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Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by
Yeo et al. (2011), and the visualization of these complex networks is a difficult task.
Also, the combination of functional connectivity networks determined by fMRI with
electroencephalography (EEG) data could be a very useful tool. Mobile devices are
becoming increasingly common among users, and for this reason, we describe here
two applications for Android and iOS mobile devices: one that shows in an interactive
way the seven Yeo functional connectivity networks, and another application that shows
the relative position of 10-20 EEG electrodes with Yeo’s seven functional connectivity
networks.

Keywords: functional connectivity, EEG, EEG-fMRI, fMRI, smartphone, mobile application, intrinsic connectivity
networks

INTRODUCTION

Visualization of the human brain using complex images such as tractography, functional
connectivity, functional imaging, brain volume, PET, SPECT, etc. is a significant challenge,
and the fusion of such types of images produce an even more complex problem. Also, the
increased use of functional connectivity based on functional MRI (fMRI) techniques, and
the visualization of the complex networks obtained by this method, creates the need for
advanced tools to visualize the various functional connectivity networks for academic purposes
and research.

Functional connectivity is defined as the time dependence of neuronal activity between
anatomically separate brain regions (Proal et al., 2011). There are multiple functional connectivity
networks in a healthy brain. Yeo et al. (2011) with his network-level parcellation determined
that there are at least seven standard functional connectivity networks in the healthy human
brain. These are visual network, somatomotor, dorsal attention, ventral attention, limbic,
frontoparietal and default network (default mode network, DMN). Examples of this are the
(consisting of precuneus, medial frontal, inferior parietal cortical regions and medial temporal
lobe), which is active during wakeful rest and deactivates during most externally oriented tasks
(Raichle et al., 2001; Greicius, 2008; de la Iglesia-Vayd et al, 2013); and the somatomotor
network related to sensitive and primary motor processing (de la Iglesia-Vaya et al., 2013).
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Different neuroimaging visualization techniques have been
proposed. For example, Margulies et al. (2013) describe 2-D and
3-D methods to display anatomical information, tractography
and functional connectivity. Rojas et al. (2014) describe
a method for displaying stereoscopic 3-D neuroimages by
using red-cyan colors. Rojas et al. (2014), show examples of
tractography, brain volumetry, and quantification of multiple
sclerosis lesions and images of functional connectivity (network
visualization).

Another brain test is Electroencephalography (EEG), a well-
known electrophysiological diagnosis method that measures the
electrical activity of the brain. It is a noninvasive technique in
which electrodes are attached over the scalp. There are two
systems for the placement of electrodes: 10-20 corresponding
to 21 electrodes (Jasper, 1958; Klem et al., 1999), and 10-10
which corresponds to 65 electrodes (Nuwer et al, 1998).
EEG is the principal diagnostic tool for diseases such as
epilepsy.

Mobile devices (such as smartphones and tablets) are
becoming increasingly common among users. In a study
published by Scott Wilson on November 6, 2013 (Wilson,
2013), sales of phones and tablets are increasing in an
annual growth rate of 21.8% (Table 1), implying a broad
base of potential users for each application. Mainly, there
are four operating systems for mobile devices: iOS used by
Apple devices (13.9% of iPhone and iPad), Android used
by Samsung Electronics Co Ltd., LG Electronics Inc., Sony
Corporation, Google Inc., HTC Corporation, Motorola Inc.,
Huawei, Xiaomi, etc. (corresponding to 82.8%), Windows Phone
(2.6%), Blackberry OS (0.3%) and others (0.4%; IDC Research,
Inc., 2015). In the medical field, 79.0% of medical students and
74.8% of junior doctors in United Kingdom owned a smartphone
(Payne et al, 2012), and in USA 87% of medical doctors use
a smartphone or tablet device in their workplace (Ventola,
2014).

In this article, we describe two applications for iOS and
Android-based mobile devices covering 96.7% of the mobile
market. One application shows the seven standard functional
connectivity networks (Yeo et al, 2011) superimposed on a
cerebral cortex (transparent brain) and the other one interactive
application shows 21 10-20 EEG electrodes over the Yeo et al.
(2011) standard networks.

MATERIALS AND METHODS

3D Models (Mesh)

MNI152 image is a standard space T1-wieghted average
structural template image. It was created by averaging 152

TABLE 1 | Worldwide annual sales growth of tablets and smartphones
(millions of units; Wilson, 2013).

Device type 2011 2012 2013 2014 2015 2016 2017
Tablets 60 120 197 266 338 401 468
Smart phones 367 474 568 670 765 8562 923
Total 427 594 765 936 1103 1253 1391

T1-weighted MRI images (normal young adults) linearly
transformed to Talairach space (Mazziotta et al., 1995, 2001;
Mandal et al., 2012).

Using the template image MNI152 (2 mm isotropic voxel
size), a mesh model of the brain cortex was created using
Grayscale Model Maker module (marching cubes algorithm
[Lorensen and Cline, 1987]; grayscale threshold of isosurface:
5800, number of smoothing iterations: 50, target reduction
during decimation: 25% triangles to be removed, split normal,
calculate the normal vectors for the points, pad the input
volume with zero value voxels) from the 3D Slicer 3.6.3
open-source software (Brigham and Women’s Hospital,
Boston, MA, USA!L, Gering et al., 1999; Pieper et al., 2004,
2006).

A mask of the network-level parcellation published by Yeo
(Yeo et al, 2011%) was used to create the mesh model of
the seven standard functional networks (Yeo et al, 2011).
These mesh models were built using the Model Maker module
(marching cubes algorithm [Lorensen and Cline, 1987]; number
of smoothing iterations: 10, filter type for smoothing: Sinc, target
reduction during decimation: 25% triangles to be removed, split
normals, calculate the normal vectors for the points, pad the
input volume with zero value voxels) from the 3D Slicer 3.6.3
software.

The HC Laplacian algorithm (MeshLab v 1.3.3%, Vollmer
et al., 1999; Cignoni et al., 2008a,b) was used to smoothen the
3D meshes of the seven Yeo networks and the brain cortex.
Wavefront OBJ geometry definition file format was used to save
the meshes.

http://www.slicer.org
Zhttps://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Ye02011
3http://meshlab.sourceforge.net
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FIGURE 1| Main window of the iBraiN2 application. By touching
“Instructions”, user instructions appear for iBraiN2, by pressing “About”
iBraiN2 authoring information appears, and by touching the “Select Network”
button the application displays a menu to select a functional connectivity
network (see Figure 2).
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Select a Network

VISUAL NETWORK SOMATOMOTOR NETWORK

LIMBIC NETWORK FRONTOPARIETAL

FIGURE 2 | Window for selecting the functional connectivity network which will be displayed individually, or all networks on a single brain. For
example, iBraiN2 will show the window in Figure 3 if the user selects “All Networks”, and the visual connectivity network (Yeo et al., 2011) from Figure 4 will appear

if the user touches the “Visual Network” button.

f

VENTRAL ATTENTION

WO

DORSAL ATTENTION

DEFAULT NETWORK ALL NETWORKS

Design and Application Programming

The i0S and Android apps were created using C# programming
language and the following software: Unity 4.6x (development
engine to create 2D and 3D graphics applications?®),
MonoDevelop IDE®, Blender (3D graphics software®), GIMP
(GNU Image manipulation program’). Xcode 6x Integrated
Development Environment in MAC OSX (Apple Inc., Cupertino,
CA, USA?®) was used to create iOS-based version of both mobile
applications.

MNI coordinates for standard 10-20 EEG electrodes were
computed previously (Rojas and Galvez, 2013). Then using
that MNI coordinates, red spheres were positioned over the
mesh of the brain cortex and the functional connectivity
meshes.

RESULTS

Two applications called iBraiN2 and iBraiNEEG2 were
developed for the visualization of Functional connectivity
networks.

4http://www.unity.com
Shttp://www.monodevelop.com
Shttp://www.blender.org
7http://www.gimp.org
8http://www.apple.com

iBraiN2
The application name, iBraiN2, is an acronym that stands for
“Intrinsic Brain Networks”.

The iBraiN2 application shows a 3-D transparent brain,
merged with one of seven standard functional networks (Yeo
et al., 2011) that can be selected by the user. The brain can be
rotated using the controls on the screen (arrows), and the brain
size can be changed by a pinch gesture. From Figures 1-5 the
user can see the Graphical User Interface (GUI) of the application
and how it is used.

To install this app on an Android mobile device, users
must select Google Play Store (Google Inc.) and search for
the app by its name “iBraiN2” (to install it, use QR code in
Figure 6A). In iOS, users must enter the App Store (Apple
Inc.) and search for “iBraiN2” (to install it use QR code in
Figure 6B).

iBraiNEEG2

The application name, iBraiNEEG2, is an acronym standing for
“Intrinsic Brain Networks EEG”.

The application shows a transparent brain with seven
connectivity networks upon it (Yeo et al, 2011) and 21
red spheres on the brain in the standard 10-20 EEG
electrode positions as determined in a previous work (Rojas
and Gaélvez, 2013). The various GUI windows are shown
in Figures 7-9. The name of each EEG electrode and
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Somatomotor

FIGURE 3 | A transparent brain with seven superimposed functional
connectivity networks is shown by touching the “All Networks” button
(Figure 2). By pressing each network, its name will appear in the upper
left-hand corner. The brain can be rotated by pressing the four light blue
arrows.

functional network is displayed interactively by touching
on each red sphere and on the light bulb, respectively
Figures 8, 9.

The application shows 10-20 EEG electrode positions
(21 electrodes) because it is difficult for the application
user to select on the touchscreen more than 21 electrodes
(65 electrodes of 10-10 EEG standard), and also because
in clinical use the 10-20 EEG system is the most often
used.

To install this application on an Android mobile device, select
Google Play Store (Google Inc.) and search for the “iBraiNEEG2”
application (use QR code in Figure 10A). In iOS App Store
(Apple Inc.), search “iBraiNEEG” (without the number 2) and
install (to install it use QR in Figure 10B). More information
about both applications can be found at http://www.aribrain.info
website.

FIGURE 5 | Default mode functional connectivity network displayed at
different angles (A left hemisphere, and B left frontal). Through the
transparent brain, the different regions that make up this wide network can be

FIGURE 4 | Visual functional connectivity network. In the transparent
brain, it can be clearly seen that the visual network is located only in the
occipital lobe, and it has no connectivity with other brain regions. The network
can be rotated by touching the arrows on the lower right and lower left-hand
corners.

clearly seen: mainly frontal, parietal and temporal lobe regions.

DISCUSSION

Both applications show the advanced uses that iOS and
Android-based mobile devices (tablets and smartphones)
can be given in the medical field. As far as we know,
iBraiN2 and iBraiNEEG2 are the first functional connectivity
applications  for  iOS/Android-based = mobile  devices.
These applications are different from previous work: (i)
the atlas in Rojas et al. (2014), which is a functional
connectivity anaglyph, based in area-level parcellation
(Craddock et al., 2012) for visualization in PC with 3D
Slicer software; and (ii) iBraiN2 and iBraiNEEG2, which

A

FIGURE 6 | QR code to install iBraiN application in (A) Android-based
devices, (B) iOS-based devices.
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IBraiNEEG
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FIGURE 7 | iBraiNEEG2 main window. iBraiNEEG2 user instructions will be
shown by touching the “Instructions” button; by pressing “About” the
iBraiNEEG2 authoring information appears, and “Start” shows the transparent
brain with the seven connectivity networks (Yeo et al., 2011) and red spheres
for the 10-20 electroencephalography (EEG) electrodes (Figure 8).

are mobile based applications with functional connectivity
networks, based in network-level parcellation (Yeo et al,
2011).

iBraiN2 is a tool for academic use that shows the
three-dimensional position of each functional connectivity
network in the cerebral cortex. Using a transparent brain,
it is possible to see the position of each region in its
connectivity network or the relative position of each network.
Although this 3D representation only shows a fixed dataset, is
useful for academic purposes for neurologists, neurosurgeons,
radiologists, medical students, neuroscientists and researchers
in neuroimaging, among other professionals, since it allows
them to easily understand in an interactive way the anatomy
and distribution of the brain’s functional networks, because it
shows the standard functional connectivity networks (Yeo et al.,
2011).

FIGURE 8 | The transparent brain is shown with seven connectivity
networks (Yeo et al., 2011) and red spheres on the 10-20 EEG
electrode positions. By touching a sphere, the name of the electrode
appears on the upper left-hand corner of the screen (for example, T3).

FIGURE 9 | By pressing the bulb on the left of the screen, the name of
each of the seven functional connectivity networks (Yeo et al., 2011)
appears with a color palette in a window on the right side of the
screen.

iBraiNEEG2 shows the relative position of the 10-20 EEG
electrodes with respect to the functional connectivity networks.
This application helps the EEG analysis regarding standard
functional connectivity networks (Yeo et al., 2011) and combines
EEG data and functional connectivity obtained with fMRI
to support the analysis of these techniques and research
into diseases such as epilepsy. For example, with the EEG
data of the epileptic focus of a patient, it could be possible
to get the RS-fMRI functional connectivity network that is
affected.

Should the scientific community adopt a brain
atlas as a functional connectivity gold standard, future
updates of the applications would greatly benefit from
the use of such atlas. A very relevant candidate for
this standard would be a recently published brain atlas
(Glasser et al, 2016) that multi-modal magnetic
resonance images from the Human Connectome Project
(HCP).

In conclusion, the applications for
shown here are useful for education and training purposes
(medical professionals) in functional connectivity related
topics and EEG analysis regarding standard functional
connectivity networks. Also, the advantage of applications

uses

mobile devices

]

FIGURE 10 | QR code to install iBraiNEEG application in (A)
Android-based devices, (B) iOS-based devices.
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for mobile devices is associated with their portability and
availability.
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