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We consider the problem of computing the influence of a neuronal structure in a brain

network. Abraham et al. (2006) computed this influence by using the Shapley value of

a coalitional game corresponding to a directed network as a rating. Kötter et al. (2007)

applied this rating to large-scale brain networks, in particular to themacaque visual cortex

and the macaque prefrontal cortex. Our aim is to improve upon the above technique by

measuring the importance of subgroups of neuronal structures in a different way. This

new modeling technique not only leads to a more intuitive coalitional game, but also

allows for specifying the relative influence of neuronal structures and a direct extension

to a setting with missing information on the existence of certain connections.
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1. INTRODUCTION

In this paper we consider the problem of computing the influence of a neuronal structure in a brain
network. The aim of this paper is to improve upon the techniques underlying the methodology
proposed by Abraham et al. (2006).

Abraham et al. (2006) considered a coalitional game in which the worth of a coalition of vertices,
the neuronal structures, is defined as the number of strongly connected components in its induced
subnetwork within the whole brain network. Subsequently, Abraham et al. (2006) computed the
influence of a neuronal structure in a brain network by using the Shapley value of this coalitional
game as a rating. Kötter et al. (2007) applied this rating to large-scale brain networks, in particular
to the macaque visual cortex and the macaque prefrontal cortex based on real-life data of Young
(1992) and Walker (1940).

In this paper we introduce an alternative coalitional game which in our opinion has several
advantages. First of all, by satisfying superadditivity the game is more intuitive from a game
theoretical point of view. Secondly, using the Shapley value of this game as an alternative rating
it allows to directly specifying relative influence of neuronal structures. We apply our alternative
rating model to the brain networks considered by Kötter et al. (2007) and, generally speaking, our
results corroborate the findings of Kötter et al. (2007). Finally, a third advantage of the alternative
approach is related to missing information on possible connections in a brain network. As this
feature is a common problem, as argued by Kötter and Stephan (2003), we illustrate how our
alternative approach allows for a direct incorporation of probabilistic considerations regarding
missing information on the existence of certain connections.

2. SHAPLEY RATINGS IN BRAIN NETWORKS

A brain network is a directed graph (N,A) whereN is a set of vertices, representing a set of neuronal
structures, and A is a set of arcs, representing the connections between the neuronal structures. Let
A denote all ordered pairs (i, j) of vertices in N for which there exists a directed path from i to j
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in (N,A). A graph (N,A) is called strongly connected if for
every two vertices i and j in N there is a directed path from
i to j and from j to i in (N,A), i.e., if A contains all ordered
pairs in N. The induced subgraph (S,A[S]) is a graph where
a subset S ⊆ N is the set of vertices and A[S] is the set of
arcs consisting of any arc in A whose starting and end point
are both in S. A strongly connected component is a maximal
induced subgraph which is strongly connected, i.e., there is
no other strongly connected subgraph containing this strongly
connected component. Let SCC(N,A) denote the number of
strongly connected components in graph (N,A).

Example 2.1. Consider the brain network (N,A) with N =

{1, 2, 3, 4} illustrated below.1

Note that (N,A) is strongly connected because for every
vertex in the graph there exists a directed path to every other
vertex. However, the subgraph induced by {1, 2, 3} is not strongly
connected and we have

A[{1, 2, 3}] = {(1, 2), (1, 3), (2, 1), (2, 3)}.

Note that SCC({1, 2, 3},A[{1, 2, 3}]) = 2 because the subgraph
induced by {1, 2, 3} consists of two strongly connected
components: the subgraphs induced by {1, 2} and {3}. △

A coalitional game is a pair (N, v) where N denotes a non-
empty, finite set of players and v is a function which assigns
a number to each subset S ⊆ N (also called a coalition).
By convention, v(∅) = 0. Abraham et al. (2006) introduced
a coalitional game (N,wA) corresponding to a brain network
(N,A) defined by

wA(S) = SCC(S,A[S]),

for all S ⊆ N. Hence, the worth of a coalition in wA is defined
by the number of strongly connected components in its induced
subgraph.

Alternatively, we define the brain network game (N, vA)
corresponding to (N,A) by

vA(S) = |A[S]|,

1This instance of a brain network is also used in Example 1 in Section 3.1 ofMoretti

(2013).

for all S ⊆ N. Hence, the worth of a coalition S in vA

is defined by the number of ordered pairs (i, j) of vertices
in S for which there exists a directed path from i to j
in (S,A[S]).

A basic property for coalitional games is superadditivity. A
coalitional game is called called superadditive if breaking up a
coalition into parts does not pay, i.e.,

v(S ∪ T) ≥ v(S)+ v(T),

for all S,T ⊆ N with S ∩ T = ∅. From a game
theoretical perspective it is desirable that coalitional games
satisfy this basic property since it provides a clear incentive
for cooperation in the grand coalition and thus provides a
motivation to focus on fairly allocating the worth of the grand
coalition. Unfortunately, this property is not satisfied by the
coalitional game (N,wA). This is illustrated in the following
example.

Example 2.2. Reconsider the brain network (N,A) presented in
Example 2.1. The worth of every coalition in the games (N,wA)
and (N, vA) is presented below.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

wA(S) 1 1 1 1 1 2 2 2 2 2 2 2 3 1 1

vA(S) 0 0 0 0 2 0 0 1 1 1 4 4 1 6 12

Note that (N,wA) is not superadditive since, e.g.,

wA({1, 2})+ wA({3, 4}) = 3 > 1 = wA({1, 2, 3, 4}).

It is readily checked that (N, vA) is superadditive. △

In contrast to the coalitional game (N,wA), we show in the
following proposition that the brain network game (N, vA) does
satisfy superadditivity.

Proposition 2.1. Let (N,A) be a brain network. Then, the brain
network game (N, vA) is superadditive.

Proof. Let S,T ⊆ N with S ∩ T = ∅. Since S and T are disjoint,
we also have A[S] ∩ A[T] = ∅. Therefore, |A[S]| + |A[T]| =

|A[S] ∪ A[T]| and thus for proving vA(S)+ vA(T) ≤ vA(S ∪ T) it
is sufficient to show that

A[S] ∪ A[T] ⊆ A[S ∪ T].

For showing this, let (i, j) ∈ A[S] ∪ A[T], i.e., there is either a
directed path from i to j and from j to i in G[S] or in G[T]. Then,
there is also a directed path from i to j and from j to i in G[S∪ T]
and thus (i, j) ∈ A[S ∪ T].

The Shapley value [cf. Shapley (1953)] of a coalitional game
(N, v) is for all i ∈ N defined by

8i(v) =
∑

S⊆N\{i}

pS
(

v(S ∪ {i})− v(S)
)

,
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where pS =
|S|!(|N|−|S|−1)!

|N|! . Hence, the Shapley value looks at the

marginal contributions of a player to all possible coalitions. The
weight pS is such that all marginal contributions are weighted
adequately to obtain an efficient allocation of the worth of the
grand coalition.

In the context of coalitional games corresponding to brain
networks, the Shapley value can be interpreted as a measure
for the influence of a neuronal structure. Abraham et al. (2006)
considered the Shapley value 8(wA) as a rating for the neuronal
structures in a brain network. Similarly, we consider the Shapley
value 8(vA) as a rating.

Example 2.3. Reconsider the coalitional games (N,wA) and
(N, vA) of Example 2.2. The Shapley rating 8(wA) is given by2

8(wA) =
(

1
2 ,−

1
6 ,

1
3 ,

1
3

)

,

while the Shapley rating 8(vA) is given by

8(vA) =
(

2 1
6 , 4

1
6 , 2

5
6 , 2

5
6

)

,

both determining a ranking (2, 3, 4, 1) or (2, 4, 3, 1) (there is a tie
for the second highest ranking). We note that a lower Shapley
rating in wA indicates a higher influence in a brain network. On
the contrary, a higher Shapley rating in vA indicates a higher
influence.

Since a Shapley rating in wA can be negative, as is the case in
this example, it is not possible to determine the relative influence
of two vertices on the basis of 8(wA). On the other hand, a
Shapley rating in vA can not be negative by definition because
of superadditivity. Therefore, using 8(vA), we can say that the
influence of vertex 2 in the brain network (N,A) is almost twice
as large as the influence of vertex 1. △

A common problem in the analysis of brain networks is the
fact that it is not known whether some specific connections (arcs)
are present or not [cf. Kötter and Stephan (2003)]. Using a certain
probabilistic knowledge about these unknown connections, this
lack of information can readily be incorporated in the brain
network game.

We assume that each possible arc (i, j) is present with
probability pij ∈ [0, 1]. Clearly, for each present arc we set pij = 1
and for each absent arc we set pij = 0. All probabilities are
summarized into a vector p. Given such a vector p, we define
the stochastic brain network game (N, vp) in which the worth
of a coalition equals the expected (in the probabilistic sense)
number of ordered pairs for which there exists a directed path in
its induced subgraph. Without providing the exact mathematical
formulations the following example illustrates how to explicitly

2Because of a mistake in the worth of wA({1, 2, 3}), the Shapley value is incorrectly

stated by Moretti (2013).

determine the coalitional values in a stochastic brain network
game.

Example 2.4. Reconsider the brain network presented in
Example 2.1. Only now suppose that the arcs (1, 4) and (3, 1) are
present with probability p14 and p31, respectively. The complete
corresponding vector p can be found below.

(i, j) (1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3)

pij 1 0 p14 1 1 0 p31 0 1 0 1 0

In total there are four possible brain networks. These different
brain networks are illustrated above and the corresponding
probabilities for those networks are p14p31, (1− p14)p31,
p14(1− p31) and (1− p14)(1− p31) for (a), (b), (c), and (d),
respectively.

The expected number of ordered pairs for which there exists
a directed path in the induced subgraph of coalition {1, 3, 4} is
computed by taking the following weighted average

vp({1, 3, 4}) = p14p31 · v
A1
({1, 3, 4})+ (1− p14)p31 ·v

A2
({1, 3, 4})

+ p14(1− p31) · v
A3
({1, 3, 4})

+ (1− p14)(1− p31) · v
A4
({1, 3, 4})

= p14p31 · 3+ (1− p14)p31 · 2 + p14(1− p31) · 2

+ (1− p14)(1− p31) · 1

= 1+ p14 + p31.

The worth of every coalition is presented below.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

vp(S) 0 0 0 0 2 p31 p14 1 1 1 4+ 2p31 4+ 2p14 1+ p14 + p31 6 12

The Shapley rating of the game (N, vp) is given by

81(v
p) = 2 1

6 +
1
3p14 +

1
3p31,

82(v
p) = 4 1

6 −
1
6p14 −

1
6p31,

83(v
p) = 2 5

6 −
1
2p14 +

1
3p31,

84(v
p) = 2 5

6 +
1
3p14 −

1
2p31.

For example, if p14 =
1
2 and p31 =

1
3 , then

8(vp) =
(

2 16
36 , 4

1
36 , 2

25
36 , 2

30
36

)

,

with corresponding ranking (2, 4, 3, 1). △
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3. RESULTS AND DISCUSSION

In this section we apply the Shapley rating based on the brain
network game (N, vA) to the two large-scale brain networks
considered by Kötter et al. (2007) and we compare the results.

The first large-scale brain network is the macaque visual
cortex with thirty neuronal structures as illustrated in Figure 1
of Kötter et al. (2007) [cf. Young (1992), based on data compiled
by Felleman and van Essen (1991)]. The five brain regions with
the highest ranking obtained by means of the Shapley value of
the coalitional games (N,wA) and (N, vA) can be found below in
(a) and (b), respectively.

(a) Top 5 of 8(wA) (b) Top 5 of 8(vA)

Ranking Brain region Ranking Brain region

1. V4 1. V4

2. FEF 2. FEF

3. 46 3. Vp

4. V2 4. V2

5. Vp 5. 46

Note that both ratings agree on the top 5; only with
respect to the positions 3 and 5 there are some minor
differences.

The entire Shapley rating 8(vA) of the macaque visual cortex
can be found in Figure A1 in the appendix. Correspondingly,
we can roughly divide the brain regions in five classes based
on the relative difference with the brain region with the highest
Shapley rating. We consider the following five classes based on
the differences in terms of percentage: 0–5%, 5–10%, 10–15%,
15–20%, 20% and higher. The first class consists of the single
brain region V4 with the highest Shapley rating. The second class
consists of the brain regions FEF to TF as ordered in Figure A1

that differ 5–10% with V4. The brain regions in the third class
are MSTd to V3, in the fourth class we have MSTI to PITd and in
the fifth class we have the single brain region VOT with a relative
influence which is 23% lower than that of V4.

The second large-scale brain network is the macaque
prefrontal cortex with twelve neuronal structures as illustrated

in Figure 3A of Kötter et al. (2007) [cf. Walker (1940)]. In
this case there is a lack of information about the presence or
absence of nine connections. To get some insight, Kötter et al.
(2007) considered two extreme cases. First, they assume that
connections with unknown presence are absent. Second, they
assume that those connections are present. For both extreme
cases the Shapley ratings are calculated separately. Our stochastic
brain network game provides a way to incorporate lack of
information into one Shapley rating on the basis of probabilistic
information. For simplicity, we assume that each connection with
unknown presence is absent with probability 1

2 . Note that, in
case more information would become available, more adequate
probabilities can be readily inserted. Having the complete vector
p of arc probabilities, one readily computes the corresponding
stochastic brain network game (N, vp) and the corresponding

Shapley rating 8(vp). The ranking based on the Shapley rating
8(vp) can be found below.

Ranking Brain region

1. 9

2. 24

3. 12

4. 10

5. 46

6. 25

7. 11

8. 8B

9. 13

10. 8A

11. 45

12. 14
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APPENDIX

FIGURE A1 | Shapley rating of the macaque visual cortex.
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