

Four- and Six-state Model Off-curve Fitting (Step 1a.)
The fitting equations for the Light-Off response curves can be
calculated directly from the set of ODEs given inTable 2, for light
flux zero, as shown in Nikolic et al. (2009):

O1off = A11 exp(−31t)+ A12 exp(−32t) (A4)

O2off = A21 exp(−31t)+ A22 exp(−32t) (A5)

where

31,2 = b∓ c ,

b = (Gd1 + Gd2 + Gf0 + Gb0)/2 and c =
√

b2 − (Gd1Gd2 + Gd1Gb0 + Gd2Gf0). Two useful relationships
follow from the previous equations:

31 +32 = Gd1 + Gd2 + Gf0 + Gb0 (A6)

31 ·32 = Gd1Gd2 + Gd1Gb0 + Gd2Gf0 (A7)

Frontiers in Neuroinformatics | www.frontiersin.org 18 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Evans et al. PyRhO: A Multiscale Optogenetics Simulation Platform

The current after the light is turned off is given by:

Ioff = V(g1 · O1off + g2 · O2off)

= Islow exp(−31t) + Ifast exp(−32t) , (A8)

where the expression for Islow (corresponds to 31) and Ifast
(corresponds to 32) components of the off-current can be
calculated from the equation above and are given in Nikolic et al.
(2009). Note also that Islow + Ifast = Iss which is included as an
additional constraint in the fitting procedure.

Six-State Opsin Activation Rate Fitting (Step 1b.)
From the differential equations describing the dynamics of a
short pulse (Table 2, three-state model):

dO

dt
= Ga(t)C − GdO

where Ga(t) is given in Nikolic et al., 2007, Appendix 1. If the
light illumination occurs from t = 0 to t = tpulse, then after the
light goes off (t > tpulse):

Ga(t) = Ga[e
tpulse/τopsin − 1] · e−t/τopsin , (A9)

where τopsin(= 1/Go) is the time constant of the opsin complex
activation (or conformal change) after the retinal isomerization
(which happens very quickly upon photon absorption). Now if
we use a very short pulse then tpulse ≪ τopsin so that C ≈ 1 (and
secondary cycles are not significantly activated), we may apply
the standard approximation for small exponents ex ≈ 1+ x:

Ga(t) ≈ Ga

tpulse

τopsin
· e−t/τopsin = Q · e

− t
τopsin , where Q = Ga

tpulse

τopsin

and so

dO

dt
≈ Q · e−Got − GdO . (A10)

The solution of Equation (A10) is the limit case for very short
pulses (relative to τopsin) when I(t) stops being dependent on the
pulse duration tpulse:

I(t) = g · (v− E) ·
Q

(Go − Gd)
· e−t/τd · (1− e−(Go−Gd)t) . (A11)

Differentiating Equation (A11) we find the time of the peak
current:

tmaxlag =
log(Go/Gd)

Go − Gd
=

τopsinτd

τd − τopsin
log

(

τd

τopsin

)

,

where τd = 1/Gd. Assuming that τopsin≪ τd then,

tmaxlag ≈ τopsin log

(

τd

τopsin

)

. (A12)

To find tmaxlag we can fit the following function to a series of

short pulses:

tpeak = tpulse + tmaxlag · e
−k·tpulse .

Alternatively, estimate tmaxlag from the “delta” protocol as
tpulse → 0. Once we have obtained an estimate for tmaxlag we can
then solve for τopsin iteratively as follows:

τopsin,i+1 =
tmaxlag

(tmaxlag/τd)− log(τopsin,i/τd)
. (A13)

Frontiers in Neuroinformatics | www.frontiersin.org 19 March 2016 | Volume 10 | Article 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	PyRhO: A Multiscale Optogenetics Simulation Platform
	1. Introduction
	2. Materials and Methods
	2.1. Implementation
	2.2. Photocurrent Model
	2.3. Photocycle Models
	2.4. Voltage Dependence
	2.5. Model Fitting
	2.5.1. Characterization Data
	2.5.2. Minimal Data Requirements
	2.5.3. Data Format
	2.5.4. Fitting Procedure and Algorithms
	2.5.5. Verification

	2.6. Computational Simulation
	2.6.1. Simulations Procedure
	2.6.2. Protocols
	2.6.3. Simulators

	2.7. Graphical User Interface

	3. Discussion
	3.1. Classes of Opsin
	3.2. Extensibility
	3.3. Limitations
	3.4. Future Work

	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	Three-State Analytic Solution
	Model-independent Fitting Procedures
	Model-dependent Fitting Procedures
	Four- and Six-state Model Off-curve Fitting (Step 1a.)
	Six-State Opsin Activation Rate Fitting (Step 1b.)

