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Frequency and Neurophysiological
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Luz Maria Alonso-Valerdi*

Escuela de Ingenieria y Ciencias, Tecnoldgico de Monterrey, Mexico City, Mexico

A brain-computer interface (BCI) aims to establish communication between the human
brain and a computing system so as to enable the interaction between an individual
and his environment without using the brain output pathways. Individuals control a BCI
system by modulating their brain signals through mental tasks (e.g., motor imagery
or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users
modulate their brain signals at different frequencies and at different levels, the appropriate
characterization of those signals is necessary. The modulation of brain signals through
mental tasks is furthermore a skill that requires training. Unfortunately, not all the users
acquire such skill. A practical solution to this problem is to assess the user probability
of controlling a BCI system. Another possible solution is to set the bandwidth of the
brain oscillations, which is highly sensitive to the users’ age, sex and anatomy. With
this in mind, Neurolndex, a Python executable script, estimates a neurophysiological
prediction index and the individual alpha frequency (IAF) of the user in question. These
two parameters are useful to characterize the user EEG signals, and decide how to go
through the complex process of adapting the human brain and the computing system on
the basis of previously proposed methods. NeurolndeX is not only the implementation
of those methods, but it also complements the methods each other and provides an
alternative way to obtain the prediction parameter. However, an important limitation of this
application is its dependency on the IAF value, and some results should be interpreted
with caution. The script along with some electroencephalographic datasets are available
on a GitHub repository in order to corroborate the functionality and usability of this
application.

Keywords: brain-computer interface (BCI), motor imagery, individual alpha frequency, neurophysiological
predictor, BCl illiteracy, electroencephalographic signals
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INTRODUCTION

A brain-computer interface (BCI) is a system that attempts
to establish communication between the human brain and a
computing system, in order to achieve interaction between an
individual and his environment without using the brain output
pathways (nerves and muscles). At the initial stages of BCI
development, the systems were designed for people suffering
from severe neuromuscular deficits provoked by disorders such
as multiple sclerosis, or spinal cord injuries. Recently, the interest
in BCI research has grown exponentially and current applications
include entertainment, rehabilitation, diagnosis, treatment, and
intelligent housing systems (Hassanien and Azar, 2014).

A BCI system essentially functions as follows. Firstly, the
brain signals are sensed, amplified and processed. Such signals
are typically recorded using electroencephalography (EEG), a
non-invasive method that measures the electrical activity of the
cerebral cortex. Secondly, the system seeks and extracts useful
electrophysiological features of the EEG signals, which reflect
the user desires of controlling the system. Finally, the system
associates the meaningful EEG features with specific control
commands of a target device (Lotte and Jeunet, 2015). Note that
the user is notified about the system status at any time. See
Figure 1.

The electrophysiological neuro-mechanisms employed
to establish brain-computer communication generally fall
into three broad categories: endogenous, exogenous, and
combination thereof. The endogenous mechanism depends
on the quantification of brain oscillations that are modulated
through specific mental tasks, including motor imagery
(MI), mental calculation, or association of imaginary words.
The exogenous mechanism is based on the detection of
evoked potentials, resulting from auditory, visual, or tactile
stimuli (Bashashati et al., 2007; Fatourechi et al., 2007). Both
mechanisms are referred to as control task. One commonly used
control task is MI, which refers to the kinaesthetic imagination
of a part of the body that is usually a hand, a foot or the tongue.
Imaginary movements synchronize and desynchronize the

neural activity of the sensory-motor cortex, almost at the same
extend as actual movements. The neural de-synchronization
events that characterize MI activity are alpha (*8-12 Hz) and
beta (*16-24 Hz) band desynchronization, locally restricted
to the contralateral sensory-motor cortex (Neuper et al., 2006;
Szurhaj and Derambure, 2006; Farina et al., 2013).

The modulation of the EEG signals through MI related control
tasks is a skill that must be acquired, what means that users
need to be trained. Users modulate their EEG signals at different
frequencies and different levels due to training duration, aptitude,
age, sex, and anatomy. Some users are unfortunately unable to
modulate their EEG signals, even after training (Blankertz et al.,
2010). The characterization of the user brain signals, and the
anticipation of the user aptitude to control a MI based BCI, can be
two feasible solutions to achieve brain-computer communication
by means of MI related control tasks.

So far, some neurophysiological methods have been proposed
to adjust the bandwidth of the brain oscillations according to
the nature of the user EEG signals, and some others have been
suggested to predict the user performance (Grosse-Wentrup and
Scholkopf, 2012; Hammer et al., 2012; Zhang et al., 2015). As far
as I know, no implementations of those methods are available yet.
On this basis, a Python executable script called NeuroIndex was
programmed with two main objectives:

(1) To find the particular frequency oscillation of the sensory-
motor rhythms of every user according to the individual
alpha frequency (IAF) parameter, and thus preventing
anatomic, age, and gender conflicts.

(2) To estimate a neurophysiological indicator based on the
previously adjusted sensory-motor rhythms, which could
predict the user aptitude for modulating the EEG signals by
using MI related control tasks.

As was aforementioned, NeuroIndex is an executable script
written in Python programming language. The script was built
on top of Numpy and Scipy (Van Der Walt et al, 2011), in
addition to Matplotlib (Hunter, 2007), a plotting library, and Imfit
(Newville and Stensitzki, 2015), a curve fitting library. By double-
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FIGURE 1 | General structure of EEG-based BCI systems. In these systems, internal (such as other electrophysiological activity) and external (such as the line
source) artifacts are first rejected. Then, the user desires are decoded by extracting signal features that can reflect the control tasks in use. Finally, such features are
related to the control commands of the device of interest. Note that the user is notified about the system status at any time.
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clicking the script, a command prompt window will be opened
and three items of information must be provided: (1) sample rate
at which EEG signals were recorded, (2) a text file (or mat-file)
containing an EEG recording in eyes-open (EO) condition for
3 min, and (3) a text file containing an EEG recoding in eyes-
close (EC) condition for 3 min. Note that the default EEG layout
corresponds to the 10/10 system with 64 channels enumerated
according to the BIOSEMI Company'. Once the program is run,
two figures will be created in the same folder in which text
files are localized: one corresponding to the IAF, and the other
corresponding to the neurophysiological predictor.

SOFTWARE DESCRIPTION

As was introduced in the previous section, one of the major
drawbacks of BCI technology is the considerable variation
intra- and inter-subject. Therefore, several methods have
been proposed in order to personalize a BCI system, and
thus minimizing subject variance effects. NeuroIndeX is an
application that determines the IAF and a neurophysiological
indicator. The IAF is a parameter utilized to tune the
frequency oscillation of the sensory-motor rhythms, and the
neurophysiological indicator is a prediction index that quantifies
the user aptitude for controlling a MI based BCI. The procedure
adopted for determining these two parameters is fully described
below.

To obtain the IAF, NeuroIndex follows the method proposed
by Posthuma et al. (2001) and two 3-min-long EEG recordings
in EC and EO conditions are necessary. The IAF is obtained
from two occipital channels (Ol and O2), wherefrom the
power spectral density (PSD) is estimated by applying the
Welch’s method, and using 4-s-long epochs (Figure 2). Once
NeurolIndex has determined the IAF, this value can be used to
define two narrow alpha bandwidths in the following way: from
{TAF—2} to {IAF}, and from {IAF} to {IAF+2}. Klimesch (1999)
recommended the individualization of the alpha band frequency

Uhttp://www.biosemi.com/headcap.htm.

around IAF and within narrow bands of around 2 Hz, since alpha
band changes in accordance with the mental state, age and gender
of the individual in question. As a result, the frequency oscillation
of the alpha rhythms is set to the user signal features, instead of
making use of the usually preset frequency bands.

To estimate the neurophysiological predictor, NeuroIndex
makes use of the method proposed by Blankertz et al. (2010). The
method requires a 2-min-long EEG recording in EO condition.
The general procedure consists in calculating the PSD of two
central recording sites: C3 and C4. Thereafter, both PSDs are
fitted through a mathematical model based on a constant, a
power law function and two probability density functions: one
concerning the alpha band peak, and another one concerning the
beta band peak (Equation 1). Once an optimal model has been
obtained, the prediction index is calculated by the maximum
difference between that model and the power law function
(Figure 2). As larger the index is, the user aptitude is higher. The
early identification of low aptitude users avoids long and tiring
training sessions spent in a pointless user-system adaptation.

Modelpsp = fi + f2 (x: Az, k2) + f3 (x; A3, 1, )

A
= ki + Apx™ 4 = 3271 ¢~ (x=n?) /207 1)

ILLUSTRATIVE EXAMPLES

In order to exemplify the functionality of NeuroIndex, I have
made use of a database created by Alonso-Valerdi and Sepulveda
(2014). The database contains EEG and Electrocardiography
(ECG) recordings of 11 participants who were exposed to nine
different scenarios. In every scenario, the sensory-cognitive
workload was gradually increased so as to achieve a better user-
system adaptation. From the nine scenarios, seven of them
were used to adapt the user with the platform in use. The
rest of them were employed to test the user aptitude for
establishing brain-computer communication under simulated
living situations. At the beginning of each experimental session,
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purposes are available in a GitHub repository.

FIGURE 2 | Architecture of the NeurolndeX software. This application is a Python executable script that estimates the IAF and the neurophysiological prediction
index. Only two 3-min-long EEG recordings are necessary, one in EO condition and another one in EC condition. The software and some datasets for testing
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FIGURE 3 | Individual alpha frequency estimated for P11. On the left side, the PSD of channel O1 is presented in three conditions: EC, EO, and EC-EO. Similarly,
the PSD of channel O2 is shown on the right side. The average of the third condition (EC-EO) in both channels (red line) is the IAF and the Neurolndex output. This
values titles the figure.

all the participants were asked to stay in two conditions: EC and
EO. Both conditions were recorded for 3 min at 128 Hz, while
the nine scenarios were recorded at 256 Hz. In any case, EEG
and ECG signals were recorded using an ActiveTwo amplifier
and ActiView software (BIOSEMI Company—The Netherlands).
To register the EEG signals, sixty one recording sites in line
with the 10/10 System were employed, while the lead I of the
Einthoven triangle was used to register the ECG signal. The
experimental procedure undertaken to obtain the recordings was
approved by the Ethics Committee of the University of Essex, and
written informed consent from all the participants was obtained
as well. From the entire database, only EC and EO conditions
were taken to illustrate the usability of the present program.
Note that EEG signals are required for the NeuroIndex software,
whereas the ECG signal is only necessary for the evaluation
of the software, which will be discussed in Section System
Performance.

According to the performance of each participant reported
by Alonso-Valerdi and Sepulveda (2014), two of the 11
participants (P1-P2) were unable to establish brain-computer
communication. Five of the 11 ones (P3-P7) were able to
establish communication in one of the two simulated living
situations. The rest of them (P8-P11) established communication
in both simulated living situations. The EEG recordings of
P2, P6, P7, and P11 (one participant from two categories and
two participants from one of the categories) were selected to
show the NeuroIndeX functionality. The EEG recordings of
these four participants, as well as the NeuroIndeX software
output of the eleven participants, are available on a GitHub
repository?.

Zhttps://github.com/LuzAlondra/BrainComputerInterfaces.

Figure 3 presents the IAF of P11. As can be seen from the
figure, the whole process is graphically set out. At the top, PSD
obtained from O1 and O2 channels in EC condition is shown.
In the middle, the PSD in EO condition is provided. At the
bottom, the difference of both conditions is illustrated and the
average of the corresponding peak values is finally the IAF. For
the rest of the participants, similar graphs were obtained. Those
outcomes can be revised on the repository.

With respect to the neurophysiological predictor, the values
for P2, P6, P7, and P11 are respectively presented in
Figures 4-7. As can be seen from Figure 4, the best model
and the power law model for the PSD of P2 are overlapped.
As a result, the neurophysiological predictor cannot be
estimated as was proposed by Blankertz et al. (2010), ie.,
max (BestModel—PowerLawModel). Alternatively, NeuroIndex
provides the maximum difference between the original PSD and
the power law model. The neurophysiological predictor has a
very small value, which agrees with the poor performance of
P2 reported by Alonso-Valerdi and Sepulveda (2014). For P6
(Figure 5), NeurolIndex failed to determine an appropriate model
that could be fitted to the alpha band peak on C3, giving a smaller
neurophysiological indicator in comparison to the alternative
value provided by the software. Note that the alternative value
agrees with the overall performance of P6. For P7 (Figure 6),
NeuroIndex was completely unable to model the PSD, resulting
in an incorrect calculation of the neurophysiological predictor.
In this case, the user performance could not be predicted. Lastly,
in Figure 7, the software output for P11 is provided. The figure
illustrates a very nice curve fitting in which both values are
quiet similar. This result perfectly agrees with the performance
of P11, who was a user able to establish efficient brain-computer
communication.
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FIGURE 4 | Neurophysiological predictor determined for P2. The best model (blue line) of the PSD (black line) is very similar to the power law function (green and
dotted line). Therefore, the neurophysiological index is calculated by differentiating the PSD and the power law function, instead of using the best model as Blankertz
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FIGURE 5 | Neurophysiological predictor determined for P6. The best model (blue line) of the PSD (black line) is very similar to the power law function (green and
dotted line) on channel C3, while it is shifted to the left on channel C4. As a consequence, the feasible neurophysiological index is that calculated using the PSD,
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SYSTEM PERFORMANCE

To evaluate the Neurolndex performance, other similar
applications were searched. However, only an EEGLAB plugin
to analyze the IAF was found (Goljahani et al., 2014), while
no software was found to estimate the neurophysiological
predictor proposed by Blankertz et al. (2010). The application
developed by Goljahani et al. (2014) is an EEGLAB plugin
to analyze individual EEG alpha rhythms using the channel
reactivity-based method proposed by Goljahani et al. (2012).
This method measures an overall IAF by identifying the EEG

power variations across different channels, while the subject in
question is performing specific tasks. Herein, the computation of
the IAF depends on the dynamic neurophysiological process of
the brain, where reference and test mental states are compared.
As this EEGLAB plugin requires event-related data and its
purpose is not consistent with that of NeuroIlndex, it was not
possible to obtain IAF values from the datasets at hand in order
to compare them with the NeuroIndex output.

In the light of the above issues, it was decided to determine
theoretical IAFs and compare those values with the NeuroIndex
output. As the neurophysiological predictor index depends on the
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IAF value, the evaluation of the application could be considered
objective.

Theoretical IAF Values
According to Klimesch (2013), there exists a brain-body
interaction that may be described as a complex system that
couples and decouples on the basis of a specific harmonic
frequency structure mathematically defined by
fa(i) = s* 2 wherei=0,1,2,3, .. (2)
Klimesch suggested that s is the cardiac frequency in Hz and can
be found when i = 0. Having the cardiac frequency, the central
frequency of the typical EEG frequency bands (8, 6, «, B, y) can

be obtained by evaluating Equation (2). For example, if s = 1.25
Hz (75 beats per minute), the EEG frequency bands are defined
as follows

fa(1) = 1.25%2! = 25Hz = §
f4(2) =1.25%22 = 5.0Hz = 6
f4(3) =1.25%2% = 10Hz = «
fa(4) = 1.25%2% = 20Hz = B
f4(5) = 1.25%2°> = 40Hz = y

On this basis, the cardiac frequency was calculated using the lead
I of the Einthoven triangle, and thus estimating the theoretical
IAF by Equation (2). To calculate the cardiac frequency, the ECG
signal was first high-pass filtered at 0.1 Hz; QRS complexes were
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provided: The Neurolndex output (red line), the IAF values calculated in terms of the cardiac frequency (blue line), and the cardiac frequency (black star markers).

then detected by the Pan-Tompkins method (Pan and Tompkins,
1985) implemented by Sedghamiz (2014); and the NN intervals
(time distance between two adjacent QRS complexes) were finally
determined. Those NN intervals were averaged and inversed,
thereby obtaining the cardiac frequency (s). To estimate the
theoretical IAF, Equation (2) was evaluated when i = 3.

Comparison between Theoretical and
Empirical IAFs

The cardiac frequency, the theoretical IAF and the NeuroIndex
output are compared in Figure 8. By applying the Student’s ¢-
test, the theoretical IAFs and the NeuroIndex outputs are not
significantly different (p = 0.2204). However, a difference of
1 Hz in the process of determining the EEG frequency bands
must be considered carefully. As can be seen from the figure,
P2 and P7 show the largest different between theoretical and
empirical IAFs. In both cases, the alpha peaks of the PSD (P2:
Figure 4, P7: Figure 6) are between 10 and 15 Hz. It seems that
the theoretical IAFs (P2: 10,784 Hz, P7: 11,936 Hz) may be a
better approach in comparison to the NeuroIndex outputs (P2:
7 Hz, P7: 7 Hz), which were obtained from EC-EO conditions
and using the method proposed by Posthuma et al. (2001). By
replacing the empirical IAFs for the theoretical one, the PSD
fitting can be improved, and in turn, the neurophysiological
index could be accurately detected. It seems possible that brain-
body coupling model proposed by Klimesch (2013) may improve
the NeuroIndex performance.

DISCUSSION

One of the main shortcomings of BCI technology has been
the substantial variation of the user performance. A way to
deal with such variation is the localization of the individual
frequency oscillation of the sensory-motor rhythms using the IAF
value (specifically alpha band rhythms), and the identification of
possible illiterate users in accordance with the neurophysiological
predictor. The measurement of these two parameters before the

user training may help to adjust the system in line with the user
signal features, and can also allow to select another type of BCI
paradigms whenever necessary.

Most of the BCI community effort has been put in designing
applications for online and offline signal processing. Up to now,
a wide variety of proficient BCI packages are available, including
BCI2000, BCILab, OpenViBe, TOBI, and BioSig. However, far
too little attention has been paid to the software development
concerning the user evaluation before the human-machine
adaptation. In this regard, NeuroIndeX is an easy application
that can be used to characterize the user EEG signals, and decide
how to go through the complex process of adapting the human
brain and the computing system. Furthermore, NeuroIndeX is
not only the implementation of previously proposed methods,
but it also complements two different methods and provides
an alternative way to obtain the prediction parameter. On the
one hand, the calculation of the neurophysiological predictor
is based on the IAF. On the other hand, if a mathematical
model cannot be obtained by means of a power law model and
a probability density function, NeuroIndeX anyway proposes
an indicator by employing the power law model and the
original PSD. Nonetheless, an important limitation of this
application is its dependency on the IAF value. For instance, the
neurophysiological index of P7 (Figure 6) was wrongly estimated
owing to an inappropriate PSD fitting. As the peak values of the
PSD are far from the IAF value determined for the participant (7
Hz, this can be revised in the repository), the brain-body coupling
model proposed by Klimesch (2013) may be a better option to
determine an accurate IAF value, and in turn, an appropriate PSD
fitting. Therefore, the software outputs need to be interpreted
with caution.

Lastly, it is worth noting that the determination of these two
neurophysiological indexes is not limited to the BCI community
interest. The analysis of EEG signals is nowadays a key issue
in many other research fields such as Psychology, Medicine,
Computer Sciences, and obviously Neurosciences. As a case in
point, the study of the level of synchronization of the neural
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networks is very important to understand the sensory-cognitive
processing of the human brain. This study can be much more
fruitful if the frequency oscillation of the brain rhythms of
interest is well-localized.

CONCLUSIONS

NeuroIndeX is an application completely written in Python,
which pursuits to improve the applicability of MI based BCls
by characterizing the user EEG signals before undertaking the
human-machine adaptation process. Such characterization is
based on estimating the IAF according to Posthuma et al. (2001),
and the neurophysiological predictor proposed by Blankertz
et al. (2010). With these two parameters, the appropriate
adjustment of the sensory-motor rhythms and the selection
of an adequate BCI paradigm are possible. The present
application only requires two 3-min- long EEG recordings in
two conditions: EO and EC. The sample rate of the recordings
must be provided as well. The Python script, EEG testing
data, a brief instruction manual and some examples of the
software output are available on https://github.com/LuzAlondra/
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