
METHODS
published: 25 August 2016

doi: 10.3389/fninf.2016.00038

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2016 | Volume 10 | Article 38

Edited by:

Andrew P. Davison,

Centre National de la Recherche

Scientifique, France

Reviewed by:

Fidel Santamaria,

University of Texas at San Antonio,

USA

Richard C. Gerkin,

Arizona State University, USA

*Correspondence:

Robert Meyer

robert.meyer@ni.tu-berlin.de

Received: 23 May 2016

Accepted: 09 August 2016

Published: 25 August 2016

Citation:

Meyer R and Obermayer K (2016)

pypet: A Python Toolkit for Data

Management of Parameter

Explorations.

Front. Neuroinform. 10:38.

doi: 10.3389/fninf.2016.00038

pypet: A Python Toolkit for Data
Management of Parameter
Explorations
Robert Meyer 1, 2* and Klaus Obermayer 1

1Neuroinformatics Group, Department of Software Engineering and Theoretical Computer Science, Technical University

Berlin, Berlin, Germany, 2 Bernstein Center for Computational Neuroscience, Berlin, Germany

pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit

for managing numerical simulations. Sampling the space of model parameters is a

key aspect of simulations and numerical experiments. pypet is designed to allow

easy and arbitrary sampling of trajectories through a parameter space beyond simple

grid searches. pypet collects and stores both simulation parameters and results in a

single HDF5 file. This collective storage allows fast and convenient loading of data for

further analyses. pypet provides various additional features such as multiprocessing and

parallelization of simulations, dynamic loading of data, integration of git version control,

and supervision of experiments via the electronic lab notebook Sumatra. pypet supports

a rich set of data formats, including native Python types, Numpy and Scipy data, Pandas

DataFrames, and BRIAN(2) quantities. Besides these formats, users can easily extend the

toolkit to allow customized data types. pypet is a flexible tool suited for both short Python

scripts and large scale projects. pypet’s various features, especially the tight link between

parameters and results, promote reproducible research in computational neuroscience

and simulation-based disciplines.

Keywords: parameter exploration, reproducibility, simulation, python, parallelization, grid computing

1. INTRODUCTION

Numerical simulations are becoming an important part of scientific research. In computational
neuroscience researchers create increasingly detailed models of neural phenomena. For instance,
Reimann et al. (2013) simulated local field potentials in a neural network ofmore than 12,000multi-
compartmental cells. Similarly, Potjans and Diesmann (2014) built a full-scale spiking neuron
network model of a cortical microcircuit. Such complex computational models pose a challenge
to reproducibility in research. Many researchers rely on custom software and data formats. In
addition, scripts and results of simulations are rarely shared, if ever. These conditions make
numerical experiments hard to reproduce. Stodden (2011) even speaks of a “credibility crisis” of
computational results. There is an ongoing debate about the mandatory publication of source code
in scientific research (Ince et al., 2012).

Still, even the open availability of software does not guarantee reproducibility. Researchers
are unlikely to use undocumented and unmaintained software solutions created by others. Even
when researchers are willing to inspect source code, ill-documentation often prohibits them from
successfully reimplementing published models (Topalidou et al., 2015). Furthermore, simulations
are usually highly parameterized, with up to hundreds of parameters (Reimann et al., 2013; Potjans
and Diesmann, 2014). Reproducing simulation results becomes challenging when the values of

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2016.00038
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00038&domain=pdf&date_stamp=2016-08-25
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:robert.meyer@ni.tu-berlin.de
http://dx.doi.org/10.3389/fninf.2016.00038
http://journal.frontiersin.org/article/10.3389/fninf.2016.00038/abstract
http://loop.frontiersin.org/people/155235/overview

Meyer and Obermayer pypet

those parameters are not provided. This is not only a problem
for published experiments but also for a scientist’s own previous
work. Researchers may fail to reproduce their own results due to
missing parameters.

pypet is designed to address these problems in the
management of numerical experiments. The two main goals
of the software package are, first, to allow easy and flexible
exploration of parameter spaces and, second, to jointly store
parameters and results for each experiment.

pypet stands for Python Parameter Exploration Toolkit.
It targets researchers and engineers executing numerical
experiments of any kind; not only related to Neuroscience.
Besides simulations of neural networks, other areas of
applications could be parameter explorations for machine
learning pipelines or simulations of complex systems like
computational fluid dynamics. pypet supports simulations
written in Python, a platform-independent programming
language. Python is increasingly used in neuroscience (Muller
et al., 2015) and other scientific disciplines (Fangohr, 2004;
Bäcker, 2007; Borcherds, 2007; Lin, 2012; Meyerovich and
Rabkin, 2013).

With pypet the user can explore arbitrary parameter spaces by
simply specifying Python lists of parameter points. These points
define individual simulation runs and lead to numerical results.
Tight linkage of parameters and results is achieved by storing
all data together in the convenient HDF5 format1. Besides, pypet
provides various other features. Among these are native support
for parallelization, methods to annotate data, and integration
with git version control. A summary of pypet’s features is given
in Box 1.

1.1. Existing Software
In recent years a couple of software projects dealing with
data management have been developed—especially targeted to
researchers in computational neuroscience.

NeuroManager (Stockton and Santamaria, 2015) facilitates
automated scheduling of simulations in MATLAB with
heterogeneous computational resources. Such computational
resources can range from simply using the host computer—from
which scheduling was started—to a network of other computers
or even clusters and computer grids. NeuroManager, written in
object-oriented MATLAB, allows the user to specify simulations
in terms of pure MATLAB code or MATLAB code wrapping
existing simulators like NEURON (Carnevale and Hines,
2006). The parameter space defined by the simulators can be
explored using NeuroManager’s scheduling routine by utilizing
heterogenous computing resources; granted these resources
support the needed software requirements like MATLAB
licenses. In contrast, pypet is written in Python and all of pypet’s
requirements are open source and freely available.

Mozaik (Antolík and Davison, 2013) is a Python data
management toolkit especially designed for network simulations
of two-dimensional neural sheets. It relies on the simulator
environment PyNN (Davison, 2008). Its design goals are similar
to pypet’s. Mozaik aims for integrating parameters and model

1https://www.hdfgroup.org/HDF5/

BOX 1 | MAIN FEATURES.

• Novel tree container Trajectory, for handling and managing of

parameters and results of numerical simulations

• Grouping of parameters and results into meaningful categories

• Accessing data via natural naming, e.g., traj.parameters.neuron.

gL

• Automatic storage of simulation data into HDF52 files via PyTables3

• Support for many different data formats

• Python native data types: bool, int, long, float, str,

complex

• Python containers: list, tuple, dict

• NumPy arrays and matrices (van der Walt et al., 2011)

• SciPy sparse matrices (Oliphant, 2007)

• Pandas Series, DataFrame, and Panel (McKinney, 2011)

• BRIAN and BRIAN2 quantities and monitors (Goodman and Brette,

2008; Stimberg et al., 2014)

• Easily extendable to other data formats

• Exploration of the parameter space of one’s simulations

• Merging of trajectories residing in the same space

• Support for multiprocessing, pypet can run simulations in parallel

• Analyzing data on-the-fly during multiprocessing

• Adaptively exploring the parameter space combining pypet with

optimization tools like the evolutionary algorithms framework DEAP (Fortin

et al., 2012)

• Dynamic loading of parts of data one currently needs

• Resuming a crashed or halted simulation

• Annotation of parameters, results, and groups

• Git integration, pypet can make automatic commits of one’s codebase

• Sumatra integration, pypet can automatically add one’s simulations to the

electronic lab notebook tool Sumatra (Davison, 2012)

• pypet can be used on computing clusters or multiple servers at once if it is

combined with the SCOOP framework (Hold-Geoffroy et al., 2014)

2https://www.hdfgroup.org/HDF5/
3http://www.pytables.org/

descriptions with the simulator execution as well as the storage of
results. However, the focus on two-dimensional networks makes
it less flexible in comparison to pypet.

Lancet (Stevens et al., 2013) constitutes a more general
approach to workflow management and integrates with IPython
notebooks (Perez and Granger, 2007). Lancet is a well-designed
alternative to pypet, especially for smaller projects that fit into
the scope of a single notebook. Like pypet, Lancet is simulator
agnostic. It even allows to interact with other programs not
written in Python as long as these can be launched as processes
and return output in form of files. Hence, Lancet does not store
the user data directly but assumes that results are written into
files. Accordingly, given large parameter explorations with many
simulation runs, the user may end up with her data scattered
among many different files. This can be cumbersome to manage
and may complicate the analysis of results. In contrast, pypet
directly stores parameters and results side by side into a single
HDF5 file.

VisTrails (Bavoil et al., 2005) is a workflow and provenance
management system written in Python that focuses on

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2016 | Volume 10 | Article 38

https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
http://www.pytables.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

automation of visualizations. It is mainly operated through
a graphical user interface (GUI) and targets an audience less
akin to programming. pypet offers no GUI, but it is a Python
library that users can import and use in their own source code
to write scripts and programs. Hence, pypet is more flexible in
comparison to VisTrails. It is suitable for researchers that need
low-level management of project code and their numerical data,
of course, at the cost of requiring programming experience in
Python.

The primary goal of Sumatra (Davison, 2012) is to enhance
reproducible research. Sumatra serves as an electronic lab
notebook. The command line program does not only link
all simulation parameters to result files, but also keeps track
of the entire computing platform. It stores information like
the used operating system and particular versions of software
dependencies. Sumatra can be nicely integrated with pypet to
automatically trigger a Sumatra record with every simulation
start. The combination of Sumatra and pypet allows for
comprehensive provenance management. Accordingly, users can
track soft- and hardware dependencies with Sumatra as well as
store simulation parameters and results tightly linked in a single
file via pypet.

2. PYPET ARCHITECTURE AND
DEVELOPMENT

In the following we will discuss general design principles of pypet
and layout the architecture and structure of the Python package.
First, we are going to start with pypet’s packaging and adhesion
to the concept of test driven development. Next, we will present
our conceptualization of parameter explorations. Furthermore,
we are going to introduce the general layout followed by more
detailed descriptions of the individual components. Lastly, we
will finish with some use case examples.

2.1. Packaging and Testing
pypet is a pure Python package4 and supports Python versions
2.6, 2.7, 3.3, 3.4, and 3.5. It is platform independent and
runs under Linux, Windows, and OS X with 32-bit as
well as 64-bit architectures. The package is modularized and
pypet is designed following the concept of object oriented
programming5.

Furthermore, the source code is openly available and hosted
on the prominent github6 code sharing platform. In addition,
pypet is bundled on the Python Package index7 (PyPI) to allow
fast and easy installation using the package managing system pip.

Besides comprehensive documentation, it is important
for software packages—scientific ones in particular—that all

4In the Python universe the term package denotes a bundle of modules. Modules

are specialized Python libraries that may contain related functions, objects, and

general Python statements.
5In object oriented programming user interactions involve so called objects. These

objects are special data structures that provide data in terms of object attributes.

In addition, the object’s methods grant functionality to modify the object and data

therein.
6 https://github.com/SmokinCaterpillar/pypet
7https://pypi.python.org/pypi/pypet

functionality is well tested (Gewaltig and Cannon, 2014).
Therefore, pypet is designed using test driven development.
Accordingly, small features and single functions are already
accompanied with corresponding test cases. In addition, we
apply continuous integration testing. Every addition of new
code triggers a full battery of package wide tests which
are automatically started and deployed on independent build
servers. pypet is tested using the services Travis-CI8 with
a Linux environment and AppVeyor9 providing Windows
servers. Every time a new code addition is pushed to the
code repository on github, the unit and integration tests
are automatically deployed by Travis-CI and AppVeyor. This
guarantees that new features do not break existing functionality.
In addition to continuous integration testing, we use the
coveralls10 web service to quantify how comprehensive the
test suite is. As of July 2016, pypet’s core modules encompass
about 10,000 lines of pure Python code of which more than
90% are hit by the test battery that already exceeds 1000
tests.

Besides the comprehensive test battery, pypet has
been successfully used in our research group for
parameter explorations of large neural networks. The
toolkit helped managing several ten thousand simulation
runs and HDF5 files with sizes of more than hundred
gigabytes.

2.2. Parameter Exploration and
Conceptualization
pypet’s goals are to provide side by side storage of results as well
as parameters and to allow for easy parameter exploration. Our
definition of a parameter exploration is as follows: It is the process
of sampling an n-dimensional parameter space of a simulation or
model implementation with a pre-defined set of points within the
space. Running the simulation or model independently with each
point in the parameter space produces further data. This data is
considered to be results. The dimensions of the parameter space
can be heterogeneous, i.e., these may encompass integers, real
values, or even less mathematical concepts like Python tuples,
which are immutable list like data structures. Therefore, we
also refer to a dimension of the parameter space simply as a
“parameter.”

Moreover, we assume that from the n-dimensional space
usually only a much smaller sub-space is sampled of size n′

with n′ ≪ n. Accordingly, most parameters are fixed and only a
minority are varied and explored. For instance, the visual cortex
network model by Stimberg et al. (2009) is based on several
tens of parameters, but the authors varied only two of these
comprehensively.

Furthermore, the set of points is sequentially ordered. The
order may be arbitrary, but it is fixed such that the ith point in
the parameter space corresponds to the ith run of a simulation
or model. Due to the order, one may not just think of sampling
the parameter space, but rather following a discrete trajectory

8https://travis-ci.org/SmokinCaterpillar/pypet
9https://ci.appveyor.com/project/SmokinCaterpillar/pypet
10https://coveralls.io/github/SmokinCaterpillar/pypet

Frontiers in Neuroinformatics | www.frontiersin.org 3 August 2016 | Volume 10 | Article 38

https://github.com/SmokinCaterpillar/pypet
https://pypi.python.org/pypi/pypet
https://travis-ci.org/SmokinCaterpillar/pypet
https://ci.appveyor.com/project/SmokinCaterpillar/pypet
https://coveralls.io/github/SmokinCaterpillar/pypet
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

through the space. Accordingly, the top-level containermanaging
all parameters and results is called Trajectory.

Next, we will briefly discuss a particular layout of simulations
that fits best with pypet. This conceptualization is also sketched in
Figure 1. We assume that numerical experiments or simulations
usually comprise between two to four different stages or phases:

1. Pre-processing: Parameter definition, preparation of the
experiment

2. Run phase: Fan-out structure, usually parallel running of
different parameter settings, gathering of individual results for
each single run

3. Post-processing (optional): Cleaning up of the experiment,
sorting results, etc.

4. Analysis of results (optional): Plotting, calculating
statistics, etc.

The first pre-processing stage can be further divided into two
sub-stages. In the beginning the definition of parameters is given
and, secondly, one’s experiment is initialized and configured.
Conceptually, the addition of parameters can be implemented
by a distinct function or even by another script for re-
usability. Moreover, the first phase also involves the decision
on how the parameter space is explored. Configuration and
initializationmight encompass creating particular Python objects
or pre-computing some expensive functions that otherwise
would be computed redundantly in every run in the next phase.

The second stage, the run phase, is the actual execution of
one’s numerical simulation. All different points in the parameter
space that have been specified before for exploration are tested
on the model. As a consequence, one obtains corresponding
results for all parameter combinations. Since this stage is most
likely the computationally expensive one, one probably wants to
parallelize the simulations. We refer to an individual simulation
execution with one particular parameter combination as a single
run. Because such single runs are different individual simulation
executions with different parameter settings, they are completely
independent of each other. The results and outcomes of one
single run should not influence another. This does not mean
that non-independent runs cannot be handled by pypet; they can.
However, keeping single runs independent greatly facilitates the
parallelization of their execution.

Thirdly, after all individual single runs are completed one
might perform post-processing. This could involve merging or
collection of results of individual single runs or deleting some
sensitive Python objects. In case one desires an adaptive or
iterative exploration of the parameter space, one could restart the
second phase. In this case the Trajectory can be extended.
The user can iteratively add some more points of the parameter
space and alternate the run phase and post-processing before
terminating the experiment. The iterative approach may be
based on some optimization heuristics like DEAP evolutionary
algorithms (Fortin et al., 2012). pypet’s online documentation

FIGURE 1 | Conceptualization of a simulation or numerical experiment.

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

provides a comprehensive example on how to use both libraries
together. Note pypet is useful for optimization tasks where the
resulting trajectory through the parameter space or intermediate
results should be stored for later analysis. If the user does not care
about these, but she is only interested in the final best parameters,
DEAP—alone or in combination with BluePyOpt (Van Geit et al.,
2016) for optimizing neural models—is already sufficient.

Fourthly, one may desire to do further analysis of the raw
results obtained in the previous phases. This constitutes the final
stage of an experiment and may include the generation of plots
or calculation of statistics. For a strict separation of experimental
raw data from its statistical analysis, one is advised to separate this
final phase from the previous three. Thus, this separation could
mean starting a completely different Python script than for the
phases before.

2.3. General Package Structure
pypet encompasses five key modules. The trajectory.py

module contains the Trajectory class that constitutes the
main data container the user interacts with. User requests
to a Trajectory are passed onto and processed by a
service called NaturalNamingInterface residing in the
naturalnaming.py module. Moreover, the Trajectory
allows the arbitrary exploration of the parameter space and
manages all data including parameters, results, as well as
configuration specifications. All of these are further encapsulated
by their own abstract containers which can be found in the
parameter.py module. In case data is stored to disk, this
is handled by the HDF5StorageService located in the
storageserivce.pymodule. Currently, the data is saved in
the HDF5 format. Storage and loading of trajectories follow well-
defined application programming interfaces (API). Hence, the
implementation of other backends, like SQL or MongoDB11 for
example, is possible without the need to change any other pypet
core code. Finally, the environment.pymodule provides the
so called Environment object for handling the running of
simulations. This general structure of the pypet components is
sketched in Figure 2.

2.4. Parameters and Results
The parameter.py module provides the so called
Parameter class that follows a base API called
BaseParameter. The Parameter contains data that is
explicitly required as parameters for one’s simulations. For the
rest of this manuscript we follow the convention that the stylized
Parameter denotes the abstract container. The not stylized
expression “parameter” refers to the user data that is managed
by the Parameter container. This notation holds analogously
for user results encapsulated by the Result class. This class
implements the base API BaseResult.

Parameters follow two main principles. First, a key
concept of numerical experiments is the exploration of the
parameter space. Therefore, the Parameter containers do
not only manage a single value or data item, but they may
also take a range of data items. Elements of such a range
reside in the same dimension, i.e., only integers, only strings,

11https://www.mongodb.com/

only NumPy arrays, etc. The exploration is initiated via the
Trajectory. This functionality will be introduced shortly.
Secondly, a Parameter can be locked; meaning as soon
as the Parameter container is assigned to hold a specific
value or data item and the value or data item has already
been used somewhere, it cannot be changed any longer and
becomes immutable (except after being explicitly unlocked). This
prevents the cumbersome error of having a particular parameter
value at the beginning of a simulation, but changing it during
runtime by accident. Such an error can be difficult to track
down.

Parameter containers accept a variety of different data
items, these are

• Python natives (int, str, bool, float,

complex),
• NumPy natives, arrays and matrices of type np.int8 to np.
int64, np.uint8 to np.uint64, np.float32, np.
float64, np.complex, and np.str

• Python homogeneous non-nested tuples and lists

For more complex data, there are specialized versions of the
Parameter container. For instance, the SparseParameter
is a container for SciPy sparse matrices (Oliphant, 2007) and
the BrianParameter can manage quantities of the BRIAN
simulator package (Goodman and Brette, 2008).

Moreover, Result containers are less restrictive than
Parameters in terms of data they accept. They can also
handle Python dictionaries, the Python implementation of a hash
map, and Pandas DataFrames (McKinney, 2011), a tabular data
structure.

Similar to the Parameter, there exist specialized versions
of a Result, like a SparseResult. In case the user relies
on some custom data that is not supported by the Result,
Parameter, or their specialized descendants containers, the
user can implement a custom solution. Customized containers
are straightforward and only need to follow the API specifications
given by BaseResult and BaseParameter.

2.5. Trajectory
The Trajectory is the container for all results and parameters
of one’s numerical experiments. The Trajectory instantiates a
tree with groups and leaf nodes. The instantiated Trajectory
object itself is the root node of the tree. The leaf nodes encapsulate
the user data and are the Parameter and Result containers.
Group nodes cannot contain user data directly, but may contain
other groups and leaf nodes. By using only groups and leaves
there cannot be any cycles within the trajectory tree. However,
one can introduce links that refer to other existing group or leaf
nodes.

Results can be added to the Trajectory tree at any
time. Parameters can only be introduced before the individual
simulation runs are started. Both, parameters and results, can
be recovered from the trajectory tree at any time, for example
if needed during a simulation run or later on for data analyses.
The user data can be recalled using natural naming, i.e.,
the user can rely on the Python dot notation familiar from
object oriented programming. Such natural naming requests

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2016 | Volume 10 | Article 38

https://www.mongodb.com/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

FIGURE 2 | Main components of pypet. Elements in light gray mark objects that operate in the background with no direct user interaction.

are handled by the NaturalNamingInterface class in the
background.

Exploration of the parameter space is initiated using the
Trajectory as well. The user simply passes a Python
dictionary containing the parameter names as keys and lists of
the corresponding data ranges they like to explore as values. For
a thorough grid-like exploration there exists the functionality to
create the Cartesian product set of multiple parameters.

2.6. Data Storage and Loading
Storage and loading of the Trajectory container and all its
content are not carried out by the Trajectory itself but by
a service in the background. Currently, all data is stored into a
single HDF5 file via the HDF5StorageService. To interface
HDF5, the storage services uses the PyTables library12.

12http://www.pytables.org/

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2016 | Volume 10 | Article 38

http://www.pytables.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

The acronym HDF5 stands for the fifth version of the
Hierarchical Data Format. It is a convenient format because it
allows compressed reading and writing of data to the hard disk
with high performance. More important, as its name suggests,
data is ordered in hierarchies that are similar to the file and
folder structure of most operating systems. The data hierarchies
and the numerical data therein can be directly inspected with
tools like HDFView13. Not surprisingly, the tree structure of
the Trajectory is mapped one-to-one to the hierarchical
structure in the HDF5 file.

Usually, the storage of a Trajectory is automatically
triggered by pypet in regular intervals. Additionally, the user can
manually initiate storing and loading if desired. Moreover, pypet
supports automatic loading of data as soon as the user needs it.
No explicit loading is necessary and data is recovered from the
HDF5 file on-the-fly.

2.7. Environment
The Environment defines a scheduler for the numerical
experiments. It constitutes a general framework in which the user
can embed her simulations. It allows the user to disentangle the
core simulation from administrative tasks like distribution and
repeated execution of runs and data serialization.

The Environment can be used to trigger independent
simulation runs according to the exploration specified in
the Trajectory container. pypet’s combination of the
Trajectory and the Environment to start the simulation
runs is more convenient and flexible than brute-force approaches
such as bash scripts passing parameters as command line
arguments or nested for-loops in Python scripts. Accordingly,
pypet allows to easily change between different parameters or sets
of parameters for exploration without rewriting large segments
of the code or the need for new bash scripts. Besides more
flexible exploration, pypet offers other convenient features. For
example, the Environment natively supports multiprocessing
and parallelization of simulation runs.

Moreover, in case of long running simulations or many runs,
the Environment notifies the user about the progress and
gives an estimate of the remaining time in regular intervals.
Furthermore, the Environment will automatically trigger the
storage of results after every individual simulation run. In
addition, it monitors the simulation execution in terms of
keeping log-files. By default, general log-files are accompanied by
specialized error logs. The latter display only error messages to
allow easier identification and debugging in case there are errors
in the user’s simulation.

3. USAGE

So far we have introduced pypet’s main components and sketched
their functionality. In this section we will provide information
about the installation and some usage examples.

The usage examples are based on pypet version 0.3.0. Although
we aim for a stable API, the reader is always advised to check the
current online documentation14.
13http://www.hdfgroup.org/products/java/hdfview/
14https://pypet.readthedocs.org/en/latest/

3.1. Installation
Because pypet is a pure Python package, its installation is
straightforward and does not require more involved steps like
compilation of source code. If the Python package manager pip is
available15, one can simply install pypet from the command line:

$ pip install pypet

Alternatively, one can download pypet from the PyPI16 web page,
unpack it, and run

$ python setup.py install

in a terminal.
Note that pypet’s four core prerequisites are NumPy, SciPy,

PyTables, and Pandas. These are standard libraries in scientific
Python and have most likely been installed already on many
computer systems. For a fresh Python environment, however, one
needs to install these before setting up pypet.

3.2. Naming Convention
We implemented a general naming convention that applies to the
Trajectory, all groups, and all containers that can encapsulate
user data, i.e., the Result and Parameter introduced before.
To avoid confusion with the natural naming scheme and the
functionality provided by the Trajectory, we use prefixes.
This idea is taken from the software package PyTables. We use
f_ for methods and functions and v_ for Python variables,
attributes, and properties.

For instance, given a particular instantiated Result denoted
by the variable myresult, myresult.v_comment refers
to the object’s comment attribute and myresult.f_set(

mydata=42) is the function for adding data to the Result
container. Whereas, myresult.mydata can be a data item
named mydata provided by the user.

3.3. Basic Example
Here we are going to describe a basic usage example. We will
simulate the multiplication of two values, i.e., z = x · y. Before
discussing the details of the simulation, we provide the full script
below for an overview:

from pypet import Environment, cartesian_product

def multiply(traj):

"""Simulation that involves multiplying two values."""

5 z = traj.x * traj.y

traj.f_add_result('z', z)

Create an environment that handles running our simulation

env = Environment()

10 # Get the trajectory from the environment

traj = env.traj

Add both parameters

traj.f_add_parameter('x', 1.0, comment='First dimension')

traj.f_add_parameter('y', 1.0, comment='Second dimension')

15 # Explore the parameters with a Cartesian product

traj.f_explore(cartesian_product({'x': [1.0,2.0,3.0,4.0],

'y': [6.0,7.0,8.0]}))

Run the simulation with all parameter combinations

env.run(multiply)

First, we consider the top-level simulation function that contains
the user’s core simulation code. The function needs to take the
Trajectory container as the first argument. It is allowed

15From Python version 3.4 on, pip is part of the Python distribution and is no

longer needed to be installed manually.
16https://pypi.python.org/pypi/pypet

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2016 | Volume 10 | Article 38

http://www.hdfgroup.org/products/java/hdfview/
https://pypet.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pypet
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

to take other positional as well as keyword arguments if
needed.

In this example the top-level simulation function multiply
is defined as

def multiply(traj):

"""Simulation that involves multiplying two values."""

z = traj.x * traj.y

traj.f_add_result('z', z)

The function makes use of a Trajectory container traj
which manages our parameters. Because multiply is evoked
with all points in the parameter space, here traj holds a
particular choice of x and y. We can access the parameters
simply by natural naming, i.e., using Python’s dot notation,
as seen above via traj.x and traj.y. Note that the full
paths of the parameters in the trajectory tree are traj.

parameters.x and traj.parameters.y, respectively.
However, to spare the user an excessive amount of typing,
the Trajectory supports so called shortcuts. If the user
leaves out intermediate groups in the natural naming request
(here the group parameters), a fast search is applied by
the NaturalNamingInterface to find the requested items
down the tree (here the leaves x and y).

Subsequently to computing z = traj.x * traj.y, the
value of z is added as a result to the traj container via traj.
f_add_result('z', z). This concludes the simple top-
level simulation function.

After the definition of the job that we want to simulate,
we create an Environment denoted by env that runs the
simulation. Hence, we start with the first phase of the simulation
conceptualization, the initialization of the experiment and
addition of parameters. Moreover, we do not pass any arguments
to the constructor and simply use pypet’s default settings for an
Environment:

env = Environment()

The Environment will automatically generate a
Trajectorywhich we can access via the env.traj property.
Next, we can populate the container with the parameters. We
add them using default values x = y = 1.0:

Add both parameters

traj.f_add_parameter('x', 1.0, comment='First dimension')

traj.f_add_parameter('y', 1.0, comment='Second dimension')

Additionally, one can provide a descriptive comment to inform
potential other users or researchers about the parameter’s scope
and meaning.

Note for simplicity here parameter addition is done in the
main script. In order to re-use parameter definitions it can be
useful to outsource this addition into a distinct Python function
that can be imported upon need.

Afterwards, we decide upon how to explore the parameter
space. More precisely, we are interested in the Cartesian
product set {1.0, 2.0, 3.0, 4.0} × {6.0, 7.0, 8.0}. Therefore,
we use f_explore() in combination with the builder
function cartesian_product(). The f_explore()

function takes a dictionary with parameter names as keys and
lists specifying the parameter exploration ranges as values.
Note that all lists need to be of the same length unless using
cartesian_product(). In this case the list lengths may

differ because the cartesian_product() function will
return the Cartesian product yielding lists with appropriately
matching lengths:

Explore the parameters with a Cartesian product

traj.f_explore(cartesian_product({'x': [1.0,2.0,3.0,4.0],

'y': [6.0,7.0,8.0]}))

Finally, we need to tell the Environment to run our job
multiply with all parameter combinations:

env.run(multiply)

This will evoke our simulation twelve times with the parameter
points (1.0, 6.0), (2.0, 6.0), ..., (4.0, 8.0). This processing of all
parameter combinations corresponds to the fan-out structure
of the second phase. The Trajectory and all results are
automatically stored into an HDF5 file. By default pypet sorts
all results automatically in the sub-trees results.runs.

run_XXXXXXXX, where XXXXXXXX is the index of the run;
run_00000002 for the second run, for example. This tree
structure is not mandatory, but can be changed and modified
by the user. For details the reader is directed to the online
documentation.

Note this storage scheme scatters data across the HDF5 file.
For such a simple scenario where the result is only a single
floating point number this produces some overhead. If desired,
this overhead can be avoided by collecting all results before
storing, see also Section 4.1.

In this basic example this could be implement as follows. The
function multiply could simply return the value z:

def multiply(traj):

"""Simulation that involves multiplying two values."""

z = traj.x * traj.y

return z

In this case all the results are collected by the environment.
Accordingly, the Environment’s run() function returns a
sorted list of tuples where the first entry is the index of the
run followed by the returned data: [(0, 6.0), (1, 12.0)

, ..., (11, 32.0)]. Note that pypet starts counting run
indices at 0. All data could be stored as a list using manual storing
in a short post-processing step:

...

results = env.run(multiply)

traj.f_add_result('all_z', [x[1] for x in results])

traj.f_store()

3.4. Cellular Automata Simulation
We will demonstrate how to use pypet in the context
of a more sophisticated simulation. We will simulate one-
dimensional elementary cellular automata (Wolfram, 2002).
Celullar automata are abstract computational systems that can
produce complex behavior based on simple transition rules.
An automaton consists of a finite sequence of n ordered cells:
st0 s

t
1...s

t
n−1. Each cell can take two possible states 0 and 1, i.e.,

sti ∈ {0, 1}. The states are updated in k discrete time steps, i.e.,
t = 0, 1,, k− 1, according to some transition rule function f .
The updates depend only on the immediate neighborhood of a
cell, that is the cell’s current state and the states of its direct left
and right neighbors:

st+1
i = f (sti−1, s

t
i , s

t
i+1). (1)

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

Hence, there exist 256 different transition rules. Boundary
conditions are periodic, i.e., st+1

0 = f (stn−1, s
t
0, s

t
1) and st+1

n−1 =

f (stn−2, s
t
n−1, s

t
0). For example, the prominent rule 110, that is

proven to be Turing complete (Cook, 2004), follows the state
updates specified in Table 1. The name 110 stems from the
decimal conversion of the update steps ordered according to the
binary states of the neighborhood.

The Python implementation of a cellular automaton with
random initial conditions is given below:

def cellular_automaton(rule_number, ncells, steps, seed):

""" Simulates a one-dimensional cellular automaton """

Create an array for the full pattern

pattern = np.zeros((steps, ncells))

5 # Create the random initial state

np.random.seed(seed)

pattern[0,:] = np.random.randint(2, size=ncells)

Convert the decimal rule to a binary update list

binary_rule = [(rule_number // pow(2, i)) % 2 for i in

range(8)]

10 # Iterate over all steps to compute the CA

for step in range(steps - 1):

for irun in range(ncells):

Get the neighbourhood

neighbour_indices = range(irun - 1, irun + 2)

15 neighbourhood = np.take(pattern[step, :],

neighbour_indices,

mode='wrap')

Convert neighborhood to decimal

decimal_neighborhood = int(np.sum(neighbourhood *
np.array([1, 2, 4])))

20 # Get next state from the update list

and update the state

pattern[step+1, irun] = binary_rule

[decimal_neighborhood]

return pattern

The parameters are the rule number (rule_number, decimal
representation of f), the number of cells (ncells, n),
the number of time steps (steps, k), and the seed for
the random number generator (seed). The details of the
implementation do not matter here. The important part is that
the function cellular_automaton() returns the full cell
pattern containing the states of all cells at all time steps (line 22).

Given such existing simulator functionality that takes
parameters and returns a result, pypet can be added to operate
on top of the code base. One simply needs a wrapper function
that passes parameters from and results back to pypet:

def pypet_ca_wrapper(traj):

"""Wrapper passing parameters from and results to pypet"""

pattern = cellular_automaton(traj.rule_number, traj.ncells,

traj.steps, traj.seed)

5 traj.f_add_result('pattern', pattern,

comment='Development of CA over time')

Still, some boiler-plate code is missing to add parameters, decide
what to explore (here different transitions rules), and start the
simulation:

import numpy as np

from pypet import Environment

Create the environment

env = Environment(trajectory='cellular_automata',

TABLE 1 | Transition function f of rule 110.

Current state

st
i−1 s

t
i
st
i+1

111 110 101 100 011 010 001 000

Next state

st+1
i

0 1 1 0 1 1 1 0

The rule is named after the decimal conversion of the binary representation:

110 = 26 + 25 + 23 + 22 + 2.

5 filename='./HDF5/cellular_automata.hdf5',

multiproc=True,

ncores=4)

traj = env.traj

Add parameters

10 traj.f_add_parameter('ncells', 400, comment='Number of cells')

traj.f_add_parameter('steps', 250,

comment='Number of timesteps')

traj.f_add_parameter('rule_number', 0, comment='The CA rule')

traj.f_add_parameter('seed', 100042, comment='RNG Seed')

15 # Explore some rules

traj.f_explore({'rule_number' : [10, 30, 90, 110, 184, 190]})

Run all (6) simulations

env.run(pypet_ca_wrapper)

In contrast to the previous example, we passed some keyword
arguments to the Environment constructor. We use
trajectory='cellular_automata' and filename

='./HDF5/cellular_automata.hdf5' to explicitly
specify the Trajectory’s name and the resulting HDF5 file.
Moreover, pypet natively supports parallelization using the
Python multiprocessing library. As shown above, to run all
simulation runs on four cores at the same time, we pass the
multiproc=True and ncores=4 keywords.

Next, we want to plot the results. According to the
conceptualization introduced previously, we assume that this
phase is performed in a different script and it is independently
executed from the previous simulation. The full script reads:

import matplotlib.pyplot as plt

from pypet import load_trajectory

Load trajectory without data

traj = load_trajectory(filename='./HDF5/cellular_automata.'

5 'hdf5',

name='cellular_automata',

load_all=0)

traj.v_auto_load = True

Plot all runs

10 for idx, run_name in enumerate(traj.f_iter_runs()):

Load data on-the-fly

rule_number = traj.parameters.rule_number

pattern = traj.results.runs.crun.pattern

Plot CA development of current run

15 plt.subplot(3, 2, idx+1)

plt.imshow(pattern, cmap='gray_r')

plt.title('Rule %d' % rule_number)

The corresponding plots are shown on the left hand side of
Figure 3.

We use the load_trajectory() function to recover the
container from the HDF5 file. Note the keyword load_all=0
which enforces pypet to only load the root node of the tree and
skip the rest of the data. This is particularly useful if our data is
large, potentially hundreds of gigabytes. Thus, we do not load all
data on start-up, but only when we need it; hence the statement
traj.v_auto_load = True in line 8. This allows loading
of data on-the-fly without explicit user request.

Moreover, the method traj.f_iter_runs() (line 10)
iterates all runs (here 6) sequentially and modifies all explored
parameters accordingly (here only rule_number). Hence,
the explored parameter rule_number is iteratively set to
its explored value of the corresponding run. This is helpful
for natural naming requests which will return the value of
the current run iteration. Consequently, traj.parameters.
rule_number (line 12) will return 10 in the first loop iteration,
followed by 30, 90, 110, 184, and 190.

This applies analogously to the statement traj.results.
runs.crun.pattern (line 13) to return the cell pattern
of each run. Due to traj.v_auto_load = True (line 8),

Frontiers in Neuroinformatics | www.frontiersin.org 9 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

FIGURE 3 | Left: Cellular automata simulation showing six different rules. Right: BRIAN2 network simulations for three different synaptic weights w. Spiking raster

plots on the left and the voltage traces of the 0th neuron on the right.

there is no explicit loading with the Trajectory’s f_load
() function necessary, but pypet loads the cell patterns in the
background as soon as the natural naming request traj.
results.runs.crun.pattern is processed. If because of
such a naming request a new node or new data is required
from the trajectory or one of its nodes that is not part of the
current tree in memory, pypet will hand over the request to the
storage service. The service loads data from the HDF5 file and
adds it to the tree. In addition, one may notice the identifier
crun, short for current run. As mentioned before, by default,
all results added via f_add_result() during a single run are
automatically sorted into the Trajectory tree in the branch
results.runs.run_X, where X is the index of the corresponding
run. In combination with f_iter_runs(), crun maps
always to the run currently processed within the for-loop. In the
first iteration this is the 0th run, run_0, followed by run_1 and
so on.

As a side remark, instead of using f_iter_runs(), one
can manually set a Trajectory to a particular run via traj.
v_idx = 2, for example. As a consequence, all explored
parameters are set to the values of the second run andcrunmaps
to run_2. For undoing this and to recover the default settings,
one writes traj.v_idx = -1. Indeed, this internal pointer
v_idx is also used by f_iter_runs() and iteratively set to
each run.

Moreover, the user does not have to iterate through all runs to
find particular parameter combinations. pypet supports searching
the trajectory for a particular run or subsets of runs via lambda
predicate filtering. For example,

traj.f_find_idx('rule_number', lambda x: x > 30 and x < 120)

searches for run indices where the decimal rule representation
is larger than 30 but smaller than 120 (here runs 2
and 3).

3.5. Post Processing and Adaptive
Exploration
Here we will demonstrate how one can alternate the second and
third stage, the run and post-processing phases, respectively, to
adaptively explore the parameter space. We will use a simple
stochastic optimization to maximize the function

f (x) = −(x+ 4)6 + 5(x− 10)4 − 2(x− 4)2 + x. (2)

We will iterate generations of parameter points. The points
will be randomly sampled from normal distributions with their
centers located at the best points of previous generations.
Thereby, we optimize the function in a greedy manner by
exploring the local neighborhood of the current best point.
Note that there are much more efficient ways for stochastic
optimization than demonstrated here, but this should only serve
as an example.

Our top-level simulation function reads:

def eval_func(traj):

x = traj.x

return -(x+4)**6+5*(x-10)**4-2*(x-4)**2+x

We do not want to store every computed value, but simply pass
the results to the outer scope for post-processing. Accordingly,
instead of using the f_add_result() functionality of
the Trajectory, the simulation eval_func returns the
result.

Next, we need to create an Environment, add the
parameters, add the parameter exploration, and alternate the
simulation runs with post-processing:

import numpy as np

import logging

from pypet import Environment

1. Pre-processing and parameter specification

5 env = Environment(log_level=logging.ERROR,

automatic_storing=False)

traj = env.traj

traj.f_add_parameter('sigma', 0.5, comment='Width of Gaussian')

Frontiers in Neuroinformatics | www.frontiersin.org 10 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

traj.f_add_parameter('ngen', 30,

10 comment='Number of generations')

traj.f_add_parameter('popsize', 200,

comment='Number of points per generation')

traj.f_add_parameter('x', 1.0, comment='x-value')

Helper variables

15 best_x, best_value = 0, -np.inf

Alternate the run and post-processing phase

for generation in range(traj.ngen):

Add new points sampled around the current best one

new_points = (np.random.randn(traj.popsize) * traj.sigma +

20 best_x).tolist()

traj.f_expand({'x': new_points})

2. Run the experiment and collect results

results = env.run(eval_func)

3. Post-processing, find the best value

25 for run_idx, value in results:

if value > best_value:

traj.v_idx = run_idx

best_x, best_value = traj.x, value

Keep best value of the current generation

30 traj.f_add_result('generation_%d' % generation,

x=best_x, value=best_value)

print('Best x is %.6f with value %.1f in generation %d' %

(best_x, best_value, generation))

Manually store the trajectory

35 traj.f_store()

The keyword log_level=logging.ERROR (line 5) takes
care that pypet only logs errors and keeps the output to the
console to a minimum. In addition, via automatic_storing
=False in line 6 pypet is told to not store data in regular
intervals. Since we do not want to store any data during single
runs, but process the results after each run phase, this statement
saves some overhead.

Next, we iterate over 30 generations (traj.ngen) and
sample 200 points (traj.popsize) in each generation from a
Gaussian distribution (np.random.randn()) with a width of
0.5 (traj.sigma) centered at the current best point (lines 19–
21). In every generation we expand the trajectory and add
new points. In order to do so we can use the f_expand

() function. It will either extend a Trajectory containing
some already explored points or simply behave as the already
known f_explore() function in case of an unexplored
Trajectory at the initial loop iteration.

Subsequently, we obtain the results of the single runs. If our
top-level simulation function returns data, the Environment
will pass this data in form of a list of tuples back to the outer script
(results in line 23). As mentioned before, each tuple has two
entries: The first contains the index of the corresponding run and
the second is the returned data. For example, in the first iteration
the list may look like the following: [(0, 3342.267), (1,

-9.42), (2, 4242.776), ...].
Next, we perform the post-processing. We iterate through

the obtained values and update the best point we found so
far (lines 25–28). Additionally, we add the best point of each
generation as a result to our Trajectory in line 31. At the end
of the loop we print the current best point. Finally, because we
turned off pypet’s automatic storing, we need to manually initiate
the storing to disk (line 35).

If we run the above specified script, the best value of each
generation will be printed to the screen:

Best x is -1.409297 with value 84361.6 in generation 0

Best x is -2.839186 with value 135770.0 in generation 1

...

Best x is -12.165024 with value 909977.2 in generation 28

5 Best x is -12.165024 with value 909977.2 in generation 29

In general, the user does not have to wait until all single runs
are finished to start post-processing. With multiprocessing pypet

can already initiate post-processing and extend a Trajectory
while the Environment still performs single runs. This

feature of immediate post-processing is explained in the online
documentation.

3.6. pypet and BRIAN2
We will demonstrate how to use pypet with the neuron simulator
BRIAN2 (Stimberg et al., 2014). We will simulate a homogeneous
population of neurons that are randomly coupled via inhibitory
synapses. Each neuron obeys the following differential equation
and spiking condition:

dVi

dt
=
1

τ
(I0 − Vi)+

∑

tj

w δ(t − tj), (3)

if Vi ≥VT : spike event & Vi → 0, (4)

with Vi denoting the dynamic membrane voltage of the ith
neuron, τ is the membrane time constant, and I0 the static input.
If the membrane voltage crosses the threshold of VT , it is reset to
0 and the event is counted as a spike. The neurons are randomly
connected with a fixed probability. In case of a connection
between neuron j and i, a pre-synaptic spike of neuron j at time
tj causes an instantaneous change of the membrane voltage of
magnitude w. We will only consider inhibitory connections, i.e.,
w < 0.

First, we define a function to add all parameters of the model:

def add_parameters(traj):

Change the standard parameter

traj.v_standard_parameter = Brian2Parameter

Add all parameters

5 traj.f_add_parameter('ng.N', 1000, comment='Net size')

traj.f_add_parameter('ng.reset', 'V = 0*mV',

comment='Neuron reset')

traj.f_add_parameter('ng.threshold', 'V > 10*mV',

comment='Neuron threshold')

10 traj.f_add_parameter('ng.tau', 5*ms,

comment='Neuron time constant')

traj.f_add_parameter('ng.I0', 10.1*mV,

comment='Driving input')

traj.f_add_parameter('ng.V_spread', 5*mV,

15 comment='Spread of initial conditions')

traj.f_add_parameter('ng.model',

'dV/dt=(I0-V)/(tau) : volt',

comment='Model eqs')

traj.f_add_parameter('syn.w', -1*mV,

20 comment='Synaptic weight')

traj.f_add_parameter('syn.p', 0.05,

comment='Connection probability')

traj.f_add_parameter('syn.model', 'w :volt',

comment='Synapse model')

25 traj.f_add_parameter('syn.pre', 'V += w',

comment='Pre code')

traj.f_add_parameter('sim.T', 1000*ms, comment='Runtime')

traj.f_add_parameter('sim.seed', 42, comment='RNG seed')

BRIAN2 supports quantities that have units like volt or ampere.
Accordingly, we cannot use pypet’s default Parameter because
it does not handle such data. However, there exists the specialized
sub-class Brian2Parameter that supports BRIAN2
quantities. By setting traj.v_standard_parameter

= Brian2Parameter in line 3, pypet will always use the
Brian2Parameter instead of the Parameter.

Moreover, because the simulation is based on more than
a few parameters, we structure our parameter space and
sort the parameters into different sub-groups. For example,
the synaptic weight 'w' is part of the 'syn' (short for
synapse) group. Accordingly, the parameter addition traj.

Frontiers in Neuroinformatics | www.frontiersin.org 11 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

f_add_parameter('syn.w', ...) will automatically
create the 'syn' group if it does not yet exist in the trajectory
tree.

Next, the simulation function is given below. We create a
BRIAN2 NeuronGroup with random membrane voltages as
initial condition, add connections via Synapses, and record
activity using a SpikeMonitor and voltage traces via a
StateMonitor. Finally, after the network is run, the monitor
data is handed over to the Trajectory:

def run_network(traj):

Create the neuron group with random initial conditions

np.random.seed(traj.seed)

ng = NeuronGroup(traj.N, traj.ng.model,

5 threshold=traj.threshold, reset=traj.

reset, namespace=dict(tau=traj.tau,

I0=traj.I0))

ng.V = np.random.rand(traj.N) * traj.V_spread

Connect the neurons randomly

syn = Synapses(ng, ng, model=traj.syn.model, on_pre=traj.

syn.pre)

10 syn.connect(True, p=traj.p)

syn.w = traj.w

Add recording monitors

spmon = SpikeMonitor(ng)

vmon = StateMonitor(ng, variables=['V'], record=[0,1,2])

15 # Create and run the network

net = Network(ng, syn, spmon, vmon)

net.run(traj.T)

Store the recorded data

traj.f_add_result(Brian2MonitorResult, 'spmon', spmon,

20 comment='Spikes')

traj.f_add_result(Brian2MonitorResult, 'vmon', vmon,

comment='Voltage')

As before, BRIAN2 monitor data cannot be handled
by the default Result. Accordingly, we use the
Brian2MonitorResult that automatically extracts the
recorded data of the monitors. In case of the SpikeMonitor
the spike times are provided by an array spmon.t and the
corresponding neuron indices by spmon.i. The extracted
data is stored in the Trajectory under the same name. For
example, the indices can be accessed via traj.results.

runs.crun.spmon.i. Similarly, the data provided by the
StateMonitor is the membrane voltage vmon.V and the
measurement times vmon.t.

To run the simulation we still need some boilerplate code.
Furthermore, we decide to explore different inhibitory synaptic
connection strengths w:

import numpy as np

from brian2 import ms, mV, NeuronGroup, Synapses, \

PopulationRateMonitor, SpikeMonitor, StateMonitor, Network

from pypet.brian2.parameter import Brian2Parameter, \

5 Brian2MonitorResult

from pypet import Environment

env = Environment(trajectory='brian2_net',

filename='./HDF5/brian2_net.hdf5')

traj = env.traj

10 # Add parameters

add_parameters(traj)

Explore some rules

traj.f_explore({'w' : [-0.1*mV, -1*mV, -10*mV]})

Run all (3) simulations

15 env.run(run_network)

After the execution of the code above, we can plot the results in
a new Python script. The script below plots the spiking activity
as a raster plot and the voltage trace of one neuron for each
run:

import matplotlib.pyplot as plt

from pypet import load_trajectory

Load the trajectory with dynamic imports:

traj = load_trajectory(filename='./HDF5/brian2_net.hdf5',

5 name='brian2_net',

load_all=0,

dynamic_imports=[Brian2Parameter,

Brian2MonitorResult])

traj.v_auto_load = True

10 # Plot all runs

for idx, run_name in enumerate(traj.f_iter_runs()):

w = traj.parameters.syn.w

Plot the spiking activity

i = traj.results.runs.crun.spmon.i

15 t = traj.results.runs.crun.spmon.t

plt.subplot(3, 2, 2*idx+1)

plt.plot(t, i, '.k')

plt.title('w = %s' % str(w))

Plot the membrane current of neuron 0

20 V = traj.results.runs.crun.vmon.V

t = traj.results.runs.crun.vmon.t

plt.subplot(3, 2, 2*idx+2)

plt.plot(t, V[0,:]/mV, lw=2)

The corresponding plots are shown on the right hand side of
Figure 3.

The keyworddynamic_imports=[Brian2Parameter,
Brian2MonitorResult] in line 7 is needed because all
parameters and results are handled by Brian2Parameter

and Brian2MonitorResult containers. The Trajectory
needs access to the container constructors Brian2Parameter
and Brian2MonitorResult during runtime because the
trajectory.py module has no direct access to BRIAN2
related elements to avoid a dependency on the BRIAN2 package.
Accordingly, users can import pypet without the requirement of
a BRIAN2 installation.

Similarly, if the user had written her own custom
containers, for example named CustomResult or
CustomParameter, these constructors should be passed to the
Trajectory via dynamic_imports=[CustomResult,
CustomParameter] as well. This allows pypet to
appropriately load data for the customized containers from disk.

3.7. Integration with Other Software
pypet can be combined with other packages depending on the
research demands at hand. Figure 4 shows some exemplary use
cases and the corresponding software setup.

A combination of pypet, SCOOP (Hold-Geoffroy et al., 2014),
and the evolutionary algorithm toolkit DEAP (Fortin et al.,
2012) could be used to optimize hyper parameters of a machine
learning application, like image classification. Accordingly, pypet
will use the SCOOP package to distribute runs among a server
infrastructure for massively parallel exploration. In order to
combine pypet with SCOOP one simply needs to create an
environment in one’s main Python script as follows:

env = Environment(multiproc=True,

use_scoop=True)

and start the script, here named mysimulation.py, with
the -m scoop option:

$ python -m scoop mysimulation.py

For details on how to choose SCOOP workers among multiple
servers, how to use pypet with SCOOP on a computing cluster
like a sun grid engine, and how to include DEAP into a pypet
project, the reader is directed to the online documentation.

Another use case of pypet could be the analysis of experimental
data, for instance fMRI time series data of brain scans. Analysis
steps might be involved and rely onmany parameters. In this case
provenance management of a developing analysis pipeline can be

Frontiers in Neuroinformatics | www.frontiersin.org 12 August 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

FIGURE 4 | Three use case examples combining pypet with other software.

important. Therefore, pypet could be combined with GitPython17

for source code version control and with Sumatra (Davison,
2012) to track versions of all applied software.

Accordingly, if the path to the main folder of the
user’s git repository is passed to the Environment

via git_repository='/path/to/project', pypet
automatically triggers a git commit via GitPython if it finds
changes in the code base. pypet remembers the commit’s SHA
identifier. Consequently, the user can always recall the exact
version of a code base with which particular results were
obtained. Instead of automatic commits, pypet can also be
configured to raise an error in case of code changes via passing
git_fail=True to the Environment.

Likewise, if the user’s project is under the supervision of
Sumatra, she can specify the path to the Sumatra project folder
via passing sumatra_project='/path/to/project'

as keyword argument to the Environment constructor.
Accordingly, pypet automatically submits a Sumatra record
for provenance management. The Sumatra record will contain
information about the computing platform, like the operating
system, and the version numbers of all project’s software
dependencies.

pypet can also be used in small scripts for rapid prototyping.
For instance, one may use pypet within an IPython notebook
to develop a spiking neural network model based on the
BRIAN2 simulator. IPython notebooks are especially suitable
for fast prototyping. Plots of results can be displayed right
next to the corresponding source code within the notebook. In
addition, researchers can use the pypet Trajectory container
interactively, for example by browsing the data tree using
tab-completion.

4. SUMMARY AND DISCUSSION

We described pypet, a flexible Python tool to manage numerical
experiments and simulations. pypet has a rich set of features
and its main objectives are easy exploration of high dimensional
parameter spaces and fostering ties between the parameters and
simulation results.

17https://gitpython.readthedocs.org

pypet provides a novel container called Trajectory that
governs all parameters and results. The data handled by a
Trajectory is automatically stored to disk in the convenient
HDF5 format. The tree structure of the Trajectory maps
one-to-one to the data hierarchy in a HDF5 file.

In addition, pypet’s Environment forms a general
framework for simulations. It schedules individual runs of the
user’s experiments, manages administrative tasks like logging,
and can be used to parallelize simulations using multiple CPUs.

pypet integrates well with other libraries for advanced an
extended usage. We demonstrated that pypet can be easily
combined with git version control and the Sumatra library for
comprehensive provenance management. We also sketched
how to use pypet in a cluster or multi-server environment with
SCOOP. Furthermore, in case the user wants to adaptively
explore the parameter space, she can use the optimization
toolbox DEAP, a Python framework for evolutionary
algorithms.

In conclusion, by supporting data management via various
features and by tightly linking numerical results and the
underlying parameters, pypet enhances reproducible research
in computational neuroscience and other disciplines exercising
computer simulations in Python.

4.1. Limitations and Future Work
As with all software tools, pypet has its limitations. pypet
adds some overhead to a user’s simulation. On a conventional
notebook pypet’s overhead adds roughly about 0.0001–0.1 s
runtime to a single run. Of course, exact values depend on the
hardware at hand, choices of parallelization, and how much data
is stored. For simulations lasting seconds, minutes, or longer—
which is more the rule than the exception in computational
neuroscience—this pales into insignificance. Yet, for simulations
with more than a million runs pypet’s overhead accumulates and
can be a matter of days. Likewise, for this order of magnitude
the overhead caused by run and parameter meta-data becomes
a problem, too. Already loading explored parameters as well as
run information data can take up to several seconds. This initial
loading time makes analyses cumbersome. In this case the user
is advised to split the runs across several trajectories and analyze
the data therein independently.

Frontiers in Neuroinformatics | www.frontiersin.org 13 August 2016 | Volume 10 | Article 38

https://gitpython.readthedocs.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

FIGURE 5 | Runtime, resulting HDF5 file size, and loading time of three simple pypet use cases are depicted as a function of the number of runs in an

experiment. All experiments involve only creating random numbers (via NumPy’s random.rand() function) and storing the data to disk collectively at the end or

individually in each run. In red a single run returns a random number that is stored together with all results after the execution of all single runs. In green a single run

involves storing a single random floating point number (datasize 64 bit per number) in each run. In blue a large array of 1000 by 125 random numbers (datasize 1

megabyte per array) is written to disk in every run. On the right two different methods of pypet’s data loading are depicted for each experiment. The solid lines mark

loading all data at once into memory. Note that in case of the 1000 by 125 arrays data could only be loaded at once for up to 3000 runs because of limited RAM. The

dashed lines mark loading data via the v_auto_loading functionality iteratively. After loading data of a single run, it is immediately removed again to free RAM.

Experiments were performed with a single core of 2.5 GHz on a conventional notebook (Lenovo ThinkPad T420) with 8 GB RAM, Samsung SSD 840 PRO, and

Ubunutu 14.04 Linux operating system.

Furthermore, there exists overhead not only related to
simulationmeta-data and explored parameters, but also to results
stored into an HDF5 file. The runtime, HDF5 file size, and
loading time for three simple pypet use cases that involve creation
and storage of random floating point numbers are depicted in
Figure 5. pypet is well suited for experiments where individual
runs already produce some considerable amount of data. In
this case the overhead for scattering data across the HDF5
file is minuscule in comparison to the data itself. An example
of such data is shown in blue in Figure 5 where an array
of random numbers of 1 megabyte in size is stored in each
run. In real experiments data could be arrays containing time
series: Voltage traces of simulated neurons, for example. If the
result of a single run is only a single number (green lines in
Figure 5; see also the basic example in Section 3.3), however,
it might be more useful to return each number. Subsequently,
all returned numbers can be stored together into a single array
after the runs are executed (red lines) to avoid the overhead
induced by scattering many individual floats across the HDF5
file.

Furthermore, pypet relies on PyTables. PyTables does not
support parallel access to HDF5 files. Even for massively parallel
runs, data is only stored sequentially. Hence, if the storage of
data makes up a large part of a single run, the data storage
constitutes a bottleneck. However, pypet is modularized. The
Trajectory and the containers are independent of the storage
backend. Thus, besides the current HDF5StorageService, in
the future pypetmay be complemented with a service that allows
parallel storage.

Likewise, HDF5 is an adequate format in case data is read
often but only written once. Deleting or replacing existing data
is possible but not well supported. The deletion of data does
not reduce the file size. Accordingly, many deletions or data
replacements may blow up the HDF5 file size considerably.

However, for most of pypet’s intended use cases this does not
constitute a major problem. pypet is designed for parameter
exploration in numerical experiments. Accordingly, the results
should be considered as experimental raw data with no need to
change after the recording. Hence, data is only written once to an
HDF5 file and not modified or overwritten afterwards. Still, in the
future the inflexibility of the HDF5 format could be overcome by
the implementation of a new backend, like a service supporting
SQL or Mongo18 databases. Accordingly, the user can choose the
backend that caters best to her needs.

AUTHOR CONTRIBUTIONS

RM did the program design, implementation, and drafting the
manuscript. KO did drafting and revising the manuscript and
helped with the concept and design decisions.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(GRK1589/1).

ACKNOWLEDGMENTS

We thank Mehmet Nevvaf Timur for his contributions to the
SCOOP integration and Henri Bunting for his contributions
to the BRIAN2 subpackage. We want to thank Raphael Holca-
Lamarre for his comments and advice on the manuscript.
Moreover, we want to express our gratitude to Robert Pröpper
and Philipp Meier for their advice on Python programming.
Thanks to Owen Mackwood for his SNEP toolbox which
provided the initial ideas for this project.

18https://www.mongodb.com/

Frontiers in Neuroinformatics | www.frontiersin.org 14 August 2016 | Volume 10 | Article 38

https://www.mongodb.com/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Meyer and Obermayer pypet

REFERENCES

Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neuronal

network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.00034

Bäcker, A. (2007). Computational physics education with Python. Comput. Sci.

Eng. 9, 30–33. doi: 10.1109/MCSE.2007.48

Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. E., Silva, T.,

et al. (2005). “VisTrails: enabling interactive multiple-view visualizations,” in

Proceeding IEEE Visiualization, 135–142.

Borcherds, P. H. (2007). Python: a language for computational physics. Comput.

Phys. Commun. 177, 199–201. doi: 10.1016/j.cpc.2007.02.019

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. New York, NY:

Cambridge University Press.

Cook, M. (2004). Universality in elementary cellular automata. Complex Syst. 15,

1–40.

Davison, A. P. (2008). PyNN: a common interface for neuronal network

simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P. (2012). Automated capture of experiment context for easier

reproducibility in computational research. Comput. Sci. Eng. 14, 48–56. doi:

10.1109/MCSE.2012.41

Fangohr, H. (2004). “A comparison of C, Matlab and Python as teaching languages

in engineering,” in Computer Science - ICCS 2004 4th International Conference

(Kraków), 1210–1217.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C.

(2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,

2171–2175.

Gewaltig, M.-O., and Cannon, R. (2014). Current practice in software development

for computational neuroscience and how to improve it. PLoS Comput. Biol.

10:e1003376. doi: 10.1371/journal.pcbi.1003376

Goodman, D., and Brette, R. (2008). BRIAN: a simulator for spiking neural

networks in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M. (2014). “Once you SCOOP,

no need to fork,” in XSEDE ’14 Proceedings of the 2014 Annual Conference

on Extreme Science and Engineering Discovery Environment (New York, NY:

ACM), 1–60.

Ince, D. C., Hatton, L., and Graham-Cumming, J. (2012). The case for open

computer programs. Nature 482, 485–488. doi: 10.1038/nature10836

Lin, J. W. B. (2012). Why Python is the next wave in earth sciences computing.

Bull. Am. Meteorol. Soc. 93, 1823–1824. doi: 10.1175/BAMS-D-12-00148.1

McKinney,W. (2011). “Pandas: a foundational Python library for data analysis and

statistics,” in Python High Performance Science Computer.

Meyerovich, L. A., and Rabkin, A. S. (2013). “Empirical analysis of programming

language adoption,” in Proceedings of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages and

Applications-OOPSLA ’13 (Indianapolis, IN), 1–18.

Muller, E., Bednar, J. A., Diesman, M., Gewaltig, M.-O., Hines, M., and

Davison, A. P. (2015). Python in neuroscience. Front. Neuroinform. 9:11. doi:

10.3389/fninf.2015.00011

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Perez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific

computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Reimann, M. W., Anastassiou, C. A., Perin, R., Hill, S. L., Markram, H., and Koch,

C. (2013). A biophysically detailed model of neocortical local field potentials

predicts the critical role of active membrane currents.Neuron 79, 375–390. doi:

10.1016/j.neuron.2013.05.023

Stevens, J.-L. R., Elver, M., and Bednar, J. A. (2013). An automated and

reproducible workflow for running and analyzing neural simulations

using Lancet and IPython Notebook. Front. Neuroinform. 7:44. doi:

10.3389/fninf.2013.00044

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Stimberg, M.,Wimmer, K., Martin, R., Schwabe, L., Mariño, J., Schummers, J., et al.

(2009). The operating regime of local computations in primary visual cortex.

Cereb. Cortex 19, 2166–2180. doi: 10.1093/cercor/bhn240

Stockton, D. B., and Santamaria, F. (2015). NeuroManager: a workflow analysis

based simulation management engine for computational neuroscience. Front.

Neuroinform. 9:24. doi: 10.3389/fninf.2015.00024

Stodden, V. (2011). Trust your science? Open your data and code.AMSTATNEWS,

p. 21–22.

Topalidou, M., Leblois, A., Boraud, T., and Rougier, N. P. (2015). A long journey

into reproducible computational neuroscience. Front. Comput. Neurosci. 9:30.

doi: 10.3389/fncom.2015.00030

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: a

structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30. doi:

10.1109/mcse.2011.37

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). Bluepyopt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Meyer and Obermayer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 August 2016 | Volume 10 | Article 38

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	pypet: A Python Toolkit for Data Management of Parameter Explorations
	1. Introduction
	Box 1 | Main features.
	1.1. Existing Software

	2. pypet Architecture and Development
	2.1. Packaging and Testing
	2.2. Parameter Exploration and Conceptualization
	2.3. General Package Structure
	2.4. Parameters and Results
	2.5. Trajectory
	2.6. Data Storage and Loading
	2.7. Environment

	3. Usage
	3.1. Installation
	3.2. Naming Convention
	3.3. Basic Example
	3.4. Cellular Automata Simulation
	3.5. Post Processing and Adaptive Exploration
	3.6. pypet and BRIAN2
	3.7. Integration with Other Software

	4. Summary and Discussion
	4.1. Limitations and Future Work

	Author Contributions
	Funding
	Acknowledgments
	References

