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Causal prediction has become a popular tool for neuroscience applications, as it

allows the study of relationships between different brain areas during rest, cognitive

tasks or brain disorders. We propose a nonparametric approach for the estimation

of nonlinear causal prediction for multivariate time series. In the proposed estimator,

CNPMR, Autoregressive modeling is replaced by Nonparametric Multiplicative Regression

(NPMR). NPMR quantifies interactions between a response variable (effect) and a set

of predictor variables (cause); here, we modified NPMR for model prediction. We also

demonstrate how a particular measure, the sensitivity Q, could be used to reveal the

structure of the underlying causal relationships. We apply CNPMR on artificial data with

known ground truth (5 datasets), as well as physiological data (2 datasets). CNPMR

correctly identifies both linear and nonlinear causal connections that are present in

the artificial data, as well as physiologically relevant connectivity in the real data, and

does not seem to be affected by filtering. The Sensitivity measure also provides useful

information about the latent connectivity.The proposed estimator addresses many of the

limitations of linear Granger causality and other nonlinear causality estimators. CNPMR is

compared with pairwise and conditional Granger causality (linear) and Kernel-Granger

causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate

estimations without any modifications to the main method. Its nonpametric nature, its

ability to capture nonlinear relationships and its robustness to filtering make it appealing

for a number of applications.

Keywords: nonparametric multiplicative regression, nonlinear causality, nonparametric causality, multivariate

causality, conditional causality

1. INTRODUCTION

Causality was introduced by Wiener (1956) and mathematically formulated by Granger to
study cause and effect between variables for econometric applications (Granger, 1969). Formally,
causality quantifies interactions between variables and identifies cause-effect relationships through
modeling, prediction and assessment of the goodness-of-fit when past information from one
variable (cause) are incorporated into the prediction of another variable (effect). Granger causality
is quantified from the goodness-of-fit of Autoregressive models fitted onto the effect on its own
(univariate model), and fitted onto the effect and the cause together (bivariate model). Causality
has become a popular tool in a number of diverse fields (e.g., see Freeman, 1983; Oh and Lee, 2004;
Sugihara et al., 2012; Lu et al., 2014). Applications in neuroscience, which is our particular field
of interest, have been gaining ground over the last decade (e.g., Kaminski et al., 2001; Hesse et al.,
2003; Chen et al., 2006; Nicolaou et al., 2012).
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Since the introduction of Granger causality there have also
been a number of modifications and extensions to the basic
formulation (for a review see Ding et al., 2006; Guo et al.,
2010). However, the majority of extensions remain faithful to
the traditional approach of AR-based modeling and are only
applicable to linear causality. In the current study we are
particularly interested in nonlinear extensions.

Faes et al. (2008a) proposed a causality estimator based on
nonlinear exogenous autoregressive (NARX) modeling. This
nonlinear estimator uses Optimal Parameter Search for NARX
parameter estimation, which is less dependent on the initial
choice of model order, and a directionality index to quantify
the strength of causal interactions (based on the mean squared
prediction error of the fitted models). The estimator was
shown to capture linear and nonlinear causality on artificial
and physiological data (cardiovascular interactions). However,
the method remains parametric and is only applicable to
bivariate interactions. An additional drawback of this estimator,
identified by the authors themselves, is that the estimator is only
appropriate for nonlinearities up to 3rd order only; otherwise, the
number of model parameters that need to be searched becomes
computationally prohibiting. Chen et al. (2004) propose another
nonlinear extension to Granger causality, extended Granger
causality (a similar technique was also proposed in Freiwald
et al., 1999). This method is based on fitting locally linear models
(AR) to randomly selected neighborhoods of the embedded
time-series and estimating the neighborhood Granger causality.
Extended Granger causality is then estimated as the average of
this local GC. It is applicable for bivariate, as well as conditional
estimations. The method still uses AR modeling and the optimal
neighborhood size is an additional consideration. The trade-
off is that the neighborhood should be large enough to obtain
a representative estimate, but small enough to ensure valid
linearization (Chen et al., 2004).

Some approaches move away from traditional AR-
based estimators. Ancona et al. (2004) propose a bivariate
nonlinear causality estimator, which replaces AR with a
Radial Basis Function (RBF)-like approach to prediction. The
estimator performance was demonstrated on artificial data
(unidirectionally coupled chaotic maps) and physiological data
(heart and breath rate during apneic sleep, and rat epileptic EEG).
The method remains parametric and has the following additional
limitations: (i) the centers (i.e., mean values) that are used in the
RBF-like models are found via clustering, adding yet another
parametric constraint to the process; and (ii) the estimator is
developed for bivariate causality and there is no discussion by
the authors whether an extension to conditional/multivariate
estimation is feasible. Marinazzo et al. (2008b) propose the
Kernel-Granger causality estimator, initially for bivariate and
later extended to multivariate estimations (Marinazzo et al.,
2008a). Kernel-Granger causality performs linear Granger
causality (vector autoregression) in the feature space of the
kernel function; thus, the nonlinearity of the regression model is
controlled by the choice of the kernel. Granger causality analysis
(linear regression) is then performed in the space constructed
by the inner product of the inputs and the (nonlinear) kernel
function. This space is spanned by the eigenvectors of the kernel

and regression is equivalent to the correlation of the input data
and these eigenvectors. The causality index is estimated as the
mean of the statistically significant correlations. Kernel-GC
does not suffer from the problem of overfitting and is applicable
to multivariate data. Even though in theory any appropriate
kernel function can be used, the geometrical approach must be
altered first (Marinazzo et al., 2008b). In addition, there are some
types of nonlinearities that cause Kernel-GC performance to
degrade, e.g., if the data contain nonlinearities caused by limits
on the upper and lower amplitude (Marinazzo et al., 2008a) or
increasing amount of noise (Marinazzo et al., 2011).

Yet another approach is that by Schiff et al. (1996) based
on nonlinear mutual prediction. This is not a measure of
causality per se, but more a measure of generalized synchrony
that can be used to infer the direction of information flow.
Schiff et al. use nonlinear mutual prediction to characterize
the evolution of a system trajectory over a prediction horizon.
This is done by tracking how the n nearest neighbors of a
particular time point evolve in this prediction horizon and
comparing this projection with the actual evolution of the time
point. This can be extended to mutual prediction of 2 time
series by looking at how their mutual neighbors evolve over
time and can be used to infer the directionality of prediction
between the two systems. The proposed measure is bivariate
and has some limitations when the coupling is bidirectional.
A comparison of different existing conceptual approaches to
mutual prediction of bivariate time series is presented in Faes
et al. (2008b). The three approaches compared were based
on the k-nearest neighbor local linear approximation (Farmer
and Sidorowich, 1987) (for another study comparing k-nearest
neighbor-based causality estimators see Krakovská et al., 2015).
From the comparison of Faes and colleagues, it is evident that the
choice of a particular estimation strategy is guided by knowledge
of the ground truth. If one does not know the ground truth,
then it is difficult to choose a particular strategy as the results
obtained are inconsistent. For example, it is difficult to infer
with certainty whether a significant cross-prediction value is
uni- or bi-directional, or to interpret the results when mixed
prediction is used, unless the ground truth is known (Faes et al.,
2008b).

We would briefly also like to mention another class of
methods based on graphical causal inference, following the
work by Pearl and colleagues who combine causal models
with causal graphs Pearl (2009). In Pearl’s causality framework
a causal model is composed of a set of variables, both
endogenous and exogenous to the model (exogenous variables
are considered as noise terms). The model can be expressed
as a function (linear or nonlinear) of a subset of all variables
and a set of constant parameters, and can be represented
graphically with endogenous variables corresponding to graph
nodes connected by directed acyclic edges representing causal
connections. This class of methods is a non-parametric approach
for inferring causal connections from empirical observations,
even when latent variables are present. A downside of this
approach is that it involves a probabilistic approach based
on Markov factorization, i.e., temporal structure and causal
relationships originating from samples further in the past
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are ignored. These models have been extended to time-series
causal modeling (see Arnold et al., 2007 for a comparison
and Chicharro and Panzeri, 2014 for a specific application
to brain signal analysis). The copula approach is a well-
known nonlinear extension to graphical causal inference
(Bahadori and Liu, 2013); however, this is a semi-parametric
method.

An additional consideration is the general problem of
overfitting, which the majority of current approaches in
nonlinear causality estimation suffer from. As Palus̆ and Vejmeka
point out, the particular problem leads to the detection of
false causalities (Palus and Vejmeka, 2007). Only some of the
techniques described above do not suffer from overfitting, e.g.,
Kernel Granger causality.

We propose here an estimator that follows the traditional
Granger causality methodology, but the univariate/multivariate
linear/nonlinear AR models are replaced with Non-Parametric
Multiplicative Regression (NPMR). The proposed estimator,
CNPMR, addresses the following limitations of existing causality
estimators (summarized in Table l): (1) it is nonparametric,
therefore, estimation is guided by the data itself as opposed
to an underlying parametric model of specific form; (2)
it can detect both linear and nonlinear causality; (3) the
multiplicative relationship between predictors means that the
same method can be used without any modification for pairwise
or conditional/multivariate causality estimation; (4) there is no
restriction to the order of nonlinearity that can be estimated;
and (5) it allows for immediate inclusion of new points in the
model as these become available. These inherent features of
NPMR can also be combined with the following procedures,
in order to obtain a set of properties that are unique to
the proposed estimator: (1) overfitting is addressed by using
leave-one-out cross validation; (2) statistical significance can
be readily assessed with surrogate data methods; and (3)
the sensitivity measure Q, can be used to assess the relative
importance of a particular predictor within a model. It may be
possible to use this measure to infer the underlying structure
of the causal relationships that is otherwise unknown and
non-observable. The proposed method has some similarities to
existing nonparametric methods that use smoothing functions,
such as Radial Basis Functions and General Additive Models,
as well as with Kernel-Granger causality. These similarities arise
mostly when the same smoothing function or kernel function is

employed; however, a main difference is the multiplicative rather
than additive combination of weights in NPMR (more details can
be found in the Discussion).

The remainder of this paper is structured as follows. Section
2 introduces Non-Parametric Multiplicative Regression and
how this can be adapted for causality estimation. Section 3
presents the results of testing the performance of the proposed
causality estimator on artificial data (with linear and nonlinear
causal effects) and physiological data (cardiovascular effects
during sleep and EEG activity during anesthesia). Additional
considerations are given in Section 4.

2. MATERIALS AND METHODS

For two time series, X and Y , Granger causality is mathematically
defined as the ratio of the univariate and bivariate Autoregressive
(AR) model fitting errors:

GC(Y → X) = log

(

σ 2
X/X

σ 2
X/(X,Y)

)

(1)

where σ 2
X/X and σ 2

X/(X,Y)
are the variances of the prediction

errors of the univariate and bivariate AR models respectively.
The parametric nature of Granger causality (GC) is also one of
its main limitations. Its dependence on the use of AR modeling,
whether this is linear/nonlinear or bivariate/multivariate,
imposes a model of a particular form onto the data. Even though
AR models are quite versatile they do not always capture the
underlying data structure accurately. The same holds for any
other modifications to GC that still rely on fitting a parametric
model to the data.

In this work we have replaced the modeling part of GC
with a non-parametric, nonlinear regression-based method.
Non-Parametric Multiplicative Regression (NPMR) originates
from the field of ecology and was first introduced for
habitat modeling in McCune (2006, 2011). A habitat model
describes how variations in species performance relate to
different predictors, such as environmental variables and site
characteristics. In this context, NPMR is a method that seeks
and characterizes relationships (linear and nonlinear) between
species performance and specific predictors without explicitly
estimating any coefficients in a fixed mathematical form. Instead,

TABLE 1 | Comparison of causality methodologies.

Citation Pairwise Multivariate Linear Non-linear Parametric Nonparametric Other

Granger, 1969 X — X — X — Problems with indirect connections

Faes et al., 2008a X — X X X — Only for non-linearities < 3rd order

Chen et al., 2004 X X X X X — Needs lots of data

Ancona et al., 2004 X — X X X —

Schiff et al., 1996 X — X X X — Issues with bidirectional coupling

Proposed X X X X — X No overfitting
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the method finds an optimized fit of the data on a local
model, e.g., local mean estimation or local linear regression. The
contribution of each predictor to this local function is weighted
via a kernel function, e.g., Gaussian kernel. The outcome of
NPMR application is to identify which predictors have the
largest and most important effect on species performance. This
is down to the multiplicative nature of NPMR: the weights
for individual predictors are combined multiplicatively rather
than additively and this allows for interactions between the
individual predictors (McCune, 2006). The combined weight
at a given point can become zero if any of the predictor
variables fails with respect to similarity with that particular
point.

In the proposed estimator of causality, CNPMR, the univariate
and bivariate/multivariate AR models are replaced by the
equivalent univariate and bivariate/multivariate NPMR model.
Causality is then estimated following the formal mathematical
definition of causality (Equation 1).

2.1. Non-Parametric Multiplicative
Regression
The idea behind Non-Parametric Multiplicative Regression
(NPMR) can be extended to applications outside of habitat
modeling. In the context of time-series modeling, NPMR can be
used to identify a set of variables that are important in modeling
a particular time-series. However, NPMR can be modified such
that information about the past of a set of variables is also
included in the modeling of a time-series. This is similar to how
an AR model is based on past information. The quality of the
model fit can be assessed through the variance of the error of the
fit.

Firstly, we will describe the basic idea of NPMR. Denote a
variable to be modeled (response variable), Y =

{

y1, y2, ..., yT
}

(with T samples) and a matrix ofm predictors,

X =















x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m
...

...
. . .

...
xT,1 xT,2 · · · xT,m















NPMR builds a global response surface of Y from its
relationship with the m predictors X. This is achieved by
estimating the value of yt(t = 1, ...T) from information
from the local neighborhood of the corresponding point in the
predictor space, Xt = [xt,1, ..., xt,m], using a multiplicative
kernel smoother. The influence of each of the m predictors
on this estimate is defined by the tolerance of the kernel
smoother (sj; j = 1, ...,m), i.e., neighborhood size. The
ability to define a different tolerance for each predictor is
unique to NPMR. In this example (and throughout this
study) the local neighborhood is defined as the weighted
mean and the weights are estimated from the simple and
intuitive Gaussian kernel smoother. Estimation of yt is, thus,
obtained as:

ŷt =
∑T

i=1,i6=t yi

(

∏m
j=1 wij

)

∑T
i=1,i6=t

(

∏m
j=1 wij

) (2)

In Equation (2), we see that the point of interest, t, is
omitted from the estimation. This leave-one-out cross
validation avoids overfitting. The weights, wi,j, are the
distances of each of the m predictors to the target point Xt ,
estimated with a Gaussian kernel weighting function with
tolerance (standard deviation) σj and centered at the point of
interest, t:

wi,j = e−0.5[(xi,j−xt,j)/σj]
2

(3)

The Gaussian kernel tolerance (standard deviation, σ ) defines
how rapidly the weights diminish with distance from the
target point. Following McCune (2011), the tolerance can be
optimized via an iterative search; for the Gaussian kernel it
could also be estimated from the data itself such that the range
of the observed values for a specific predictor fall within six
standard deviations. Even though there are no guidelines on
the use of a particular Kernel function, the Gaussian kernel
provides a simple and flexible way of expressing the weight
of a point as a function of its distance from the target. As
discussed in McCune (2011), the Gaussian kernel considers
all available points in the target prediction while allowing
the weights to decrease smoothly for observations further
from the target, and the speed of this decrease can be easily
controlled with the kernel tolerance. If, however, one wants
to take into account only points that are within a specified
neighborhood of the target point, then a rectangular kernel would
be preferable.

A detailed numerical example of NPMR is provided in
Supplementary Material Appendix 1; see also McCune (2011).

2.2. NPMR-Based Causality Estimation
We extend the basic idea of NPMR for causality estimation.
The predictor space is modified to include past information
as additional predictors. This could be past information of the
variable to be modeled (univariate prediction) or information
from both the variable to be modeled and chosen predictor
variables (bivariate/multivariate prediction). Including past
information is achieved through Takens’ time-delay embedding
(Takens, 1981). For a point, zt , its time-delay embedded
equivalent, z̃t , with delay τ and embedding dimension d is:

z̃t =
{

zt, zt−τ , zt−2τ , ..., zt−(d−1)τ

}

(4)

This well-known theorem allows reconstruction of the system
dynamics that are not readily available from the observed time
series alone. By time-delay embedding the response and/or
predictor variables, we effectively include past information in
the estimates of ŷt . NPMR can then be applied to Y using its
time-delayed equivalent Ỹ as predictors (univariate prediction)
or combining its time-delayed equivalent Ỹwith the time-delayed
predictor variables, X̃ (bivariate/multivariate prediction). By
choosing which predictors are included in the modeling one can
then assess the significance (not in strict statistical sense) of each
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predictor through the variance of the modeling error: smaller
variance indicates better goodness of fit. Supplementary Material
Appendix 1 provides a numerical example of how NPMR can be
used for time-series prediction.

Putting this into a causality framework one can assess the
existence of causal relationships using the standard Granger
causality definition, with the error variances replaced by those
obtained from NPMR modeling. Thus, for a bivariate estimate
the NPMR-based causality, CNPMR(Xi → Y), can be estimated as:

CNPMR(Xi → Y) = log

(

σ 2
(Y,Ỹ)

σ 2
(Y,(Ỹ,Xi))

)

(5)

where σ 2
(Y,Ỹ)

and σ 2
(Y,(Ỹ,X̃i))

are the error variances when past

values of Y or past values of both Y and Xi are used in the
prediction of Y respectively. In the traditional Granger causal
sense this would correspond to the residuals from univariate and
bivariate autoregressive models and Equation (5) is equivalent to
pairwise causality estimation.

The methodology can readily be extended to conditional
causality estimation. The formal conditional definition of CNPMR

follows that of standard conditional Granger causality:

CNPMR(Xi → Y/Z) = log

(

σ 2
(Y,(Ỹ,Z))

σ 2
(Y,((Ỹ,X̃i,Z))

)

(6)

where Z is a matrix of all predictors we would like to include in
the conditional model, apart from Xi. Causalities in the opposite
direction are estimated by switching the response and predictor
variables. The above definitions of CNPMR are not bounded. This
means that it is also possible to obtain negative CNPMR values.
Negative values imply that the addition of past information from
other time-series results in worse model fit and, therefore, there
is no significant causal relationship between the time-series.

2.3. Sensitivity and Model Fit
The relative importance of particular predictors within an
NPMRmodel can be assessed with sensitivity analysis. Sensitivity
analysis involves the addition/subtraction of small noise to
individual predictors and measuring the resulting change in the
estimated response. The change in the response, ŷ+ and ŷ−, when
the predictor is nudged up or down respectively can be used to
estimate the sensitivity of the response, Y , to the jth predictor,
Q(Y/Xj):

Q(Y/Xj) =
∑T

i=1 |ŷ+i − ŷi| + |ŷ−i − ŷi|
2T|ymax − ymin|1

(7)

where ymax (ymin) are the maximum (minimum) values of the
response variable Y , ŷi is the target response estimated from
Equation (2), and 1 is an arbitrarily small proportion by which
the predictor will be nudged (0.05, i.e., a 5% change, is a
commonly used value and has been used throughout this study).
The notation Q(Y/Xj) and Q(Xj → Y) will also be used
interchangeably. A value of Q(.) = 0 means that nudging a
predictor has no detectable effect on the response; Q(.) = 1

means that, on average, nudging the predictor results in an
equal change in the response magnitude; larger values of Q(.)
correspond to higher sensitivity of the response to the particular
predictor. The sensitivity measure could potentially allow us to
identify underlying relationships in the analyzed time series that
are otherwise unavailable and inaccessible with other causality
estimators.

Supplementary Material Appendix 2 provides a numerical
example of estimating the sensitivity.

In addition to the sensitivity, the relative importance of a
predictor is also reflected in the overall model fit. NPMR models
do not have explicit parameters and, thus, formal criteria that
depend on the number of parameters in a model, such as the
Akaike Information Criterion and the Bayesian Information
Criterion, are not applicable. McCune (2011) recommends an
alternative procedure for assessing the model fit. For quantitative
variables, model quality can be evaluated via the “cross R2,”

xR2 = 1− RSS

TSS
= 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳi)2

(8)

where yi is the response variable, ŷi is the estimated response
variable and ȳi is the mean of the response variable. Equation 8
evaluates the model fit in terms of the residual sum-of-squares
(RSS) and its relationship to the total sum of squares (TSS).
These differ from traditional sum-of-squares measures as they
are obtained from estimates via cross-validation (Equation 2). An
xR2 value close to 1 denotes a good model fit, with quality of
model fit dropping as xR2 approaches 0. For very weak models
it is also possible to obtain negative xR2 values.

2.4. Estimator Performance Assessment
To investigate the behavior of the proposed estimator we use
artificially generated signals frommodels where the ground truth
is known. The models include linear and nonlinear causalities
(datasets 1–5). We also apply the estimator on two physiological
datasets: (i) cardiovascular interactions in sleep (dataset 6); the
particular dataset has also been analyzed in related studies, the
findings of which will form a basis for assessing the proposed
estimator, and (ii) brain connectivity changes during wakefulness
and anesthesia (dataset 7).

Statistical significance was assessed using surrogate data.
The concept of surrogate methods is to break up any existing
relationships in the data. There are various ways of achieving
this and the method of time-shifted surrogates was used here,
a surrogate data generation method that is appropriate for
assessing nonlinear relationships (Quiroga et al., 2002). In order
to generate a surrogate predictor variable the original predictor
variable is shifted by T samples, where T is randomly chosen
to be larger than approximately 1/3 of the predictor variable
length. The number of surrogate signals necessary for a particular
significance level can be estimated via S = 1

α
− 1, where α is

the desired statistical level. For example, for a 95% significance
level (i.e., α = 0.05), 19 surrogate signals must be generated.
The estimator is then applied to each pair of surrogate signals
and the significance level is obtained as the maximum value of
all S surrogate estimates. This acts as a threshold: if the real
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causality estimate exceeds this threshold, then this is considered
as statistically significant. Regarding the sensitivity, only those
values corresponding to significant CNPMR are considered. Thus,
there is no need to perform separate significance testing for the
sensitivity. In addition, any negative CNPMR values are rounded
up to zero, since negative values are indicative of better univariate
than bi/multi-variate model fit.

For all CNPMR estimations we utilized a Gaussian kernel with
tolerance σj = 1 for all predictors j = 1, ...,m, time delay τ = 1
and embedding dimension d = 3 (in this study we did not use
the xR2 measure to assess the model fit for different embedding
dimensions; more details on how xR2 could be used, as well
as on the choice of the tolerance and embedding parameters
are given in the Discussion). For comparison purposes, we
also estimated the (i) pairwise and conditional linear GC
(conditional GC was estimated using the Granger causality
estimation toolbox by Luo et al. (2013b), available online
from http://www.dcs.warwick.ac.uk/~feng/causality.html); and
the (ii) Kernel Granger causality (code available online from D.
Marinazzo at http://users.ugent.be/~dmarinaz/KGC.html). For
linear GC significance was assessed using the F-test (usual
method of assessing significance of GC values). For K-GC
significance is inherent in the methodology (only significant
correlations are taken into account in the estimation of the K-
GC value) and, therefore, no additional statistical method is
used. Datasets were not normalized (z-transform) unless stated
otherwise.

3. RESULTS

3.1. Artificial Data
3.1.1. Dataset 1: Unidirectional Non-Linear Model
As a proof of principle, the estimator was initially applied on a
simple model of two non-linearly interacting systems:

x1(t) = 0.8x1(t − 1)+ 0.65x2(t − 1)2 + e1(t)
x2(t) = 0.6x2(t − 1)+ e2(t)

(9)

where ei (i = 1, 2) is normally distributed random noise. The
model represents the unidirectional nonlinear causal effect x2 →
x1. We generated 50 different realizations of 1000 samples from
this model and estimated CNPMR(x1 ↔ x2) for each of the
different realizations.

The mean causality (standard deviation) was only significant
in the direction x2 → x1, with CNPMR(x2 → x1) = 0.357 (0.111),
while CNPMR(x1 → x2) = −0.003 (0.013). For comparison
purposes the corresponding Kernel-Granger causality values
were: K-GC(x1 → x2) ∼ 0 (0.002) and K-GC(x2 → x1) = 0.620
(0.026). Linear GC identified neglibible causality in the correct
direction: GC(x1 → x2) = 0.003 (0.006) and GC(x2 → x1) =
0 (0).

We also introduce here how the sensitivity, Q, of the NPMR
model, could provide information about the underlying structure
of the interaction x2 → x1. From the sensitivity Q(x1/x2) we can
deduce that the relationship between the two variables is mainly
mediated by x2(t − 1):

1. Q(x1(t)/x2(t − 1)) = 0.1095

2. Q(x1(t)/x2(t − 2)) = 0.0429
3. Q(x1(t)/x2(t − 3)) = 0.0289

3.1.2. Dataset 2: Multivariate Model
The following multivariate model (Figure 1A) has both direct
(x1 → x2, x2 → x3) and indirect (x1 → x3) causal effects
(Gourévich et al., 2006):

x1(t) = 0.95
√
2x1(t − 1)− 0.9025x1(t − 2)+ e1(t)

x2(t) = −0.5x1(t − 1)+ e2(t)
x3(t) = 0.5x3(t − 1)− 0.5x2(t − 1)+ e3(t)

(10)

where ei(t), i = [1, 2, 3] is normal noise. A bivariate causality
estimator, whether this is linear or nonlinear, cannot distinguish
between direct and indirect connections. We expect this to also
be the case for the pairwise CNPMR estimator. We generated 50
different realizations of the model (each of 1000 sample length)
and obtained the mean significant causality over all realizations.

Figures 1B–D show the results from linear GC, K-GC and
CNPMR respectively. Connections with causality < 0.005 are not
shown, but all significant mean causality values are shown in
Supplementary Table 1. Models on the left column are from
pairwise/bivariate approach, while the equivalent models from
conditional/multivariate approaches are shown on the right
column. The indirect connection is incorrectly identified by all
pairwise methods (Figure 1, left column). An additional indirect
connection is identified by pairwise linear GC and K-GC (x3 →
x2), but not with pairwise CNPMR. All indirect connections vanish
or become negligible for the conditional/multivariate approaches
(Figure 1, right column).

The mean sensitivity values for the significant conditional
CNPMR connections are given below:

1. Q(x2/x1):

a. Q(x2(t)/x1(t − 1)) = 0.194
b. Q(x2(t)/x1(t − 2)) = 0.080
c. Q(x2(t)/x1(t − 3)) = 0.095

2. Q(x3/x2):

a. Q(x3(t)/x2(t − 1)) = 0.117
b. Q(x3(t)/x2(t − 2)) = 0.079
c. Q(x3(t)/x2(t − 3)) = 0.082

The sensitivity indicates that the relationships between x2 and x1,
and x3 and x2 aremainlymediated by the 1-sample lag predictors,
x1(t − 1) and x2(t − 1) respectively.

3.1.3. Dataset 3: Multivariate Mixed Coupling Model
This particular model (Figure 2A) has 3 interacting time series
with both linear and nonlinear causal effects, while the time series
themselves are also nonlinear (Gourévich et al., 2006):

x1(t) = 3.4x1(t − 1)
[

1− x21(t − 1)
]

e−x21(t−1) + 0.4e1(t) (11)

x2(t) = 3.4x2(t − 1)
[

1− x22(t − 1)
]

e−x22(t−1)

+0.5x1(t − 1)x2(t − 1)+ 0.4e2(t)
(12)
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FIGURE 1 | Dataset 2: (A) Underlying model. (B) Significant linear Granger

causality. (a) Model estimated from pairwise GC; and (b) Model estimated from

conditional GC. Pairwise GC identifies the indirect connection x1 → x3 as

significant but also indicates the connection x3 → x2 as significant. (C)

Kernel-Granger causality. (a) Bivariate and (b) Multivariate K-GC. For pairwise

K-GC we observe similar behavior as with linear GC. (D) Significant CNPMR
directions identified from (a) pairwise and (b) conditional method. A significant

connection from x1 → x3 is identified in the pairwise model. This indirect

connection correctly vanishes for the conditional model.

FIGURE 2 | Dataset 3. (A) Underlying model. Solid line: linear connection;

Dashed line: non-linear connection. (B) Linear Granger causality. (a) pairwise

GC; and (b) conditional GC. Unsurprisingly, only the linear connection x2 → x3
is identified. (C) Kernel-Granger causality. (a) bivariate K-GC; and (b)

multivariate K-GC. (D) Significant CNPMR models obtained from (a) pairwise

and (b) and conditional method. Both pairwise and conditional CNPMR
estimators identify all linear and nonlinear connections correctly.
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x3(t) = 3.4x3(t − 1)
[

1− x23(t − 1)
]

e−x23(t−1)

+0.3x2(t − 1)+ 0.5x21(t − 1)+ 0.4e3(t)
(13)

where ei(t), i = [1, 2, 3] is normal noise. Estimations of the mean
causalities were performed in a similar manner to previous ones.

Figure 2A shows the underlying model, while the models
estimated from pairwise and conditional linear GC, K-GC and
CNPMR are shown in Figures 2B–D respectively. Connections
with causality (< 0.005) are not shown, but all mean estimated
causality values can be found in Supplementary Table 2.
For CNPMR all connections, both linear and non-linear, are
correctly identified. Some negligible but statistically significant
connections are also identified. However, these vanish for
conditional CNPMR, with the exception of x3 → x1 (negligible).
For comparison purposes, the corresponding estimates for the
pairwise and conditional linear GC, as well as the bivariate
and multivariate K-GC estimates. As expected, linear GC only
identifies the linear connection x2 → x3, while K-GC also
identifies the nonlinear connections. Note that K-GC is estimated
with σ = 10, as for σ = 1 the estimated values were all 0
(even for normalized data). Negligible but statistically significant
(at the 0.05 level) causality is incorrectly identified by K-GC in
all directions (univariate and multivariate). Linear GC has only
identified the linear connections, as expected. Conditional GC
identifies all additional connections as significant, but negligible.

The sensitivity associated with the significant coupling of
CNPMR can be used to infer the underlying structure of the
coupling relationships:

1. Q(x2, x1):

a. Q(x2(t), x1(t − 1)) = 0.064
b. Q(x2(t), x1(t − 2)) = 0.030
c. Q(x2(t), x1(t − 3)) = 0.026

2. Q(x3, x1):

a. Q(x3(t), x1(t − 1)) = 0.068
b. Q(x3(t), x1(t − 2)) = 0.029
c. Q(x3(t), x1(t − 3)) = 0.025

3. Q(x3, x2):

a. Q(x3(t), x2(t − 1)) = 0.103
b. Q(x3(t), x2(t − 2)) = 0.035
c. Q(x3(t), x2(t − 3)) = 0.029

3.1.4. Dataset 4: Henon Maps with Variable Coupling

Strength
To study the effect of coupling strength, we apply CNPMR on
unidirectional, non-linearly coupled and non-identical Henon
maps with varying coupling strength (Faes et al., 2008a):

x(t) = 1.4− x(t − 1)2 + 0.3x(t − 2) (14)

y(t) = 1.4−
[

cx(t − 1)+ (1− c)y(t − 1)
]

y(t − 1)+ 0.1y(t − 2)
(15)

The system has a non-linear causal effect x → y, with the degree
of coupling controlled by the variable c. The specific parameter
values were chosen such that the Henon maps operate in a

chaotic regime (Faes et al., 2008a). We investigated the behavior
of the NPMR-based estimator for increasing coupling strength,
c = [0, 0.05, 0.1, 0.2, ..., 1.0]. For each coupling strength we
generated 20,000 samples from the Henon maps and performed
non-overlapping windowed estimation of CNPMR with window
length 750 samples. For comparison purposes we also estimated
the corresponding Granger causality (GC) and Kernel-Granger
causality. The autoregressive model order for the GC was
estimated as 6 using the Bayesian Information Criterion (BIC);
we used the same embedding dimension (i.e., dependence on past
samples) for theCNPMR estimation (as well as the Kernel-Granger
causality estimator).

Figure 3 shows the estimated CNPMR. While CNPMR(x → y) is
significant for all values of c > 0, CNPMR(y → x) also becomes
significant for c > 0.5 (but always remains below CNPMR(x →
y)). The NPMR-based estimator is able to correctly detect the
non-linear causal relationship from x to y for different coupling
strengths. This is in contrast to Granger causality (Figure 4). GC
detects the correct causal relationship only for c > 0.5. We
can deduce from this that GC may be able to detect non-linear
coupling when this is large. However, for weaker coupling (c <

0.5) linear pairwise GC actually indicates the existence of a causal
relationship in the opposite direction, i.e., from y to x. Kernel-
GC also captures the correct direction of interaction but with
increased variation in the amplitude of the estimates (Figure 4).

We also observe that CNPMR(y → x) increases for c > 0.5,
in contrast to K-GC. On a first assessment this may appear
incorrect, as there is no underlying driving in this direction.
However, this is related to the increased synchronization between
the two Henon maps and has also been reported by Krakovská
et al. (2015).

The sensitivity of the CNPMR estimator provides additional
information about the underlying structure of the causal
connections. Figure 5A shows the sensitivity of x on the past
of both x and y, i.e., Q(x/(x, y)) for values of coupling c =
[0, 0.05, 0.1, 0.2, ..., 1.0]. The sensitivity analysis indicates that
the predictors [x(t−1), x(t−2), x(t−3)] are the most important
factors in the fitting of x. For c > 0.6, the sensitivity of x to
the past of y, and particularly y(t − 1) is increasing. However,
x(t − 1) is the most sensitive predictor for all values of coupling.
This corresponds to the correct underlying coupling structure
between x and y. The corresponding sensitivityQ(y/(y, x)) can be
seen in Figure 5B. As the coupling increases, y starts becoming
more sensitive to the past of x. For coupling c > 0.5, the most
important predictor now becomes x(t − 1), while the past of x in
fitting of y becomes more important overall. For a full coupling at
c = 1, the predictors are ranked in terms of decreasing sensitivity
as follows: x(t−1) > y(t−1) > x(t−2) > y(t−2) > x(t−3) >

y(t − 3).

3.1.5. Dataset 5: Non-Linearity Via Imposing

Amplitude Limits
A particular type of nonlinearity that is problematic for Kernel
GC is the nonlinearity arising from restricting the time series
amplitude to lie within a predefined range. Specifically, the use
of a nonlinear kernel in K-GC for this particular application did
not lead to performance improvement with respect to the linear
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FIGURE 3 | CNPMR for Dataset 4 (true causal effect x → y) at coupling strengths C = [0,0.05,0.1,0.2, ..., 1.0]. CNPMR (x → y) is significant for all values of

coupling, c. CNPMR (y → x) is only significant for c > 0.5, but is always smaller than CNPMR (x → y).

kernel. Dataset 5 models this kind of nonlinearity by imposing
the limits [0,20] to the amplitude of signals generated using the
unidirectional nonlinear model of Equation (9). The limits are
imposed in the same manner as described in Marinazzo et al.
(2008a), i.e., via the ceiling and floor functions. We generated 100
realizations of this amplitude limited model, with 1000 samples
length. Figure 6 shows the performance of the two methods, (a)
K-GC and (b) CNPMR. Even though both methods identify the
correct direction of information flow (x2 → x1), K-GC shows
false positive causality in the opposite direction in numerous
occassions. This spurious causality is small, albeit significant. In
contrast, the same is not observed with CNPMR, which always
identifies the direction x1 → x2 as non significant. Looking at
the sensitivity of x1 to x2: (i) Q(x1(t)/x2(t − 1)) = 0.0763, (ii)
Q(x1(t)/x2(t−2)) = 0.0286, and (iii)Q(x1(t)/x2(t−3)) = 0.015.
This indicates that the relationship between the two variables is
mainly mediated by x2(t − 1).

3.2. Physiological Data
3.2.1. Dataset 6: Cardiovascular Interactions during

Sleep Apnea
The NPMR-based causality estimator was applied on the
cardiovascular sleep apnea Santa Fe time series competition
dataset (Rigney et al., 1993), available online from PhysioNet
(Goldberger et al., 2000). The dataset consists of two files,“b1.txt”
and “b2.txt,” that are sequential parts of a single dataset

containing approximately 2.4 h each of multivariate data
recorded during a sleep study from a patient at the Beth
Israel Deaconess Medical Center (Boston, Massachusetts), and
sampled at 2 Hz (original sampling rate was 250 Hz). The
dataset is a subset extracted from record slp60 of the MIT-
BIH Polysomnographic Database (Ichimaru and Moody, 1999)
and contains the following 3 parameters: heart rate (H), chest
volume (respiration force, R) and blood-oxygen concentration
(O). Under normal conditions respiration (R) has a causal
effect on the heart rate (H), i.e., R → H, through the
Respiratory Sinus Arrhythmia (RSA) process modulated mainly
via parasympathetic activity. The particular dataset is from
a patient suffering from sleep apnea, a breathing disorder
that affects the normal RSA interaction patterns and feedback
mechanisms between heart rate, breathing and blood oxygen
concentration, resulting in an unclear relationship between heart
rate and breathing. These underlying cardiovascular interaction
mechanisms make this dataset an interesting and popular test
dataset for causality estimators. It is also interesting for nonlinear
causality estimators in particular, as there are nonlinear effects
of respiration in the modulation of the heart rate during sleep,
which are unaffected by apnea (as opposed to linear effects that
are altered in apnea compared to healthy controls; Jo et al., 2007).

Related studies report significant bidirectional causal effects
of blood oxygen concentration on respiration and heart rate
(Verdes, 2005) and significant bidirectional causality (and
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FIGURE 4 | GC and K-GC for dataset 4 (true causal effect x → y) at coupling strengths c = [0,0.05,0.1,0.2, ..., 1.0]. K-GC identifies the correct direction of

interaction, similarly to CNPMR. GC(x → y) is correctly identified only for c > 0.5, while for smaller coupling strengths the opposite causal direction is incorrectly

identified.

transfer entropy) between heart rate and respiration (with H →
R > R → H) (Schreiber, 2000; Ancona et al., 2004). However, the
findings by Ancona et al. (2004), Schreiber (2000), andMarinazzo
et al. (2008b) were based on analysis of a 10-min segment from
the dataset “b2.txt” (samples 2350–3550). These findings are not
representative of the general interaction mechanisms, which vary
over time due to the nonstationary nature of the signals involved.
Only the analysis reported by Verdes (2005) has been conducted
in a windowed manner over the entire record; however, the size
of the window used was approximately 10-min (1230 samples),
which is unrealistic for physiological signals due to their non-
stationary nature.

To test the proposed estimator the two data files, “b1.txt” and
“b2.txt,” were concatenated and all three variables normalized
to zero mean and unit variance (due to the large differences in
heart rate amplitude compared to respiration and blood oxygen
concentration). The NMPR-based causality estimator was then
applied to the normalized data with embedding dimensions d =
[3, 4, 5] in non-overlapping windows of L = [100, 200, 500]
samples.

Figure 7A shows the estimated conditional CNPMR for d = 4
and L = 200. The causal effects identified were independent of
the particular combination of d and L values. A bidirectional
causal effect between respiration (R) and heart rate (H) can be
identified throughout the record. The interaction CNPMR(H →
R/O) is more prominent during the first half of the record and

is always smaller than CNPMR(R → H/O). Both respiration
and heart rate have a strong significant causal effect on blood
oxygenation (CNPMR(R → O/H) and CNPMR(H → O/R)).
However, this effect is not simultaneous and manifests itself
at different parts of the record. Our main findings (i) agree
with Verdes (2005): “respiration is a more decisive factor in
determining blood oxygen levels than is heart rate”; and (ii)
the physiological mechanism underlying respiration control of
heart rate is still present in apnea, as expected from Jo et al.
(2007). The NPMR-based estimator also indicates that the RSA,
even though prominent, is also somewhat disrupted by sleep
apnea, as the causal effect CNPMR(R → H/O) is not constant
throughout the record. This is in contrast to the estimates from
K-GC (Figure 7B) that do not correspond to any particularly
notable causal structure.

More information regarding the nature of these interactions
is revealed by the sensitivity. Figure 8 shows the sensitivity of the
significant multivariate predictions of heart rate, respiration and
blood oxygenation. The most interesting plots are the sensitivity
of the heart rate to respiration [plot (a)] and the sensitivity
of blood oxygenation to respiration [plot (f)]). These plots
also support the dynamic nature of the observed relationships
and show that the underlying structure is variable over time.
At particular points in time, the sensitivity indicates that the
relationship between respiration-heart rate and respiration-
blood oxygenation is determined by slower dynamics, i.e., time
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FIGURE 5 | (A) Sensitivity, Q(x/(x, y)) for dataset 4 (true causal effect x → y) at coupling strengths C = [0,0.05,0.1,0.2, ..., 1.0]. (B) Sensitivity, Q(y/(y, x)) for dataset 4

(true causal effect x → y) at coupling strengths C = [0,0.05,0.1,0.2, ..., 1.0]. The sensitivity analysis indicates an increasing effect of the past of x in the prediction of y.

lags 3 and 4 (windows 120–150). This verifies the presence of
slow dynamics in the nonlinear effects of respiration on heart,
as observed by Jo et al. (2007).

3.2.2. Dataset 7: EEG Data during Anesthesia
A widespread application of directionality measures is the
characterization of changes in brain connectivity during different
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FIGURE 6 | (A) Kernel Granger causality (K-GC), and (B) CNPMR for unidirectional nonlinear model (x2 → x1) with amplitude limited in the range [0,20]. K-GC shows

false causality in the opposite direction (x1 → x2) in numerous occassions. This is is contrast to CNPMR, which shows a consistent behavior throughout.

states. We investigate the behavior of the proposed estimator
on electroencephalogram (EEG) activity during the two states
of wakefulness and anesthesia. For this purpose we reanalyse a
small segment of EEG activity recorded from a volunteer during
surgery under general anesthesia. The particular study was
approved by the National Bioethics Committee of Cyprus and
the patients gave written informed consent for their participation.
A description of the full dataset can be found in previous work,
e.g., in Nicolaou et al. (2012) and Nicolaou and Georgiou (2014).
The specific application is particularly challenging as different
connectivity changes during anesthesia are identified depending
on which connectivity measure is applied. Causality measures
indicate significant increase in interactions during anesthesia,
particularly in the fronto-posterior direction (Barrett et al., 2012;
Nicolaou et al., 2012). This is in contrast to other methods,
which indicate an anesthetic-related decrease in the strength
of interactions (Hudetz, 2008; Lee et al., 2009; Ku et al., 2011;
Schrouff et al., 2011). An explanation for this discrepancy is yet
to be found.

The connectivity changes during wakefulness and propofol
anesthesia were investigated using CNPMR (for comparison
purposes Kernel GC was also investigated). The analysis
procedure was similar as to that described in Nicolaou and
colleagues (please see Nicolaou et al., 2012 for more details).
Firstly, the aggregate (average) EEG activity over five predefined
areas was obtained as the mean activity over the following
areas: left frontal (LF: electrodes Fp1, F7, F3, T3, C3), right

frontal (RF: Fp2, F8, F4, C4, T4), left posterior (LP: T5,
P3, O1), right posterior (RP: T6, P4, O2), and midline
(Z: Fz, Cz, Pz). Secondly, EEG activity corresponding to
wakefulness (pre-induction and post-recovery of consciousness)
and anesthesia (a 5-minute segment of steady-state and artifact-
free EEG activity) was extracted from the continuous record.
The two connectivity methods were applied to non-overlapping
windows of normalized data (z-score), with window duration
5-s (sampling frequency 256 Hz), and the median CNPMR and
K−GC values for wakefulness and anesthesia were estimated. The
embedding dimension was set to d = 6; this was chosen based on
previous work, where a 6th order AR model was used (Nicolaou
et al., 2012). For CNPMR we used σ = 1; however, for K − GC
σ = 10 was used, as the estimator did not perform consistently
for smaller σ values.

Figure 9 shows the resulting differences in median
connectivity values between the five aggregate areas for K-
GC (left) and CNPMR (right). For visualization purposes the
strongest connectivity changes are shown (K − GC > |0.01|
and CNPMR > |0.1|). Solid (dashed) lines indicate an increase
(decrease) of connectivity strength during anesthesia compared
to wakefulness. CNPMR shows a unidirectional reduction of
connectivity from posterior to frontal areas, which is consistent
with the literature and findings from other methods. K-GC
indicates bidirectional connectivity changes, which is not
fully consistent with the literature, while the connectivity
strength is almost negligible. An interesting observation
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FIGURE 7 | (A) Significant conditional CNPMR estimates for respiration-heart rate (top), blood oxygenation-heart rate (middle) and blood oxygenation-respiration

(bottom). The vertical lines around window 100 indicate the 10-min segment analyzed in other studies (see text for details). A strong effect from respiration to heart

rate and blood oxygenation is identified. A stronger, but less constant effect from heart rate to blood oxygenation is also identified. (B) K-GC estimates, similar as

above. It is difficult to identify any particular effect.

is that while the findings of CNPMR agree with findings
from other methods reported in the literature, they are
contradictory to those from linear GC. Recalling similar
contradictory observations from Henon maps with variable
coupling strength (dataset 4), one possible explanation is the
existence of weak nonlinear relationships in the brain network

that result in linear GC indicating an opposite direction of
causality.

Figure 10 shows the mean sensitivity for all multivariate
predictions during wakefulness and anesthesia. A general
increase of sensitivity is associated with the anesthetic state.
This increase is more prominent for lags 1–2 and 5–6, and
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FIGURE 8 | Significant sensitivity for all possible interactions between heart rate (H), respiration (R) and blood oxygenation (O). (A) Sensitivity of heart

rate to respiration and vice versa (B). (C) Sensitivity of heart rate to blood oxygenation and vice versa (D). (E) Sensitivity of respiration to blood oxygenation and vice

versa (F). The plots indicate a stronger sensitivity of both blood oxygenation and heart rate to values of respiration that are not in the immediate past e.g., time delays

3 and 4.

FIGURE 9 | Changes in connectivity strength between 5 aggregate EEG brain areas from one patient during propofol anesthesia compared to

wakefulness for (A) K-GC and (B) CNPMR. Solid (dashed) lines indicate decrease (increase) of connectivity strength during anesthesia compared to wakefulness.

Analysis parameters: (i) embedding dimension d = 6, (ii) window length L = 1280 samples (5-seconds), (iii) σ : 1 (CNPMR) and 10 (K-GC). Both methods indicate a

reduction in fronto-posterior connectivity strength, with K-GC indicating more bi-directional changes. CNPMR is more consistent with literature and findings from other

methods, whereby a reduction in unidirectional connectivity strength from posterior to frontal areas is identified.
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FIGURE 10 | Sensitivity of prediction between the five EEG aggregate areas during wakefulness and anesthesia. Sensitivity from all other areas to: (A) Left

Frontal (LF). (B) Right Frontal (RF). (C) Left Posterior (LP). (D) Right Posterior (RP). (E) Midline (Z).

between posterior, posterior-midline and ipsilateral posterior-
frontal areas. The sensitivity indicates that during anesthesia the
response variable is more sensitive to changes in the immediate
past, but is also influenced by changes that are even further
in the past. Therefore, the underlying models of interaction
are more complex than a simple 1st order relationship and
the entire system is more sensitive to slow dynamics during
anesthesia. A full physiological interpretation of the information
obtained from sensitivity could be obtained by combining this
with existing models of EEG generation during wakefulness and
anesthesia (e.g., the models by Steyn-Ross et al., 2004 and Bojak
and Liley, 2005), and seeing how the sensitivity ties in with, or
differs from, these models.

4. DISCUSSION

Our results support that the use of Nonparametric Multiplicative
Regression (NPMR) is appropriate for causality estimation and
estimates of pairwise or multivariate causality can be obtained
directly and without any modification of the method. CNPMR

captures the true linear and nonlinear relationships in artificially
generated time series, as well as connectivity changes in two
physiological datasets (cardiovascular interaction during sleep
apnea, and brain interaction during wakefulness and anesthesia).
The proposed method works well for a diverse set of problems.
This versatility is partly due to the non-parametric nature of
the method, but also due to the property of NPMR to detect

(in theory) any function that is a smooth mapping between a
response variable and a set of predictors, without any restriction
in terms of its form (McCune, 2011); some examples of the
surfaces that can be captured by NPMR can be found in Lintz
et al. (2011). This inherent property of NPMR could also be
considered as a limitation, however, as NPMR cannot accurately
describe surfaces that have discontinuities or cusps. Another
factor behind the versatility of the proposed method is the use of
phase space reconstruction frommultiple observed time series as
a means of incorporating past information in the prediction: the
dynamics of the entire system can be studied simply by studying
the dynamics of the phase space (embedded time series). As long
as an appropriate embedding dimension is used, then the phase
space reconstruction can uncover structure from what appears
to be random time series data of single predictor variables,
leading to the formation of more accurate models of real-
world dynamics. It is also possible to use different embedding
dimensions for each predictor, depending on the individual
predictor dynamics. In conjunction to this, the influence of each
individual predictor can be controlled via the tolerance of the
distance function. The investigations performed in this study
used the same tolerance value for all predictors (σ = 1) as
a proof-of-principle. It is, however, advisable that the tolerance
is optimized for each individual predictor. This could mean
placing more/less importance on samples that are nearer/further
in the past. The ability to perform such fine tuning of how past
information is used in the prediction is an additional factor of
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creatingmore accuratemodels. Regarding the use of the Gaussian
distance function, a limitation of it is that a zero weight can be
obtained for signals that have large amplitude. This results in non
arithmetic estimates, which affect both the CNPMR and sensitivity
values. In these cases it is advisable to first normalize the
signals.

4.1. Related Methods
The nonparametric multiplicative regression that replaces
AR modeling has some similarities to other nonparametric
techniques that use smoothing functions, such as Radial Basis
Functions (RBFs) - when a Gaussian weight is used in NPMR -
and General Additive Models (GAMs). NPMR is in fact a special
case of a GAM (Schulz and Childers, 2011), with the main
difference lying in the way individual factors are combined.
In GAMs, individual factors are combined additively, while in
NPMR the response is modeled multiplicatively, i.e., in a way
that allows for the effect of each variable to depend on the value
of another variable (Potapova and Winter, 2006). Considering
RBFs, the difference is somewhat less intuitive. At a first glance,
the product of the NPMR weights (Section 2.1, Equation 3)
reduces to a single exponential, with the sum of Euclidean
distances in the exponent. This is similar to RBF network nodes
and this simplification of the multiplicative weights only occurs
when a Gaussian kernel is used. It is not necessary that the
conversion of an exponential function to an additive function is
performed in NPMR, as another weighting function that is not
exponential can be used. However, in an RBF setting the response
variable is estimated as the sum of the weighted distances of each
predictor from the response variable (or, more commonly, from
a representative cluster center), where the weights have to be
estimated via some training procedure. In contrast, in NPMR
the distances are the actual weights and these are combined
multiplicatively to determine the influence of each point of the
time series in the prediction.

Another related technique is Kernel-Granger Causality (K-
GC). However, the proposed method is not equivalent to K-GC,
as is also evident from the differences in their behavior. The
two methods are distinct and any similarity between them only
arises from the use of the same kernel function, for example
when a Gaussian kernel is used in both methods. The main
difference is that K-GC transforms the data in the feature space
of suitable kernel functions where linear Granger causality is then
performed via regression. In CNPMR, however, the data is not
transformed into a kernel feature space and linear regression is
not performed. Kernel functions are simply used as a means of
estimating the influence, i.e., the weight, of the predictor points in
the estimation of a target point. The proposed method is purely
data driven and the estimated global model does not have any
particular form. The relationship between K-GC and its linear
regression basis is also evident from the fact that K-GC is more
affected by bandpass filtering (Figure 11), just like all regression-
based causality methods (Florin et al., 2010). On the contrary,
CNPMR is not affected by filtering, and this could also be used
as the basis for estimating frequency domain causality. Another
difference is that CNPMR can take into account new data points
as these become available, without having to re-calibrate the

method. This is not possible with K-GC (and in fact with the
majority of available causality estimators), as re-estimation of the
cluster centers would be required for every new data point.

4.2. Additional Considerations
1. Choice of kernel tolerance. The kernel tolerance in NPMR is

equivalent to the smoothing parameter or bandwidth in a
general statistical sense. One of the advantages of NPMR is
that it allows predictors to have a separate tolerance and, thus,
importance in the subsequent prediction. The weight given
to a particular observation is related to its distance from the
target and this relationship is defined by the chosen kernel. A
Gaussian kernel centered at the target point provides a simple
and flexible way of defining this distance-based weight, with
the tolerance (standard deviation, σ ) defining how rapidly
the weights dimish with distance from the target (McCune,
2011). The kernel tolerance is a parameter that should be
optimized for the particular application and for different
predictors and this can be achieved through free search or
tuning (McCune, 2011). Since the focus of the particular
study is to provide a proof-of-principle for NPMR-based
causality estimation, we did not optimize the kernel tolerance
for the datasets or predictors individually. However, we
perform some preliminary investigation of how the tolerance
may affect the estimated causality. Supplementary Figure 1
shows an example from causality estimation for Henon maps
(dataset 4) for different values of σ . Estimates obtained with
smaller values of σ exhibit larger variance; however, the
patterns of estimated causality agree with the ground truth for
all tolerances investigated. Despite this, optimization of the
tolerance is recommended and doing so based on the data
characteristics and without resorting to free search remains
the subject of future work.

2. Embedding delay and dimension. A number of methods
have been proposed in the literature for estimating an
appropriate time delay and embedding dimension. The time
delay can be estimated as the first minimum of the mutual
information (Fraser and Swinney, 1986) or the time when
the autocorrelation function approaches 1/e. More emphasis
is given on the embedding dimension (e.g., Kennel et al.,
1992; Cao, 1997). More information regarding the various
estimation techniques and their practical application can
be found in Galka (2000). Any of these methods could be
used to select the appropriate delay/embedding dimension
for the individual predictors; however, the method by Cao is
the most popular for embedding dimension estimation. To
see how CNPMR could be affected by over/under-estimation
of the embedding dimension we performed preliminary
investigations with Henon maps (dataset 4) and estimated
causality while varying the embedding dimension d =
1, 2, 3, 4, 6, 8. Supplementary Figure 2 shows the estimated
causality for the generated Henon maps. Our initial findings
indicate that larger embedding dimension may lead to smaller
amplitude. Even though the choice of embedding dimension
does not seem to affect the pattern of causality, the appropriate
embedding dimension should first be estimated and used in
subsequent analysis.
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FIGURE 11 | Bandpass filtering as a means of estimating spectral causality. (A) Spectral GC estimated from Geweke’s method for data x1 and x2 from

dataset 3. (B) Kernel-GC and (C) CNPMR estimated from bandpass filtered data. Even though some smearing is observed, bandpass filtering could be used to obtain

spectral causality from CNPMR, but not from K-GC.

3. Frequency domain causality and filtering. The use of bandpass
filtering as a means of estimating spectral causality is not
suitable for AR-based GC methods, as filtering modifies
the smoothness of the data, resulting in large increase in
the required model and incorrect results (Florin et al.,
2010). Spectral causality is, thus, obtained via a method
proposed by Geweke, which is similar to performing a
Fourier transform of the estimated autoregressive coefficients
at specified frequencies, with frequency resolution specified
by the model order (more information on frequency domain
causality can be found in Cohen, 2014). Since NPMR does not
have specific model parameters, Geweke’s approach cannot
be applied here. However, the lack of parameters is also an
advantage in this respect as it might be possible to both
apply filtering without affecting the underlying causality and
obtaining a spectral representation of causality by bandpass
filtering the data and applying CNPMR to the filtered data. This
would be an important advantage of CNPMR. Even though the
focus of this study is to introduce the use of NPMR-based
modeling for causality estimation, we perform a preliminary
investigation of whether bandpass filtering could be used as
a means of obtaining spectral causality without distorting the
underlying relationships. We generate a random realization of
variables x1 and x2 from Dataset 3 (underlying relationship:
x1 → x2) with sampling frequency fs = 100 Hz and
length 1000 samples. We estimated the spectral GC using the
Matlab R© function “pwcausal” from the BSMART toolbox (Cui
et al., 2008). This revealed that the effect x1 → x2 occurs at
approximately 10-18 Hz (Figure 11A). We then bandpass the
signals with an FIR filter (Matlab R© function “fir1,” filter order
50, Hamming window) and estimate the significant causality
using CNPMR and K-GC, at the frequency range 1–40 Hz (with
0.5 Hz resolution and bandpass bandwidth 5 Hz). Figure 11
shows the estimated causality for the bandpass filtered signals
with (b) K-GC and (c) CNPMR. Despite some smearing, which
could also be due to the 0.5 Hz filter resolution, and some
significant causality in the opposite direction (x2 → x1),

CNPMR captures the underlying causal relationship x1 → x2 at
the expected frequency range. This supports the feasibility of
using bandpass filtering with CNPMR as a means of estimating
causality in the frequency domain. On the contrary, this is not
possible with K-GC (Figure 11B); this is expected as K-GC
is still based on regression in the kernel space and would be
affected by filtering. Even though these are only preliminary
findings, they are highly encouraging.

4. Multi-trial data. It is common in neuroscience applications
that data from multiple trials are available for analysis. To
estimate causality of multi-trial data one can either fit a
model on data from each trial independently and obtain
an average measure of causality or concatenate the multi-
trial data and fit a single model. Neither approach is ideal;
the former involves fitting a large number of models, thus
increasing computational cost, while the latter will likely lead
to data that breaks the stationarity assumption (essential
for the majority of causality methods) while also increasing
computational complexity (due to the very large size of
the concatenated data). These are general problems that
also apply to the proposed estimator, with the exception of
non-stationarity as CNPMR does not require the data to be
stationary. Even though how to best deal with multi-trial
data using CNPMR is not within the scope of this study, we
conducted some preliminary investigations. We generate 15
trials from Dataset 1 (nonlinear causality from x2 → x1), each
of length 1000 samples. As a compromise between model fit
and computational complexity, we repeat the concatenation
process B = 10 times using a randomly chosen subset
of Ntr trials each time, estimate the NPMR model and
obtain the average causality (concatenated causality). We
also applied a model to each of the 15 trials independently
and obtained the mean causality over all trials (multi-trial
causality). For comparison purposes we also applied Kernel-
GC in a similar manner. For both methods we used an
embedding dimension d = 3 and tolerance σ = 1. Figure 12
shows the results for Ntr = [2, 5, 8]. For both methods
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FIGURE 12 | (A) Mean (and standard deviation) of multi-trial causality for CNPMR and K-GC as a function of the number of concatenated trials. Results averaged over

10 repetitions with randomly chosen concatenated trials. Horizontal lines show the mean causality when a model is fit to each trial independently. (B) The

corresponding mean (and standard deviation) of elapsed time (in seconds). CNPMR is more computationally efficient than K-GC for larger sample sizes.

the concatenated causality corresponded to the true causal
direction; however, causality was inflated when compared
to the averaged multi-trial causality. The inflation increased
when more trials were concatenated. The run time (for CNPMR

this also includes the time to perform surrogate analysis),
measured using the Matlab R© functions tic and toc, is also
shown in Figure 12. As expected, run time increases when
more trials are concatenated, with CNPMR being substantially
more computationally efficient than Kernel-GC, particularly
for larger sample sizes. We also note here that a multi-
trial implementation of K-GC, where trial concatenation is
performed as part of the implementation, is also available
in the K-GC toolbox. The results from this multi-trial
implementation were similar.

5. Signal-dependent noise model. The main class of artificial
models used in causality-related investigations assume time
invariant covariance structure and normally distributed
noise that is independent of the signal. Recently, Luo
and colleagues proposed a signal-dependent noise causality
model and a likelihood ratio test for causal inference (Luo
et al., 2013a). This type of signal-dependent noise can
be found in some physiological time series, e.g., fMRI
BOLD time series. Causality algorithms fail to capture any
causal relationships arising from such signal-driven noise
interactions and this was an interesting test for CNPMR. We
performed preliminary investigations using the first-order

Autoregressive Baba-Engle-Kraft-Kroner (AR-BEKK) model
for two univariate time series described in Luo et al.
(2013a) (see Supplementary Material Appendix 3 for the
mathematical description of the model). In this model one
can control for the presence of signal-dependent noise
causal influence through a set of parameters associated with
the model variance. We generated 100 realizations (length
1000 samples) of this model by adapting the function
arma_bekk_simulate.m from the Granger causality estimation
toolbox by Luo et al. (2013b), 50 with causal influence
yt → xt and 50 with causal influence xt → yt , and
estimated CNPMR (parameters: σj = 1, d = 3) and K-GC
(parameters: Gaussian kernel with radius 1, model order 3).
Our preliminary investigations indicate that neither method
was able to consistently recover the correct causal structure,
with K-GC also showing significant causal influences in
the opposite directions. However, we cannot conclude with
certainty that CNPMR is unsuitable for such signals. It
is possible that CNPMR performance could be improved
after optimizing for the tolerance, embedding and delay
parameters.

4.3. Guidelines for Application to Real Data
Below are some general guidelines for the application of CNPMR

to neuroscience data:
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1. Normalization. Normalization is usually good practice and is
necessary when the different time series have large differences
in amplitude. Even though it was not necessary to normalize
the artificial data, we did normalize (z-score) the physiological
data and we do recommend this as good practice.

2. Filtering. It is generally a good approach to apply a high-pass
filter, with high pass between 0.1 and 0.5 Hz, to minimize
any slow drifts. A notch filter at 50 Hz (or 60 Hz) is also
recommended to attenuate electrical noise. Since CNPMR does
not appear to be as susceptible to filtering as other causality
methods, such filtering is recommended and it may be possible
to use bandpass filtering as a means of estimating causality in
the frequency domain. High-pass filtering should be applied to
continuous data prior to any segmentation, to avoid window
edge artifacts that could affect the accuracy of the connectivity
analysis.

3. Window size. The amount of data in a segment is a
general concern of windowed connectivity analysis, with both
advantages and disadvantages of shorter and longer windows
(Cohen, 2014). Longer windows give estimates that are more
stable, but they may be non-stationary and it may be more
difficult to isolate task-related connectivity; particularly, when
connectivity occurs at a time frame that is much shorter than
the window length it is possible that this is not detected due to
averaging with a much longer task-unrelated segment. On the
other hand, shorter windows are more likely to be stationary
and more sensitive to transient events, but the fitted model
may not be as accurate. As NPMR is a non-parametric data-
driven method, it is less affected by issues of stationarity
and model parameter estimation, and the most important
consideration is to use enough data such that the task-related
dynamics are captured. However, as the window size increases,
so does the computational cost. In neuroscience applications
window length varies from∼ 100 ms to a few seconds, and we
recommend that a similar window size is also used for CNPMR.

4. Time delay embedding parameters. In terms of the individual
predictors, the choice of embedding dimension affects the
amplitude of the estimated causality, but not the pattern of
underlying causal relationships. Despite this, we recommend
that the appropriate embedding parameters are estimated
using any of the methods proposed in the literature. Using an
appropriate time delay would also allow longer dynamics to
be taken into account in the prediction of the current sample.
In terms of the NPMR model as a whole, McCune (2011)
recommends a procedure for assessing the model fit via the

“cross R2” (Equation 8). The model fit could be assessed while
new predictors (i.e., more embedding dimensions) are added
and a threshold in model fit improvement could be used to
determine whether inclusion of the additional predictor is
worthwhile.

5. Number of sensors. The complexity imposed by the number of
sensors is a general problem for multivariate methods, and the
proposed method is no exception. A potential solution could
be to apply a dimensionality reduction method first, such as
Principal Component Analysis, and then apply the method to
the reduced sensor space.

5. CONCLUSIONS

We present a nonparametric estimator of causality, CNPMR,
that uses Nonparametric Multiplicative Regression (NPMR).
The main NPMR technique, which was first introduced for
habitat modeling, was modified such that past information of
the time series is included in the modeling. The method has
been demonstrated on artificial data with linear and nonlinear
causal relationships, as well as on physiological data. CNPMR

addresses many of the limitations associated with linear Granger
causality, as well as other nonlinear causality estimators proposed
in the literature. Its nonpametric nature and its ability to capture
nonlinear relationships make it appealing for a number of
applications.
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