
METHODS
published: 07 February 2017

doi: 10.3389/fninf.2017.00007

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2017 | Volume 11 | Article 7

Edited by:

Pedro Antonio Valdes-Sosa,

Joint China Cuba Lab for Frontiers

Reaearch in Translational

Neurotechnology, Cuba

Reviewed by:

Hans Ekkehard Plesser,

Norwegian University of Life Sciences,

Norway

Jayram Moorkanikara Nageswaran,

Brain Corporation, USA

*Correspondence:

Eduardo Ros

eros@ugr.es

Niceto R. Luque

niceto.luque@inserm.fr

Received: 09 August 2016

Accepted: 18 January 2017

Published: 07 February 2017

Citation:

Naveros F, Garrido JA, Carrillo RR,

Ros E and Luque NR (2017) Event-

and Time-Driven Techniques Using

Parallel CPU-GPU Co-processing for

Spiking Neural Networks.

Front. Neuroinform. 11:7.

doi: 10.3389/fninf.2017.00007

Event- and Time-Driven Techniques
Using Parallel CPU-GPU
Co-processing for Spiking Neural
Networks
Francisco Naveros 1, Jesus A. Garrido 1, Richard R. Carrillo 1, Eduardo Ros 1* and

Niceto R. Luque 2, 3*

1Department of Computer Architecture and Technology, Research Centre for Information and Communication Technologies,

University of Granada, Granada, Spain, 2 Vision Institute, Aging in Vision and Action Lab, Paris, France, 3CNRS, INSERM,

Pierre and Marie Curie University, Paris, France

Modeling and simulating the neural structures which make up our central neural

system is instrumental for deciphering the computational neural cues beneath.

Higher levels of biological plausibility usually impose higher levels of complexity in

mathematical modeling, from neural to behavioral levels. This paper focuses on

overcoming the simulation problems (accuracy and performance) derived from using

higher levels of mathematical complexity at a neural level. This study proposes different

techniques for simulating neural models that hold incremental levels of mathematical

complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx),

and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity).

The studied techniques are classified into two main families depending on how the

neural-model dynamic evaluation is computed: the event-driven or the time-driven

families.Whilst event-driven techniques pre-compile and store the neural dynamics within

look-up tables, time-driven techniques compute the neural dynamics iteratively during

the simulation time. We propose two modifications for the event-driven family: a look-up

table recombination to better cope with the incremental neural complexity together with

a better handling of the synchronous input activity. Regarding the time-driven family, we

propose a modification in computing the neural dynamics: the bi-fixed-step integration

method. This method automatically adjusts the simulation step size to better cope with

the stiffness of the neural model dynamics running in CPU platforms. One version of this

method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the

performance and accuracy of these modifications evolve with increasing levels of neural

complexity. We also demonstrate how the proposed modifications which constitute

the main contribution of this study systematically outperform the traditional event- and

time-driven techniques under increasing levels of neural complexity.

Keywords: event- and time-driven techniques, CPU, GPU, look-up table, spiking neural models, bi-fixed-step

integration methods

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2017.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00007&domain=pdf&date_stamp=2017-02-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eros@ugr.es
mailto:niceto.luque@inserm.fr
https://doi.org/10.3389/fninf.2017.00007
https://www.frontiersin.org/articles/10.3389/fninf.2017.00007/full
http://loop.frontiersin.org/people/242994/overview
http://loop.frontiersin.org/people/44012/overview
http://loop.frontiersin.org/people/408320/overview
http://loop.frontiersin.org/people/88752/overview
http://loop.frontiersin.org/people/61942/overview

Naveros et al. Event- and Time-Driven Techniques

INTRODUCTION

Artificial neural networks (NNs) have been studied since the
early 1940’s (Mcculloch and Pitts, 1943). These NNs were born
as mathematically tractable algorithms that attempted to abstract
the learning mechanisms underlying our brain. The natural
evolution of these NNs has lately resulted in diverse paradigms
including SpikingNeural Networks (SNNs) (Ghosh-Dastidar and
Adeli, 2009). These SNNs render a higher biological plausibility
by bringing the concept of spike-timing into play. The idea
behind the spike-timing concept is based on equipping the
neural units (neurons) with the capability to emit spikes when
their membrane potentials reach a specific dynamic range (firing
regime). Leaky integrate-and-fire (LIF) models, for instance, emit
spikes when their membrane potentials reach a specific firing
threshold. When a spike is fired, it travels from the source neuron
to the target neurons. The spike arrivals to the target neuronsmay
increase or decrease their corresponding membrane potentials
depending on their synaptic types and synaptic weights. The
spike timing, that is, when a spike is either produced or received,
constitutes the foundation for processing the neural information
in SNNs and is fundamental to understand brain processing
based on spike-timing codification.

Spiking Neural Networks (SNNs) will be considered as highly
parallelizable algorithms in which each neural-processing unit
(neuron) sends and receives data (spikes) from other neurons.
These SNNs are mainly defined by three key factors:

(a) The neural model that defines each neural-processing unit
(neurons).

(b) The neural network topology, that is, how the neural-
processing units (neurons) are interconnected.

(c) The learning mechanisms that drive adaptation within the
SNN at both neural and network level.

The parallelizable algorithmic nature of SNNs makes them
perfect candidates for being implemented within a wide variety
of specific hardware platforms, such as field programmable gate-
array circuits (FPGAs) (Ros et al., 2006b; Agis et al., 2007),
very large-scale integration circuits (VLSI) (Pelayo et al., 1997;
Schemmel et al., 2010) or specific purpose clusters, such as
SpiNNaker (Furber et al., 2013) which are better suited for
parallel processing. However, the wide-spread availability of
general-purpose computers has drifted the SNN algorithmic
development effort toward using hardware architectures better
suited for sequential processing (Neumann, 1958). These
general-purpose hardware architectures designed for sequential
processing (also for parallel processing in the case of GPUs)
do require tailor-made (customized) solutions that allow highly
parallelizable SNN algorithms to run efficiently.

Two main groups of techniques are traditionally used for
simulating the neural units (neurons) of SNNs within general-
purpose computers: event-driven and time-driven techniques
(Brette et al., 2007). Whilst the first technique only computes the
neural dynamics of a neuronwhen it is affected by a spiking-event
(generation and propagation of neural activity), the second one
iteratively updates the neural dynamics of all neurons in each
simulation step time. Both groups have pros and cons (Brette

et al., 2007) and the best choice depends on the SNN inner
features. In this study, we have focused our efforts on developing
tailor-made event-driven and time-driven solutions to overcome
the architectural and processing computational problems derived
from using a general-purpose computer for simulating SNNs.We
have studied how the mathematical complexity of several neural
models may affect the simulation accuracy and computational
performance when different simulation techniques are used over
a standard SNN configuration.

METHODS

In this section we further explain the mechanisms that allow us to
study the relationship amongst the neural dynamic complexity,
simulation accuracy, and computational performance in SNNs.
The benchmark analysis of well-established neural models helps
to better understand this relationship. Three well-known neural
models are chosen, based on their mathematical complexity and
biological plausibility (see Appendix A for further details):

(a) The leaky integrate-and-fire (LIF) (Gerstner and Kistler,
2002) model. It is composed of one differential equation
and two exponential decay functions for both excitatory
and inhibitory conductances. It is extremely efficient in
computational terms; however it cannot account for a wide
range of biological properties.

(b) The adaptive exponential integrate-and-fire (AdEx) (Brette
and Gerstner, 2005) model. It is composed of two differential
equations and two exponential decay functions for both
excitatory and inhibitory conductances. This model is only
slightly more complex than the LIF from a computational
point of view; however it can be consideredmore biologically
plausible since it is able to reproduce a wide range of firing
regimes (bursting, short-term adaptation, etc.).

(c) The Hodgkin-Huxley (HH) (Hodgkin and Huxley, 1952)
model. It is composed of four differential equations
and two exponential decay functions for both excitatory
and inhibitory conductances. Its neural dynamics requires
more computational resources; however, its differential
equations closely match the neural processes that govern the
spike generation. This biophysical model reproduces rather
realistic physiological properties (considering ion channel
activation and deactivation features).

To run the benchmark analysis, we use the spiking neural
network simulator EDLUT (Ros et al., 2006a) as the working
framework. EDLUT is an efficient open source simulator mainly
oriented to real time simulations that allows the processing
of specific parts of the neural network using different neural
dynamic evaluation techniques. To adopt an extensively used
benchmark methodology, we follow the recommendations given
by Brette et al. (2007) to evaluate the performance of the
neural network simulation techniques (different neural network
sizes, connectivity ratios, firing rates, and neural models).
By means of this benchmark, we specifically evaluate how
the mathematical model complexity of neurons affects the
computational performance and simulation accuracy when

Frontiers in Neuroinformatics | www.frontiersin.org 2 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

different simulation techniques are used. The synthetic nature of
the benchmark here proposed is based on previous benchmark
studies (Brette et al., 2007). This benchmark emulates those
neural networks which are composed of neurons with a medium
to low number of input synapses (up to 1,280 input synapses
per neuron). The simulation performance results may change
significantly when simulating biologically realistic experiments
(e.g., cortical networks) which require a much larger number of
incoming synapses (up to 10,000 synapses per neuron) and firing
rates (van Albada et al., 2015).

The source code is available for readers at URL: www.ugr.es/~
nluque/restringido/Event_and_Time_Driven_Techniques.rar
(user: REVIEWER, password: REVIEWER). All the additional
material needed for the benchmark analyses (neural network,
synaptic weight, input activity and neuron model description
files, as well as the scripts to compile the look-up tables) are also
located at the same URL.

Neural Dynamic Evaluation
Techniques-Why and for What?
EDLUT implements two different neural dynamic evaluation
techniques: (a) event-driven neural techniques based on pre-
computed look-up tables for CPU platforms (Ros et al., 2006a),
and (b) time-driven neural techniques for both CPU (Garrido
et al., 2011) and GPU (Naveros et al., 2015) platforms. EDLUT
allows the combination of both neural techniques on the same
simulation.

Event-driven techniques are better suited for neural network
layers with low and sparse activity whose network units
(neurons) present low mathematical complexity. Pre-compiling
and allocating the dynamic evolution of a neural model
within look-up tables allows the updating of its neural state
discontinuously, i.e., at different time intervals. Thus, the neural-
state update process during simulation becomes very efficient,
requiring only a few accesses to these look-up tables. This
technique can be applied to a wide variety of neurons of diverse
mathematical complexity. The bottleneck of this computational
scheme lies in two factors: (a) the dimensionality of the look-up
tables, and (b) the number of look-up table readouts (the number
of input and output spikes that are to be processed). The higher
the neural mathematical complexity is, the higher the number of
state variables, and therefore, the higher the dimensionality and
the number of look-up tables needed. Higher numbers of look-
up tables involve time-consuming data queries. Larger look-up
tables also involve slower look-up table readouts. The number
of readouts, in turn, depends on the number of events to be
processed (input propagated spikes and output internal spikes;
Ros et al., 2006a).

On the other hand, the time-driven neural technique
outperforms the event-driven neural technique for neural
network layers that present high interconnectivity ratios,
high neural activities and high levels of neural mathematical
complexity. This technique takes full advantage of parallel
computing resources at CPU and GPU platforms. CPU time-
driven techniques perform better for small and medium-size
groups of neurons with a low-medium mathematical complexity

(from one neuron to several thousands of neurons, depending
on the mathematical complexity), whereas GPU time-driven
techniques perform better for large-size groups of neurons with
high mathematical complexity (from thousands to millions of
neurons; Naveros et al., 2015).

When the neural network layers present high heterogeneity,
both simulation techniques should be used concurrently. One
example of a heterogeneous neural network can be found in
the cerebellum, where the large granular layer with low and
sparse activity (Luque et al., 2011a; Garrido et al., 2013b, 2016) is
combined with other smaller layers dealing with higher activity
rates (i.e., large-convergence neurons, such as Purkinje cells
Luque et al., 2016).

Event-Driven Neuron Models
The implementation of event-driven neuron models has
previously been stated in Mattia and Del Giudice (2000),
Delorme and Thorpe (2003), Reutimann et al. (2003), Rudolph
and Destexhe (2006), and Pecevski et al. (2014). Particularly,
the neural simulator EDLUT implements an event-driven neural
technique based on look-up tables. See Ros et al. (2006a) for a
comprehensive description on EDLUT event-driven simulation
techniques. Compared to previous studies (Naveros et al.,
2015), in this paper we propose two independent contributions
over EDLUT event-driven simulation techniques. The first
contribution increases the performance by compacting the look-
up table structure and improving the look-up table indexing.
The second one increases the performance by improving the
processing of synchronous activity. With the integration of these
two new simulation techniques with the original one we can
simulate each neuron model using four different configurations
for event-driven neuron models: direct (the original one),
combined, synchronous and combined synchronous event-
driven neuron models. Below, we summarize the properties of
these two new simulation techniques.

Combined Look-Up Tables for Complex Neuron

Models
EDLUT pre-compiles the solution of each neural model equation
into look-up tables (a look-up table per state variable). EDLUT
inherently requires up to two additional state variables. The first
additional state variable stores the timing of a predicted spike-
firing event, whereas the second state variable stores its ending
(in some cases both variables remain equal). Each look-up table
dimension is indexed by a neural state variable. EDLUT neural
simulation uses look-up table data queries to update the neural
state variables.

The higher the mathematical complexity the neural model is,
the more state variables that are needed, and the more look-up
tables that are then required. Concomitantly, the dimensionality
of the look-up tables also increases with the number of coupled
state variables. The dimensionality and number of look-up tables
are, therefore, imposed by the neural model complexity. The only
way to control the look-up table size is by adjusting the look-
up table granularity (the number of coordinates per dimension).
Obviously, the degree of granularity has a direct impact on the
accuracy and performance of the neural simulation.

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2017 | Volume 11 | Article 7

www.ugr.es/~nluque/restringido/Event_and_Time_Driven_Techniques.rar
www.ugr.es/~nluque/restringido/Event_and_Time_Driven_Techniques.rar
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

Computing data queries using large look-up tables
constitutes the most time consuming operation of all the
neural dynamic evaluations. Therefore, reducing the number
of look-up table readouts needed per neural model would
reduce the neural dynamic evaluation time, thus increasing
the overall simulation performance. Aiming to reduce the
number of look-up tables, we have created a new event-
driven method that recombines the look-up tables that
share index values. Thus, we are able to reduce the number
of look-up tables and make them more compact than the
original ones (considering all of them as a whole). See

Figure 1. The combined look-up tables are described as
follows (see Appendix A for further details about neural model
descriptions):

Leaky Integrated-and-Fire Model (LIF)
• One look-up table with four dimensions storing the forecast

values of the membrane potential: V = f(∆t, gAMPA, gGABA,
V). The neural state variables associated to each dimension
are the elapsed time since the last update (∆t), the previous
excitatory (gAMPA) and inhibitory (gGABA) conductances and
the previous membrane potential (V).

FIGURE 1 | The recombination mechanism of look-up tables for a HH model. The left side of the panel shows the original look-up table structure (eight tables)

whilst the right side of the panel shows the recombined look-up table structure (four tables).

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One look-up table of three dimensions storing the forecast
values about the time of the next firing event and the ending of
the refractory period (tf , te) = f(gAMPA, gGABA, V). The neural
state variables associated to each dimension are the current
excitatory (gAMPA) and inhibitory (gGABA) conductances and
the current membrane potential (V). Although the LIF model
presents a constant refractory period (and could be easily
implemented ad-hoc), we use the look-up table te, which stores
the evolution of the refractory period, to maintain the same
event-driven simulation structure for all the neural models
(LIF, AdEx and HH).

Adaptive Exponential Integrate-and-Fire Model

(AdEx)
• One look-up table of five dimensions storing the forecast

values of the membrane potential and membrane adaptation
variable: [V, w] = f(∆t, gAMPA, gGABA, w, V). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t), the previous excitatory (gAMPA)
and inhibitory (gGABA) conductances, the previous membrane
adaptation variable (w) and the previous membrane potential
(V).

• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time
since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One table of four dimensions for storing the forecast values
about the time of the next firing event: tf = f(gAMPA, gGABA,
w, V). The neural state variables associated to each dimension
are the current excitatory (gAMPA) and inhibitory (gGABA)
conductances, the current membrane adaptation variable (w)
and the current membrane potential (V). Just one additional
table is needed since this model does not include a refractory
period.

Hodgkin-Huxley Model (HH)
• One look-up table of seven dimensions storing the forecast

values of the membrane potential and the three ionic current
activation variables: [V, m, h, n] = f(∆t, gAMPA, gGABA, m, h,
n, V). The neural state variables associated to each dimension
are the elapsed time since the last update (∆t), the previous
excitatory (gAMPA) and inhibitory (gGABA) conductances, the
previous ionic current activation values (m, h, and n) and
finally the previous membrane potential (V).

• Two look-up tables of two dimensions storing the forecast
values of the excitatory and inhibitory conductances: gAMPA

= f(∆t, gAMPA) and gGABA = f(∆t, gGABA). The neural state
variables associated to each dimension are the elapsed time

since the last update (∆t) and the previous excitatory (gAMPA)
or inhibitory (gGABA) conductances.

• One look-up table of six dimensions storing the forecast values
about the time of the next firing event and the start of the
hyperpolarization phase: [tf , te] = f(gAMPA, gGABA, m, h, n,
V). The neural state variables associated to each dimension
are the current excitatory (gAMPA) and inhibitory (gGABA)
conductances, the current ionic current activation values (m,
h, and n) and finally the current membrane potential (V). The
look-up table te prevents EDLUT from duplicating internal
spikes during the HH depolarization phase.

The combination of look-up tables minimizes the overall
number of look-up tables for complex neuron models, since
this combination allows one look-up table to store several state
variables. This also means that a single look-up table readout can
now update several state variables at a time. Thus, we are able
to increase the computational performance of complex neuron
models without modifying their accuracy.

Synchronous Event-Driven Neuron Models
Each time that an event-driven neuron is affected by an event,
(input propagated spikes or output internal spikes) its neural
state ought to be updated. After this update, EDLUTmust predict
whether the new neural state will make the neuron emit a spike
in subsequent time steps (Ros et al., 2006a). EDLUT implements
a two-stage mechanism able to handle the generation and
propagation of the spikes. When EDLUT predicts a spike firing
at any time, an internal-spike event is then created and inserted
in the event queue. If another event modifies the spike-firing
prediction, the internal-spike event is discarded; otherwise, the
spike is eventually generated in the neural soma. A propagated-
spike event is then generated and inserted in the event queue.
This propagated-spike event is responsible for delivering the
generated spike through all the neural output synapses. It holds
a time stamp equivalent to the timing of its corresponding
internal-spike event plus the propagation delay. When a neuron
possesses several synapses with different propagation delays, the
propagated-spike mechanism generates sequential propagated-
spike events depending on the propagation delay values. The
synaptic propagation delays are always fixed at multiples of 0.1
ms. If not, EDLUT rounds the delay within the network file to
the nearest multiple of 0.1 ms.

To sum up, EDLUT triggers a three-step process in each
neuron that receives a spike through a propagated-spike event
(the most common event):

(a) When a spike arrives to an event-driven neuron, its neural
state variables are updated.

(b) The spike increments the neural conductance associated
with the synapse that propagates the spike.

(c) A prediction about the generation of a spike is made. If this
prediction is positive, an internal spike event is inserted in
the event queue.

This three-step process presents performance losses when the
neural input activity is synchronous. When n spikes reach a
neuron at the same time, the first n-1 predictions (and its

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

correspondent internal spikes) would be discarded and only the
nth taken into account. Knowing beforehand the number of
synchronous spike arrivals per time step and per neuron would
allow us to compute only one prediction per neuron, the nth
prediction.

We have developed a new synchronous event-driven method
able to efficiently compute synchronous neural input activity and
able to generate synchronous output activity. When a group of
synchronous spikes arrives to a neuron (being simulated within a
synchronous event-driven method) the neural state variables are
updated conjointly and a single internal spike prediction is done.
This process is done in three steps:

(a) When the first spike of a group of synchronous spikes
arrives to a synchronous event-driven neuron, its neural
state variables are updated. Thus, these neural state variables
will be already updated for the rest of the synchronous spikes.

(b) Each synchronous spike increments the neural conductance
associated with the synapse that propagates the spike.

(c) Once EDLUT verifies that all the synchronous spikes have
been processed thanks to an additional event, only one
prediction about the generation of an output spike is made.
If this prediction is positive, just one internal spike event is
inserted in the event queue.

Thus, we only make one neural state update and one activity
prediction for each group of synchronous spikes. Obviously, the
additional event that helps to verify the processing of all the
synchronous input spikes may cause a performance loss if the
neural input activity is asynchronous (incoming activity is not
grouped into tight time slots).

This new synchronous event-driven technique can also
synchronize the neural spike propagation, thus allowing
the efficient interconnection amongst synchronous event-
driven neurons. This technique uses a parameter named
synchronization period (tsync) that is defined in the description
file of each event-driven neural model. The synchronization
period value is fixed and equal or greater than zero. Each
internal-spike event can be processed at any time step; however,
its corresponding propagated-spike events are generated as
if the internal-spike were processed at multiples of tsync.
When tsync is zero, the output activity is asynchronous
and the neural network units (neurons) behave as direct
event-driven neuron models. If tsync is greater than zero,
the output activity is then synchronous and the neural
network units (neurons) can be interconnected to other
synchronous event-driven models, thus increasing the overall
performance but at the expense of accuracy. These synchronous
models efficiently compute input activity coming from either
time-driven or synchronous event-driven neuron models.
Conversely, when the input activity comes from other types
of event-driven neuron models the computational performance
drops.

These kinds of synchronous neural layers can typically be
found in neural networks that process sensory information, such
as the olfactory (Schoppa, 2006) (30–70Hz), auditory (Doesburg
et al., 2012) (30–50Hz), or visual (Eckhorn et al., 1990) (35–80
Hz) systems.

Time-Driven Neuron Models
EDLUT implements time-driven neuron models for both
CPU (Garrido et al., 2011) and GPU (Naveros et al., 2015)
platforms. These models are defined by a set of differential
and non-differential equations that have to be computed during
the simulation time. These equations must be solved using
differential equation solvers given within a certain integration
method. There are mainly two families of integration methods
regarding their integration step size: a) fixed-step integration
methods, and b) variable-step integration methods (Iserles,
2009).

Fixed-Step Integration Methods
Fixed-step integration methods are suited for parallelization in
both CPU and GPU platforms (Naveros et al., 2015) since these
methods favor synchronicity during the integration process. A
single integration event manages the integration process of a
large number of neurons (just one event for each integration step
must be generated, inserted in the event queue, extracted from
the event queue, processed and deleted). Thus, the computation
overhead caused by non-directly related tasks to the integration
processes remains low. However, the maximum fixed-step size
that can be used is constrained by the stiffness of the differential
equations that define each neural model. This constraint makes
fixed-step integration methods to not be well suited for solving
complex neural models whose differential equations are rather
stiff.

Variable-Step Integration Methods
Variable-step integration methods iteratively adapt their
integration step size to the neural dynamics. They are iteratively
maintaining a balance between the simulation step size and the
accuracy as the integration process deploys. This adaptation
mechanism makes variable-step integration methods better
suited for solving complex neural models whose differential
equations are rather stiff. However, this flexibility comes at a
cost:

• Their parallelization in CPU platforms is arduous and almost
intractable in GPU platforms.

• The computation overhead caused by the estimation of the
integration step size can be high.

• The integration process of each neuron has to be managed
individually (one event per neuron). For each integration
step an event must be generated, stored in the event queue,
extracted from the event queue, processed and deleted. This
overhead is determinant when the number of neurons is
relatively high (thousands of neurons) and the activity is also
high.

• The performance of these methods is heavily related with the
neural activity. A high network activity increases the firing
ratios of the neural network units (neurons). In this case,
the solutions for the neural differential equations are mostly
located around the neural firing working points. To maintain
accuracy around a firing working point, the integration step
size needs to be reduced. The computation time per neural unit
is then increased.

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

The computational overhead caused by all these drawbacks
makes these methods unadvisable for efficient simulations when
the number of neural units (neurons) is relatively high. For this
reason, we do not implement variable-step integration methods
in EDLUT.

A New Integration Method; The Bi-Fixed-Step

Integration Method
This new integration method tries to take advantage of the
strengths and mitigate the weaknesses of fixed-step and variable-
step integration methods. This integration method uses two
fixed-steps for each neuron: a global fixed-step size (Tg) and
local fixed-step size (Tl). Tg is multiple of Tl (Mgl = Tg/Tl).
Tg synchronizes the integration processes of all network units
(neurons) that are defined by the same neural model. This allows
us to manage the integration process of a group of similar
neurons using just a single integration event, as the fixed-step
integration methods do. On the other hand, Tl can scale down
the integration step size of one neuron when needed. When
Tl is used instead of Tg, the integration method performs Mgl

consecutive integrations within Tg. This allows us to adapt the
integration step size to the dynamic evolution of each neuron, as
the variable-step integrationmethods do. Figure 2 shows how the
implementation of this integrationmethod within CPU andGPU
platforms differs in order to cope with their different hardware
properties.

When EDLUT runs a simulation, the generated “events”
are sorted depending on their time stamps in an event queue.
When a new event is processed, its corresponding time stamp
establishes the new “simulation time.” A new bi-fixed integration
event produces a simulation time updating which is multiple
of the global time step. The spike generation process cannot
be triggered at any local time step but at the global step time,
otherwise the generated spikes would carry incoherent time
stamp values (lower than the actual simulation time). Therefore,
the spikes to be generated are detected at local time steps but only
generated at global time steps.

Bi-fixed-step integration method for differential equation

solvers in CPU
Two additional elements per neuron model are defined: a
hysteresis cycle given by two membrane potential thresholds (Vs

as the upper bound and Ve as the lower bound) and a period of
time Tp for the hyperpolarization phase in neural models, such as
the HH. These parameters drive the switching of the integration
step size from global to local and vice versa.

This method starts the integration process of a certain
group of neurons using the global integration step size Tg

for each neuron. The membrane potential of each neuron is
then compared with the threshold value Vs after each global
integration step. When the resulting membrane potential is >Vs,
the integration result is discarded and the integration step size
is scaled down to the local step size Tl just for that neuron. The
integration process is reinitialized using the new local step size.
This local step size is maintained until the membrane potential
decays to Ve and a certain period of time Tp has passed. Once

this double condition is filled, the integration step size is re-
scaled up to the global step size Tg (see Figure 2A for a complete
workflow diagram). Figure 3 shows an example of this adaptation
mechanism over the LIF, AdEx, and HHmodels.

The state variables, in most neuron models, usually present
a slow evolution during simulation time (very low velocity
gradient). It is at the spike phase when these state variables evolve
faster (very high velocity gradient). By using a Vs threshold lower
than the actual “functional” spike threshold we are able to predict
a spike phase beforehand. The bi-fixed-step integration method
uses this prediction to reduce the integration step size before an
eventual spike phase. Tg extra period sets the hyperpolarization
time after the spike generation. During Tg, the state variables
present very high velocity gradients and, therefore, reduced
integration step sizes are to be maintained (e.g., Tg can be used
to properly integrate the hyperpolarization phase of HH models
after the depolarization phase).

This method is easily parallelizable in CPU and can
be managed with just one integration event, as in fixed-
step integration methods. Additionally, it can outperform the
simulation of complex neuron model with stiff equations thanks
to its adaptation mechanism, as in variable-step integration
methods.

Bi-fixed-step integration method for differential equation

solvers in GPU
GPU hardware requires all the simulated neurons of a neural
model to run exactly the same code at the same time.
Additionally, these neurons must also access the RAM memory
following a concurrent scheme. As reported in Naveros et al.
(2015), the synchronization period and transference of data
between CPU and GPU processors account for most of the
performance losses in a hybrid CPU-GPU neural simulation.
To minimize these losses, CPU and GPU processors are
synchronized at each Tg global integration step time. Then the
GPU integrates all its neurons using the local integration step Tl.
After the integration process, the GPU reports to the CPU which
neurons fired a spike (see Figure 2B for a complete workflow
diagram).

This method is easily parallelizable in GPU and can be
managed with just one integration event, as in fixed-step
integration methods. Additionally, a short local step (Tl) can
accurately compute the simulation of complex neuron model
with stiff equations whereas a large global step (Tg) reduces the
number of synchronizations and data transferences betweenCPU
and GPU processors and increases the overall performance. This
bi-fixed-step integration method is suited to comply with hybrid
CPU-GPU platforms since it maximizes the GPU workload and
minimizes the communication between both processors.

To sum up, EDLUT can now operate with time-driven
neuron models that can use different fixed-step or bi-fixed-step
integration methods for both the CPU and GPU platforms. The
following differential equation solvers have been implemented
using fixed-step integration methods: Euler, 2nd and 4th order
Runge-Kutta, and 1st to 6th order Backward Differentiation
Formula (BDF). The following differential equation solvers
have been implemented using bi-fixed-step integration methods:

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 2 | Bi-fixed-step integration method flow diagram for CPU (A) and GPU (B) platforms. Since Tl is divisor of Tg, these integration methods can integrate

a period of time Tg making Mgl consecutive integrations with a step-sizes of Tl.

Euler, 2nd and 4th order Runge-Kutta, and 2nd order Backward
Differentiation Formula (BDF). This last differential equation
solver implements a fixed-leading coefficient technique (Skeel,
1986) to handle the variation of the integration step size.

In this paper, we have only evaluated the simulation accuracy
and computational performance of 4th order Runge-Kutta
solvers in both fixed-step and bi-fixed-step integration methods

in both CPU and GPU platforms. Table 1 shows the integration
parameters used by each neuron model for each integration
method.

Test-Bed Experiments
We have adapted the benchmark proposed by Brette et al. (2007)
as our initial neural network setup for our experiments. The

Frontiers in Neuroinformatics | www.frontiersin.org 8 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 3 | Comparison between fixed-step and bi-fixed-step integration methods in CPU for LIF, AdEx, and HH models. Each row shows the ideal

membrane potential and the integrated membrane potential for a LIF, AdEx, and HH model, respectively. The left-hand column (A,D, and G) shows the fixed-step

integration results. The central and right-hand columns show the bi-fixed-step integration results. The central column (B,E, and H) shows the moment when the

membrane potential overpasses the threshold Vs. The last integrated result is then discarded and the integration step size is scaled down to Tl. The right-hand

column (C,F and I) shows the moment when the membrane potential underpasses the threshold Ve, a time > Tp has elapsed and the integration step size is then

scaled up to Tg.

initial setup consists of 5000 neurons divided into two layers. The
first layer (input layer) holds 1000 excitatory neurons and it just
conveys the input activity to the second layer. The second layer
consists of 4000 neurons where 80% are excitatory neurons and
the remaining 20% are inhibitory neurons. The neurons at this
2nd layer are modeled as LIF, AdEx or HH models.

Each second-layer neuron is the target of 10 randomly chosen
neurons from the first layer. Each second-layer neuron is also
the target of eighty randomly chosen neurons from the same
layer, following a recurrent topology. All these synapses include
a 0.1 ms propagation delay. This neural network topology is
summarized in Table 2.

The input activity supplied to each input neuron is randomly
generated using a Poisson process with exponential inter-spike-
interval distribution and mean frequency of 5 Hz. This input
activity generates a mean firing rate activity of 10 Hz in the
second layer.

We measured the simulation accuracy and computational
performance of the aforementioned integration methods over
three different neural models (LIF, AdEx, and HH). These neural
models are simulated using two different dynamic evaluation
techniques: event-driven and time-driven techniques.

Within event-driven dynamic evaluation techniques,
four different event-driven integration methods are
applied:

(a) Direct event-driven integration methods.
(b) Combined event-driven integration methods.
(c) Synchronous event-driven integration methods.
(d) Combined synchronous event-driven integration methods.

Within time-driven dynamic evaluation techniques, two different
integration methods implementing a 4th order Runge-Kutta
differential equation solver are applied in both CPU and GPU
platforms:

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

TABLE 1 | Summary of parameters for event-driven and time-driven

simulation techniques for LIF, AdEx, and HH models.

LIF AdEx HH

Synchronization period (ms) 1.0 1.0 1.0

Fixed-step size (ms) 0.5 0.5 1.0/15.0

Global fixed-step size (ms) 1.0 1.0 1.0

Local fixed-step size (ms) 0.25 0.25 1.0/15.0

Threshold Vs (mV) −53.0 −50.0 −57.0

Threshold Ve (mV) −53.0 −50.0 −57.0

Period Tp (ms) 0.0 0.0 1.0

(a) Fixed-step integration methods.
(b) Bi-fixed-step integration methods.

To properly compare all these integration methods, we studied
the simulation accuracy that each can offer. We used the
van Rossum distance (Van Rossum, 2001) with a tau of 1ms
(maximum size of integration step periods for event-driven
methods and synchronization periods for even-driven methods)
as a metric of accuracy.We use this metric to compare a reference
activity file and a tested activity file (both files containing the
spike time stamps associated to all the spikes emitted by the
neural network units). The reference activity files are obtained
using a time-driven simulation technique running in CPU with
a fixed-step integration method using a 4th order Runge-Kutta
solver and a fixed 1µs integration step size for each neural model
(LIF, AdEx, and HH). The tested activity files are obtained using
the mentioned integration methods of the two different dynamic
evaluation techniques (event-driven and time-driven) for each
neural model (LIF, AdEx, and HH).

Additionally, we wanted to study the computational
performance of each integration method. We measured the
execution time spent by each integration technique over a
set of four different experiments that simulate 1 s of neural
activity. These four experiments characterize the computational
performance of the mentioned integration methods.

The hardware running these Benchmark analyses consists of
an ASUS Z87 DELUXE mother board, an Intel Core i7-4,770k
processor, 32 GB of DDR3 1,333 MHz RAM memory, and
a NVIDIA GeForce GTX TITAN graphic processor unit with
6144 MB RAM memory GDDR5 and 2,688 CUDA cores. The
compilers used are those that are integrated in visual studio 2008
together with CUDA 6.0.

All the experiments are CPU parallelized by using two
OpenMP threads as described in a previous paper (Naveros
et al., 2015). These threads parallelize the spike generation and
propagation for the event-driven and time-driven models. The
neural dynamic computation of the event-driven and time-
driven models in CPU is also parallelized by using the two
OpenMP threads. The neural dynamic computation of the time-
driven models in GPU is parallelized by using all the GPU
cores.

Simulation Parameter Analyses
We quantified the effects of using different simulation techniques
on the simulation accuracy and the computational performance.
In particular, we measured the impact of scaling the look-up

table size and the synchronization time-period for event-driven
techniques. For time-driven techniques, we measured the impact
of scaling the integration time-step sizes.

For these analyses, our initial neural network setup is modified
as defined in Table 3. A third neural layer replicating the
second layer properties is inserted and the recurrent topology is
modified. The 2nd and the 3rd layer are now interconnected by
those synapses from the 2nd layer that were previously modeling
the recurrent topology of our initial setup. This initial recurrent
topology rapidly propagated and increased small errors through
the recurrent synapses. Under these circumstances, accuracy
cannot be properly measured. Adding this 3rd layer allowed
us to circumvent this problem and better evaluate the accuracy
degradation in a well-defined experiment.

We stimulated this new setup with five different input patterns
generated using a Poisson process with exponential inter-spike-
interval distribution and mean frequency of 5Hz. We measured
the simulation accuracy of the 3rd neural layer by applying
the van Rossum distances as previously explained. Thus, we
were able to evaluate the effect of the synchronization period
over accuracy when several layers of synchronous event-driven
models are interconnected. Similarly, we also evaluated the effect
of the integration step size over accuracy when several layers
of time-driven models are interconnected. The computational
performance is given by the mean execution time that the new
setup spends in computing 1 s of simulation when it is stimulated
with the five different input activity patterns.

Scalability Analyses
We quantified the effects of scaling up the number of neurons
within our initial setup over the computational performance. In
particular, we measured the impact of scaling up the second layer
size for the event-driven and time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 4. Nine different variations over our initial
setup are simulated. The 2nd layer is geometrically scaled up from
1,000 to 256,000 by a common ratio and scale factor of r = 2 and
a = 1,000, respectively (number of neurons = a·rn, where n ǫ

[0, 8]).

Input Activity Analyses
We quantified the effects of scaling up the input activity levels
over the computational performance. In particular, we measured
the impact of scaling up our neural network mean-firing rate
through different input activity levels for the event-driven and
time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 5. Fifteen different input activity levels scaled
up from 2 to 16 Hz stimulate our neural network. These input
activity levels generate mean firing rates in the second neural
layer of between 2 and 40 Hz.

Connectivity Analyses
We quantified the effects of scaling up the number of synapses
over the computational performance. In particular, we measured

Frontiers in Neuroinformatics | www.frontiersin.org 10 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

TABLE 2 | Summary of cells and synapses implemented.

Initial Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of

excitatory synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (4,000) LIF, AdEx, or

HH neurons

40,000 40,000 (7 nS)

2nd layer (4,000) LIF, AdEx, or

HH neurons

2nd layer (4,000) LIF, AdEx, or

HH neurons

320,000 256,000 (0.5 nS) 64,000 (2.5 nS)

Initial values providing the reference framework for comparisons in subsequent experiments.

TABLE 3 | Summary of cells and synapses implemented for parameter analysis experiment (accuracy and performance).

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1,000) input

neurons

2nd layer (4,000) LIF, AdEx, or HH

neurons

40,000 40,000 (7 nS)

Input layer (1,000) input

neurons

3rd layer (4,000) LIF, AdEx, or HH

neurons

40,000 40,000 (7 nS)

2nd layer (4,000) LIF, AdEx or

HH neurons

3rd layer (4,000) LIF, AdEx, or HH

neurons

320,000 256,000 (0.5 nS) 64,000 (2.5 nS)

TABLE 4 | Summary of cells and synapses implemented for neural network scalability experiment.

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of synapses Number of

excitatory synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (from 1,000 to 256,000)

LIF, AdEx, or HH neurons

From 10,000 to

256,0000

From 10,000 to

2,560,000 (7 nS)

2nd layer (from 1,000 to

256,000) LIF, AdEx, or HH

neurons

2nd layer (from 1,000 to 256,000)

LIF, AdEx, or HH neurons

From 80,000 to

20,480,000

From 64,000 to

16,384,000 (0.5 nS)

From 16,000 to

4,096,000 (2.5 nS)

TABLE 5 | Summary of cells and synapses implemented for neural network input activity scaling (input average firing rate) experiment.

Network

Configuration

Pre-synaptic cell (number) Post-synaptic cell (number) Number of

synapses

Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1,000) input neurons 2nd layer (16,000) LIF, AdEx, or

HH neurons

160,000 160,000 (7 nS)

2nd layer (16,000) LIF, AdEx, or

HH neurons

2nd layer (16,000) LIF, AdEx, or

HH neurons

1,280,000 1,024,000 (0.5 nS) 256,000 (2.5 nS)

TABLE 6 | Summary of cells and synapses implemented for neural network interconnection scalability experiment.

Network

Configuration

Pre-synaptic cell

(number)

Post-synaptic cell (number) Number of synapses Number of excitatory

synapses

Number of inhibitory

synapses

Input layer (1000)

input neurons

2nd layer (16,000) LIF, AdEx,

or HH neurons

160,000 160,000 (7 nS)

2nd layer (16,000)

LIF, AdEx, or HH

neurons

2nd layer (16,000) LIF, AdEx,

or HH neurons

From 160,000 to

20,480,000

From 128,000 to 16,384,000

(from 0.5 to 0.03125 nS)

From 32,000 to 4,096,000

(from 2.5 to 0.15625 nS)

the impact of increasing the number of recurrent synapses for the
event-driven and time-driven techniques proposed.

For these analyses, our initial neural network setup is modified
as defined in Table 6. The number of recurrent synapses are

geometrically scaled up from 10 to 1,280 by a common ratio
and scale factor of r = 2 and a = 10, respectively (number of
recurrent synapses = a·rn, where n ǫ [0, 7]). Maintaining the
mean firing rate in the second neural layer at approximately

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

10 Hz requires the recurrent synaptic weights to be adapted
depending on the number of recurrent synapses. The initial
neural network maintains 80 synapses as in the previous cases
(the weights of excitatory and inhibitory synapses are set to 0.5
and 2.5 nS, respectively). Neural networks with a lower number
of synapses [10, 40] require the synaptic weights to remain the
same. Neural networks with larger number of synapses [160,
1280] require the synaptic weights to be divided by the common
ratio r = 2 in each iteration (the weights of excitatory and
inhibitory synapses are ranged from 0.25 to 0.03125 and from
1.25 to 0.15625, respectively).

RESULTS

This section shows the results obtained by the four test-bed
experiments described in the methods section. Each experiment
evaluated eight different neural dynamic simulation techniques
over LIF, AdEx, and HH neuron models in terms of accuracy
and/or performance (see Methods). Thus, we evaluated how the
proposed simulation techniques perform with neural models of
different mathematical complexity.

Simulation Parameter Results: The
Look-Up Table, Synchronization Period
and Integration Step Size Implications
In this experiment, we computed the neural network defined
in Table 3 using five different input spike patterns with a
Poisson process and mean firing rate of 5 Hz. We measured
the simulation accuracy over the third neural layer and the
computational performance over the whole simulation time
when the look-up table size, the synchronization period, or the
integration step size are scaled up.

Look-Up Table Size Implications
As previously stated, the look-up table size directly affects
the neural model simulation accuracy and computational
performance for event-driven simulation techniques. This is of
special importance for neural models with high mathematical
complexity. The number of state variables in a model determines
the number of look-up tables and their dimensions. Since the
number of state variables is given by the neural model (LIF, AdEx,
or HH), the granularity level of each look-up table dimension
is the only independent parameter that can be freely selected to
adjust the look-up table size. The more complex the model is,
the lower granularity levels that are required to keep the look-up
table size manageable (HH granularity level <AdEx granularity
level <LIF granularity level). Consequently, the higher the
complexity of the neural models is, the lower accuracy that is
obtained when the total look-up table sizes are fixed.

Here, we have evaluated four pre-compiled look-up tables
with different levels of granularity for each neural model. In
subsequent experiments, the event-driven models will use the
largest look-up tables to keep the highest possible level of
accuracy.

Figure 4 shows the simulation accuracy and computational
performance of direct and combined event-driven integration
methods with respect to the four sets of look-up tables with
different levels of granularity for each of our three neural models
(LIF, AdEx, and HH). As shown, the larger the look-up table
size is, the higher the accuracy (smaller van Rossum distances
with respect to the reference simulation pattern; Figure 4A)
but at the cost of a worse performance (higher execution
times; Figure 4B). The simulation accuracy for both integration
methods (direct and combined) remains the same since the look-
up table recombination of the second integration method does
not affect the neural dynamics. The simulation accuracy for one

FIGURE 4 | Simulation accuracy and computational performance for direct and combined event-driven integration methods. (A) Mean simulation

accuracy obtained with direct and combined event-driven integration methods depending on the look-up table sizes for five different input spike patterns. (B)

Computation time spent by direct and combined event-driven integration methods in running 1 s of simulation over five different input spike patterns (averaged). Four

different look-up table sizes for each neural model are used. The neural network defined in Table 3 is simulated using both integration methods over LIF, AdEx, and

HH models. The standard deviation of simulation accuracy and computational performance obtained is negligible; we only represent the mean values. Both integration

methods present identical accuracy results.

Frontiers in Neuroinformatics | www.frontiersin.org 12 February 2017 | Volume 11 | Article 7

Naveros et al. Event- and Time-Driven Techniques

of these integration methods is, therefore, representative for both
in the plots of Figure 4.

Figure 4B also compares the computational performance
of direct and combined event-driven integration methods.
The more mathematically complex the neural model is, the
more look-up tables can be combined and the higher the
computational performance results of combined event-driven
integration methods with respect to the direct ones.

Synchronization Period Size Implications
The synchronization period of synchronous and combined
synchronous event-driven integration methods affects the neural
model simulation accuracy and the computational performance.
As in the previous case, the simulation accuracy of both
integration methods remains the same since the look-up
table recombination does not affect the neural dynamics. The
simulation accuracy for one of these integration methods is,
therefore, representative for both in plots of Figure 5.

Both integration methods minimize the number of spike
predictions when the input activity is synchronous (seemethods).
Adjusting the step size of the synchronization period in the
second neural layer allows us to control the synchronicity of the
input activity driven toward the third neural layer (see Table 3).

Figure 5 shows to what extent the synchronization period
affects the simulation accuracy (Figures 5A,C, and E) and
the computational performance (Figures 5B,D, and F) for
each of our three neural models (LIF, AdEx, and HH),
respectively. The larger the synchronization period is, the
higher the computational performance (shorter execution
times). Regarding simulation accuracy, event-driven methods
are comparable in accuracy to time-driven methods for LIF
and AdEx models. Conversely, event-driven methods present
larger accuracy errors for the HH model due to RAM capacity
limitations (huge look-up tables would be required to achieve
similar accuracy rates).

Integration Step Size Implications
Likewise, simulation accuracy and computational performance in
time driven simulation techniques using fixed-step and bi-fixed-
step integrationmethods are tightly related to the integration step
sizes. The simulation accuracy for both methods in CPU and
GPU platforms is almost identical. For the sake of readability,
we only show the accuracy results of CPU methods in Figure 5.
Figure 5 shows to what extent the decrease of the integration
step size affects the simulation accuracy and the computational
performance. The smaller the integration step sizes are, the more
accurate the results that are obtained (Figures 5A,C, and E) but
at the cost of slower simulations (Figures 5B,D, and F). When
comparing the computational performance of fixed-step and bi-
fixed-step integration methods in both platforms, CPU and GPU,
it is demonstrated that the more complex the neural model is, the
better performance results that are obtained by the bi-fixed-step
methods with respect to the fixed-step ones.

Scalability Results: Implications When
Increasing the Number of Network Units
This section studies the computational performance for the
event-driven and time-driven simulation techniques when the

neural network size is scaled up. We have measured the
computational performance of our two different dynamic
evaluation techniques when they are applied to different neural
network sizes (Table 4) under equal input activity patterns (a set
of random input patterns with 5 Hz mean frequency).

Figure 6 shows in the column on the left (Figures 6A,D,
and G) the computational performance of our four event-
driven integration methods (direct, combined, synchronous,
and combined synchronous event-driven integration methods)
for LIF, AdEx and HH neural models, respectively. The
central column (Figures 6B,E, and H) shows the computational
performance of our four time-driven simulation methods (fixed-
step and bi-fixed-step integration methods in both CPU and
GPU platforms) for the same three neural models. The column
on the right (Figures 6C,F, and I) shows the speed-up achieved
by the combined synchronous event-driven methods, the fixed-
step and bi-fixed-step integration methods in GPU with respect
to the direct event-driven methods, the fixed-step and bi-fixed-
step integration methods in CPU for the same three neural
models.

The six CPU methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods as well
as fixed-step and bi-fixed-step integration methods) present a
linear behavior. The computation time linearly increases with
the number of neurons. Similarly, the two GPU integration
methods (fixed-step and bi-fixed-step integration methods)
perform linearly with the number of neurons (the computation
time increases with the number of neurons). However, when the
number of neurons to be simulated is under a certain boundary,
the time spent in the synchronization and transference of data
between CPU and GPU processors dominates over the neural
computation time. In this case, the speed-up of GPU methods
with respect to the CPU ones decreases, as shown in Figure 6,
right column.

Input Activity Results: Implication When
Increasing the Mean Firing Activity
This section studies the computational performance of the event-
driven and time-driven simulation techniques as the mean firing
activity of the neural network increases. The neural network
described in Table 5 has been simulated using fifteen different
input activity patterns whose mean firing rate frequency ranges
from 2 to 16 Hz.

Figure 7 shows in the column on the left (Figures 7A,C,
and E) the computational performance of our four event-
driven integration methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods) for
LIF, AdEx, and HH neural models, respectively. The column
on the right (Figures 7B, D, and F) shows the computational
performance of the four time-driven simulation methods (fixed-
step and bi-fixed-step integration methods in both CPU and
GPU platforms) for the LIF, AdEx, and HH neural models,
respectively.

Figure 7 clearly shows how event-driven schemes are sensitive
to the level of input activity, whilst the impact of the input
activity on time-driven integration methods is marginal. When
comparing amongst event-driven integration methods, the
results clearly show the improvements of the combined and

Frontiers in Neuroinformatics | www.frontiersin.org 13 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 5 | Simulation accuracy and computational performance of synchronous and combined synchronous event-driven integration methods

depending on the synchronization periods. Simulation accuracy and computational performance of fixed-step and bi-fixed-step integration methods in CPU and

GPU platforms depending on the integration step size. One-second simulation of the neural networks defined in Table 3 is shown. Five different input spike patterns

of 5Hz that generate mean firing rate activities of 10 Hz in the third neural layer are used. The left-hand column (A,C, and E) of the panel shows the simulation

accuracy and the right-hand column (B,D, and F) the computational performance obtained by the synchronous and combined synchronous event-driven integration

methods depending on the synchronization period for LIF, AdEx, and HH models, respectively (the synchronization period is plotted over x-axis). Both columns also

show the simulation accuracy and computational performance of fixed-step and bi-fixed-step integration methods in CPU and GPU platforms depending on the

integration steps (the global integration step size of fixed-step and bi-fixed-step integration methods are plotted over x-axis. The local step sizes for bi-fixed-step

integration methods are 0.25 ms for LIF and AdEx models and 1/15 ms for HH model). The standard deviation of the simulation accuracy and the computational

performance obtained is negligible; we only represent the mean values. Synchronous and combined synchronous event-driven integration methods present identical

accuracy results. CPU and GPU time-driven integration methods present almost identical accuracy results. The stiffness of HH model constrains the maximum step

size that fixed-step integration methods can use. Beyond this step size, the differential equations cannot properly be integrated for this model.

synchronous integration methods. The slope of the result series
(i.e., the impact of the average activity on the simulation
performance) decreases when these integration methods are
adopted in the simulation scheme. When comparing amongst
time-driven methods, the improvements of using bi-fixed-step
methods (leading to 2-fold performance levels compared to
fixed-step methods) and GPU as co-processing engine (leading

to 5-fold performance levels compared to CPU approaches)
are also clear in the obtained results. Amongst the four time-
driven integration methods proposed, the bi-fixed-step method
in CPU is the most severely affected by the increasing of the
mean firing activity within the neural network. The overhead
time spent in deploying the adaptationmechanism (see methods)
makes these integrationmethods unadvisable for scenarios where

Frontiers in Neuroinformatics | www.frontiersin.org 14 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 6 | Computational performance obtained from the eight integration methods proposed for LIF, AdEx and HH neural models depending on the

number of neurons within the second neural layer. One-second simulation of the neural networks defined in Table 4 is shown. A mean input activity of 5Hz that

generates a mean firing rate activity of 10 Hz in the second neural layer is used. The left-hand column (A,D, and G) of the panel shows the computational performance

of the four event-driven integration methods (direct, combined, synchronous, and combined synchronous event-driven methods) for LIF, AdEx, and HH neural models,

respectively. The central column (B,E, and H) of the panel shows the computational performance of the four time-driven integration methods (fixed-step and

bi-fixed-step integration methods in both CPU and GPU platforms) for the same three neural models. The right-hand column (C,F, and I) of the panel shows the

speed-up achieved by the combined synchronous event-driven methods, the fixed-step and bi-fixed-step integration methods in GPU respect to the direct

event-driven methods, the fixed-step and bi-fixed-step integration methods in CPU for the same three neural models.

the neural network presents very high levels of constant firing
activity.

Connectivity Results: Implications When
Increasing the Number of Synapses in the
Recurrent Topology
This section studies the computational performance for the
event-driven and time-driven simulation techniques as the

number of synapses in the recurrent topology of our neural
network increases. The neural network described in Table 6 has
been simulated using a random input activity with a mean firing
rate of 5 Hz.

Figure 8 shows in the column on the left (Figures 8A,C,
and E) the computational performance of our four event-
driven integration methods (direct, combined, synchronous, and
combined synchronous event-driven integration methods) for
LIF, AdEx, and HH neural models, respectively. The column on

Frontiers in Neuroinformatics | www.frontiersin.org 15 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 7 | Computational performance obtained from the eight simulation methods proposed for LIF, AdEx, and HH neural models depending on the

mean firing rate activity in the second neural layer. One-second simulation of the neural networks defined in Table 5 is shown. The neural input activity ranges

from 1 to 10 Hz on average. The mean neural activity obtained at the second layer is plotted over x-axis. The left-hand column (A,C, and E) of the panel shows the

computational performance of the four event-driven integration methods (direct, synchronous, combined, and combined synchronous event-driven integration

methods) for LIF, AdEx, and HH neural models, respectively. The right-hand column (B,D, and F) of the panel shows the computational performance of the four

time-driven integration methods (fixed-step and bi-fixed-step integration methods in both CPU and GPU platforms) for the same three neural models.

the right (B, D, and F) shows the computational performance
of our four time-driven integration methods (fixed-step and bi-
fixed-step integration methods in both CPU and GPU platforms)
for the LIF, AdEx, and HH neural models, respectively. The
firing rate activity remains quite stable (between 8 and 12Hz),
although the number of propagated spikes increases due to
the higher number of synapses. The computation time (the
measured variable) depends on the computational workload.
This workload, in turn, depends on the number of internal
spikes and recurrent synapses (number of propagated spikes

= number of internal spikes · number of recurrent synapses).
The number of propagated spikes is plotted in x-axis instead
of the number of recurrent synapses to better compare the
computation time of all the simulationmethods under equivalent
neural activity conditions. Each mark in Figure 8 corresponds to
a number of recurrent synapses (10, 20, 40, 80, 160, 320, 640, and
1280) since this is the parameter that can be directly set in the
network definition and thus in the simulation experiment.

The simulation performance in event-driven integration
methods significantly decreases as the number of propagated

Frontiers in Neuroinformatics | www.frontiersin.org 16 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

FIGURE 8 | Computational performance of the eight simulation methods proposed for LIF, AdEx, and HH neural models depending on the number of

propagated spikes that are determined by the number recurrent synapses. One-second simulation of the neural networks defined in Table 6 is shown. The

number of recurrent synapses is geometrically scaled up (10, 20, 40, 80, 160, 320, 640, and 1,280). A mean input activity of 5 Hz is used. This input activity generates

a mean firing rate activity of between 8 and 12 Hz within the second neural layer. The number of propagated spikes increments proportionally with the number of

synapses (number of propagated spikes = number of internal spikes · number of recurrent synapses). The mean number of propagated spikes that arrives to the

second layer is plotted over x-axis. The left-hand column (A,C, and E) of the panel shows the computational performance of the four event-driven integration methods

(direct, synchronous, combined, and combined synchronous event-driven integration methods) for LIF, AdEx, and HH neural models, respectively. The right-hand

column (B,D, and F) shows the computational performance of the four time-driven integration methods (fixed-step and bi-fixed-step integration methods in both CPU

and GPU platforms) for the same three neural models.

spikes increases. Nevertheless, we can see a significant
improvement when synchronous event-driven integration
methods are used since they are optimized for computing
higher levels of synchronous activity. Conversely, the simulation
performance in time-driven integration methods suffers
little direct impact as the number of propagated spikes

increases. The results show the improvement achieved with the
bi-fixed-step integration methods either with or without GPU
co-processing.

When comparing amongst event- and time-driven methods,
GPU time-driven methods have the best-in-class performance
(see Figures 7, 8). Incremental levels of input activity cause an

Frontiers in Neuroinformatics | www.frontiersin.org 17 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

incremental number of propagated spikes thus favoring GPU
time-driven methods. On the other hand, tend-to-zero input
activity levels favor event-driven methods. The event-driven
performance obtained under these low input activities is usually
equal to or better than GPU time-driven performance.

DISCUSSION

Throughout this paper, different neural dynamic evaluation
techniques are developed. Within the event-driven methods: the
combined integration methods based on the combination of
look-up tables and the synchronous integration methods based
on the optimization of processing synchronous activities. These
two integration method are clear improvements with respect
to previously described event-driven neural dynamic evaluation
techniques (Ros et al., 2006a). As far as the time-driven methods
are concerned, the bi-fixed-step integration methods and the
CPU-GPU co-processing significantly increase the performance
of time-driven neural dynamic evaluation techniques.

The quality level of each proposed integration method
is given in terms of neural accuracy and computational
performance when simulating three neural models of
incremental mathematical complexity (LIF, AdEx, and HH).
These neural models are set up (Table 7) for reproducing similar
activity patterns. All the simulation methods shall provide
similar accuracy results to make them comparable. Fixed-step
and bi-fixed-step time-driven integration methods for LIF and
AdEx models are set up (Table 1) for obtaining similar accuracy
results than event-driven methods (Figure 5). LIF and AdEx
models are compiled in look-up tables of 249 and 712 MB,
respectively (Figure 4).

The higher complexity of the HH model imposes a large
storage memory capacity. An event-driven HH model with
comparable accuracy levels to bi-fixed-step time-driven HH
model would require up to 14 GB of storage memory capacity
(estimation extrapolated from Figure 4A). In this benchmark,
the HH model has been compiled in look-up tables of 1195

TABLE 7 | Summary of parameters for LIF, AdEx and HH neural models.

LIF AdEx HH

C 0.19e–9 F C 110 pF C 120 pF

EL −0.065 V EL −65 mV EL −65 mV

gL 10e–9 S gL 10 nS gL 10 nS

VT −0.050 V VT −50 mV VT −52 mV

Tref 0.0025 s ∆T 2 mV gNa 20 nS

EAMPA 0.0 V τw 50 ms ENa 50 mV

EGABA −0.080 V A 1 nS gKd 6000 nS

τAMPA 0.005 s B 9 pA EK −90 mV

τGABA 0.010 s Vr −80 mV EAMPA 0.0 mV

EAMPA 0.0 mV EGABA −80 mV

EGABA −80 mV τAMPA 5 ms

τAMPA 5 ms τGABA 10 ms

τGABA 10 ms

MB that obtain larger accuracy errors results than the equivalent
time-driven methods.

Event-Driven Main Functional Aspects
The main functional aspects in relation to the event-driven
integration methods can be summarized as follows:

• The number of state variables defining a neural model
represents, broadly speaking, the complexity of a neural
model. When this number increases linearly, the memory
requirements to allocate the pre-compiled look-up tables of
the event-driven neural models increases geometrically. Thus,
reducing the level of granularity of each dimension is the
only way to reduce the total look-up table size, but this
reduction directly affects the simulation accuracy (as shown
in Figure 4A). The more complex the neural models are or
the smaller the look-up table sizes are, the higher van Rossum
distance values (less accuracy) that are obtained. Boundaries in
accuracy andmemory capacity constrain the maximum neural
complexity that these event-driven techniques can handle.

• The recombination of look-up tables improves the
computational performance, maintaining the simulation
accuracy. Actually, the combined event-driven integration
methods slightly increase the computation time when the
neural model complexity increases because the neural
state update process of several variables using combined
look-up tables is slightly more complex than the update
of just one variable. Larger look-up table sizes cause
higher rates of cache failures and, therefore, losses in
computational performance (see Figure 4). This means that
the computational performance is more impacted by the total
look-up table size than by the mathematical complexity (the
number of state variables) of the neural model, although both
the mathematical complexity and the look-up table size are
related.

• The computation mechanism used by synchronous methods
to deal with synchronous activity significantly improves the
computational performance. When a synchronous event-
driven neuron receives input synapses coming from other
synchronous event-driven neurons or time-driven neurons,
the computational performance enhancement depends on
either the synchronization period or the integration step
size of the previous layers. The larger the synchronization
period or the integration step size of the previous layers
are, the more synchronous the activity that arrives to the
synchronous model and the higher performance levels with
respect to the direct non-synchronized integration methods
(see Figures 5–8). Regarding the simulation accuracy, the
look-up tables are precompiled maintaining a certain degree
of precision. A lager synchronization period only generates
a negligible error in the spike generation time which, in
turn, causes small oscillations in the van Rossum distance
measurements (Figure 5).

• Both neural dynamic evaluation techniques (the combination
of look-up tables and synchronization of activity) are
simultaneously applied by the combined synchronous event-
driven method. This simulation technique outperforms the

Frontiers in Neuroinformatics | www.frontiersin.org 18 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

rest of event-driven techniques. This is more significant when
the mathematical complexity of the neural models increases
(see Figures 5–8).

• The main factor that finally constrains the computational
performance of all these event-driven methods is the number
of events that need to be processed. These events are mainly
internal and propagated spikes (Ros et al., 2006a) that linearly
increase with the neural activity. Time-driven integration
methods are preferred rather than event-driven integration
methods for those neural networks with high levels of neural
activity (see Figures 7, 8). Conversely, there are particular
cases in which the event-driven integration methods can
be the best option. There are, actually, biologically realistic
SNNs in which parts of their inner layers present a very low
and sparse neural activity, such as the granular cells in the
cerebellum (D’Angelo et al., 2016) or the mushroom bodies
within the olfactory system in Drosophila (Serrano et al.,
2013). The importance of these particular networks cannot
be overlooked (i.e., just the granular cerebellar layer accounts
for half of the neurons of the whole brain, its neurons receive
between three and six input synapses with a low and very
sparse activity, with most of them remaining silent and barely
generating spikes). In these cases, event-driven integration
methods perform better than time-driven integration
methods.

Time-Driven Main Functional Aspects
The main functional aspects in relation to the time-driven
integration methods can be summarized as follows:

• Hybrid CPU-GPU integration methods perform better
than CPU methods. This is specifically relevant when the
mathematical complexity of the neural models increases. GPU
hardware architecture performs better computing parallel
tasks than CPU architecture. The computation of the neural
dynamics is a pure parallelizable task and consequently, GPU-
friendly. In a hybrid CPU-GPU platform, the GPU only
processes the neural dynamics, whilst the spike generation
and propagation are processed in the CPU. When the
mathematical complexity of the neural models increases, the
workload assigned to the GPU increases, whilst the workload
of the CPU remains equal. For this reason, CPU-GPU neural
models perform better than purely CPU neural models,
especially when the mathematical complexity of the neural
models increases. This increase in performance is shown in
Figures 5–8.

• Bi-fixed-step integration methods outperform fixed-step
integration methods for both CPU and GPU platforms
when the mathematical complexity of the neural model
increases (see Figures 5–8). Complex neural models usually
demand small integration step sizes to better cope with the
stiffness of their neural model equations during the spike
shape generation. Figures 5E,F show how the maximum
step size on a fixed-step integration method is constrained
due to the differential equation stiffness (HH model).
The adaptation mechanism used by the CPU bi-fixed-step
integration methods improves the simulation performance by

enlarging the simulation step size during those neural dynamic
intervals out of the spike phase.

• The adaptation mechanism of the integration step size for
GPU bi-fixed-step integration methods increases performance
thanks to the minimization of the time spent in the
synchronization and transfer of data between the CPU and
GPU processors.

• Whilst CPU integration methods are better suited for small-
medium groups of neurons (from one neuron to several
thousands of neurons, depending on the mathematical
complexity), the GPU integration methods are better
suited for larger numbers of neurons (from thousands to
millions of neurons). The computation time invested in the
synchronization period and data transferences between CPU
and GPU platforms dominates over the computation time
invested in solving the neural dynamics when the number of
neurons within the network is small (see Figure 6). In this
case, the computational performance of the GPU integration
methods reaches a plateau.

• The adaptation mechanism that the bi-fixed-step integration
method uses in CPU may decrease the computational
performance when the mean firing rate over the neural
network is quite high. When the neural activity increases, the
ratio of use between the local and global step also increases.
The computational workload for the neural dynamic increases
and the performance drops (see how the computation time
increases in Figure 7).

EDLUT Hybrid Architecture into
Perspective
EDLUT is a simulator mainly oriented to efficiently simulate
medium-scale neural networks (tens of thousands of neurons)
pursuing real time simulations. EDLUT uses point neural models,
such as LIF, AdEx or HH. EDLUT information transmission
relies on spike timing rather than on the particular spike shape.
What matters is when the spike is emitted rather than how the
spike is generated. Neurons are just means to an end needed
toward understanding the behavior of the neural network behind.
The neural communication mechanisms are deployed at network
level at very high simulation speeds on a single multicore
computer, thus facilitating real time embodiment experiments
(Carrillo et al., 2008; Luque et al., 2011a,b, 2014a,b, 2016; Garrido
et al., 2013a; Casellato et al., 2014; Antonietti et al., 2016). In these
neurorobotic experimental set-ups the neural network and the
body are coupled as a single entity.

Conversely, NEURON (Hines and Carnevale, 1997) is mainly
designed for the simulation of very complex and detailed neural
models. What matters here is how the spike was generated rather
than when it was emitted. Understanding neurons themselves is
the goal. To be as biologically plausible as possible, NEURON is
conceived to deal with high levels of mathematical complexity
that usually require time-driven simulation methods (either
fixed- or variable-step integration methods). The computational
cost here highly depends on the mathematical complexity which
makes the simulation of hundreds or tens of hundreds neurons
conforming a network almost computationally intractable. Using

Frontiers in Neuroinformatics | www.frontiersin.org 19 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

NEURON for the benchmark analysis proposed here would be
out of context.

NEURON, lately, seems to be increasing its field of application
toward medium- large-scale neural networks (see Lytton et al.,
2016) that are comprised of highly simplified neural models
(i.e., Izhikevich or the four dimensional HH models). Note
that the time-driven simulation techniques here proposed may
have a direct impact on NEURON if this tendency is finally
consolidated.

In contrast, BRIAN (Goodman and Romain, 2009) and NEST
(Gewaltig and Diesmann, 2007) are simulators often considered
to be playing in the same league as EDLUT. As is the case
with EDLUT, Brian claims to be mainly oriented to efficiently
simulate medium-scale neural networks (tens of thousands of
neurons) while NEST is designed for very large-scale neural
networks (up to 1.86 billion neurons connected by 11.1 trillion
synapses on the Japanese K supercomputer; Kunkel et al.,
2014). These simulators mainly implement point neuron models,
although some models with few compartments can be simulated.
Similarly, they consider neurons to be just means to an end.
They use neurons to understand the behavior of the neural
network behind. Both are natively implementing time-driven
simulation methods in CPU and particularly BRIAN also
implements a hybrid CPU-GPU co-processing scheme for time-
driven models. Having said that, the conclusions and approaches
proposed in the paper regarding time-driven methods would
have a direct impact on Brian and a substantial impact on
NEST since CPU-GPU co-processing is still missing. The other
fundamental pillar of the methodology proposed here, the event-
driven scheme, is not included in BRIAN but it does exist in
NEST. Whilst the event-driven EDLUT framework (originally an
event-driven scheme) was adapted to also perform time-driven
neural simulations (Garrido et al., 2011), the time-driven NEST
framework (originally a time-driven scheme) was adapted to also
perform event-driven neural simulations (Morrison et al., 2007;
Hanuschkin et al., 2010). Thus, both simulators can perform
combined event- and time-driven simulations. In fact, NEST
proposes an event-drivenmethod that presents similarities to our
synchronous event-driven method. Both event-driven methods
minimize the number of spike predictions by processing all the
synchronous input spikes conjointly and thus make only one
prediction.

CONCLUSIONS

The way forward in computational neuroscience lies in the
simulation of biologically plausible computational models of
different nervous centers (cerebellum, inferior olive, cuneate
nucleus, etc.) to better understand how the information
is processed within these nervous centers. Computational
neuroscience allows the study of these nervous center models
without experimental restrictions using neural models that have
been developed and validated according to experimental cellular
data.

These nervous center models can be simulated in different
conditions and circumstances to give a consistent idea about

how they may operate. In many cases, these models are
becoming a fundamental tool in the neuroscience hypothesis-
experimentation cycle. The computational models allow
researchers to test their hypotheses in simulation. This fact leads
to making a better hypothesis and better experiments designed
with a greater probability of success.

The road to model and simulate nervous centers
has been progressively paved with increasing levels of
mathematical complexity to include more and more biological
features. However, this mathematical complexity comes at a
computational cost (i.e., neural accuracy and computational
performance). In this paper, we have proposed several new neural
dynamic evaluation techniques to cope with the incremental
mathematical complexity of well-known neural models (LIF,
AdEx, and HH):

(a) The combined synchronous event-driven integration
method combines the look-up tables to minimize the
number of look-up table data queries needed to update
the neural state variables during the simulation process.
Additionally, this method also minimizes the look-up table
data queries, making just one prediction about the emission
of an output spike for each group of synchronous input
spikes that arrive to each neuron.

(b) The bi-fixed-step integration method (optimized also in
GPU) in which the neural dynamic equations that define
the complex neural models (as HH) are accurately solved by
switching between two time steps of different lengths during
the simulation process.

All these integration methods, with their own pros and cons,
are meant to be used concurrently to increase the computational
performance when simulating heterogeneous SNNs (such as
those previously studied in Naveros et al., 2015). These
heterogeneous SNNs consist of several layers with different
neural properties, thus trying to mimic the neural heterogeneity
found in different brain regions, such as the cerebellum
(D’Angelo et al., 2016; Luque et al., 2016) or the cuneate nucleus
(Bologna et al., 2011). The simulation platform used in this
study integrates all these neural dynamic evaluation techniques
in such a way that parts of the neural network (with low
and sparse activity) can be simulated efficiently with event-
driven methods (which have been optimized to more efficiently
deal with relatively-complex neural models and synchronous
activity) and parts of the neural networks (with higher activity
in terms of number of spikes) can be simulated with time-
driven methods (which have been optimized with bi-fixed-step
integration methods and the capability of using highly parallel
hardware, such as GPU engines). See Appendix B for a simulation
accuracy study of neural networks with combined event- and
time-driven methods.

Choosing the most appropriate method or combination of
methods for each neural center model to be simulated is a
trade-off amongst three elements:

1. The neural network architecture (number of neurons, neural
model complexity, number of input and output synapses,
mean firing rates, etc.).

Frontiers in Neuroinformatics | www.frontiersin.org 20 February 2017 | Volume 11 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

2. The hardware restrictions (number of CPU and GPU cores,
RAM size).

3. The simulation requirements and target (minimizing the
execution time, maximizing accuracy, etc.).

Finally, this study has been done using neural networks
with medium-low connectivity ratios (from 10 to 1280 input
synapses per neuron) oriented to fast simulations. However,
the simulation performance results may change significantly
when simulating neural networks with larger connectivity ratios
(for example 10,000 input synapses per neuron). In this case
the spike propagation task is usually more time consuming
than the neural dynamics update task for time-driven methods.
Nevertheless, as can be seen in Figure 8, our synchronous
event-driven method improves its performance in relation to
the direct event-driven method when the number of synapses
increases.

AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct and intellectual
contribution to the work, and approved it for publication. FN,

RC, JG, and NL conceived and designed the experiments. FN
performed the experiments. FN, RC, NL, JG, and ER analyzed
the data. FN, NL, and RC contributed reagents/materials/analysis
tools. FN, NL, and ER wrote the paper.

ACKNOWLEDGMENTS

This study was supported by the European Union NR (658479-
Spike Control), by the European Commission (653019 -
CEREBSENSING) to JG, by the Spanish National Grant
NEUROPACT (TIN2013-47069-P) and by the Spanish
National Grant PhD scholarship (AP2012-0906). We
gratefully acknowledge the support of NVIDIA Corporation
with the donation of two Titan GPUs for current EDLUT
development.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2017.00007/full#supplementary-material

REFERENCES

Agis, R., Ros, E., Diaz, J., Carrillo, R., and Ortigosa, E. M. (2007). Hardware

event-driven simulation engine for spiking neural networks. Int. J. Electron. 94,

469–480. doi: 10.1080/00207210701308625

Antonietti, A., Casellato, C., Garrido, J. A., Luque, N. R., Naveros, F., Ros, E., et al.

(2016). Spiking neural network with distributed plasticity reproduces cerebellar

learning in eye blink conditioning paradigms. IEEE Trans. Biomed. Eng. 63,

210–219. doi: 10.1109/TBME.2015.2485301

Bologna, L. L., Pinoteau, J., Brasselet, R., Maggiali, M., and Arleo, A. (2011).

Encoding/decoding of first and second order tactile afferents in a neurorobotic

application. J. Physiol. Paris 105, 25–35. doi: 10.1016/j.jphysparis.2011.

08.002

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools and

strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Carrillo, R. R., Ros, E., Boucheny, C., and Coenen, O. J. (2008). A real-time

spiking cerebellum model for learning robot control. BioSystems 94, 18–27.

doi: 10.1016/j.biosystems.2008.05.008

Casellato, C., Antonietti, A., Garrido, J. A., Carrillo, R. R., Luque, N. R., Ros, E.,

et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar

network. PLoS ONE 9:e112265. doi: 10.1371/journal.pone.0112265

D’Angelo, E., Antonietti, A., Casali, S., Casellato, C., Garrido, J. A., Luque, N.

R., et al. (2016). Modelling the cerebellar microcircuit: new strategies for a

long-standing issue. Front. Cell. Neurosci. 10:176. doi: 10.3389/fncel.2016.00176

Delorme, A., and Thorpe, S. J. (2003). Spikenet: an event-driven simulation

package for modelling large networks of spiking neurons.Network 14, 613–627.

doi: 10.1088/0954-898X_14_4_301

Doesburg, S. M., Green, J. J., McDonald, J. J., and Ward, L. M. (2012).

Theta modulation of inter-regional gamma synchronization during auditory

attention control. Brain Res. 1431, 77–85. doi: 10.1016/j.brainres.2011.

11.005

Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P. (1990). Feature linking via

synchronization among distributed assemblies: simulations of results from cat

visual cortex. Neural Comput. 2, 293–307. doi: 10.1162/neco.1990.2.3.293

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comp. 62,

2454–2467. doi: 10.1109/TC.2012.142

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). Event and Time

driven hybrid simulation of spiking neural networks. Adv. Comput. Intel. 6691,

554–561 doi: 10.1007/978-3-642-21501-8_69

Garrido, J. A., Luque, N. R., D’Angelo, E., and Ros, E. (2013a). Distributed

cerebellar plasticity implements adaptable gain control in a manipulation

task: a closed-loop robotic simulation. Front. Neural Circuits 7:159.

doi: 10.3389/fncir.2013.00159

Garrido, J. A., Luque, N. R., Tolu, S., and D’Angelo, E. (2016). Oscillation-

driven spike-timing dependent plasticity allows multiple overlapping pattern

recognition in inhibitory interneuron networks. Int. J. Neural Syst. 26:1650020.

doi: 10.1142/S0129065716500209

Garrido, J. A., Ros, E., and D’Angelo, E. (2013b). Spike timing regulation

on the millisecond scale by distributed synaptic plasticity at the

cerebellum input stage: a simulation study. Front. Comput. Neurosci. 7:64.

doi: 10.3389/fncom.2013.00064

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models. Cambridge:

Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks. Int. J. Neural

Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Goodman, D. F. M., and Romain, B. (2009). The brian simulator. Front. Neurosci.

3, 192–197. doi: 10.3389/neuro.01.026.2009

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.

(2010). A general and efficient method for incorporating precise spike

times in globally time-driven simulations. Front. Neuroinform. 4:113.

doi: 10.3389/fninf.2010.00113

Hines, M. L., and Carnevale, N. T. (1997). The NEURON Simulation

Environment. Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.

6.1179

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiology

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Iserles, A. (2009).A First Course in the Numerical Analysis of Differential Equations.

Cambridge: Cambridge University Press.

Frontiers in Neuroinformatics | www.frontiersin.org 21 February 2017 | Volume 11 | Article 7

http://journal.frontiersin.org/article/10.3389/fninf.2017.00007/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fninf.2017.00007/full#supplementary-material
https://doi.org/10.1080/00207210701308625
https://doi.org/10.1109/TBME.2015.2485301
https://doi.org/10.1016/j.jphysparis.2011.08.002
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1016/j.biosystems.2008.05.008
https://doi.org/10.1371/journal.pone.0112265
https://doi.org/10.3389/fncel.2016.00176
https://doi.org/10.1088/0954-898X_14_4_301
https://doi.org/10.1016/j.brainres.2011.11.005
https://doi.org/10.1162/neco.1990.2.3.293
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1007/978-3-642-21501-8_69
https://doi.org/10.3389/fncir.2013.00159
https://doi.org/10.1142/S0129065716500209
https://doi.org/10.3389/fncom.2013.00064
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1113/jphysiol.1952.sp004764
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Naveros et al. Event- and Time-Driven Techniques

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,

et al. (2014). Spiking network simulation code for petascale computers. Front.

Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Luque, N. R., Garrido, J. A., Carrillo, R. R., Coenen, O. J., and Ros, E.

(2011a). Cerebellar input configuration toward object model abstraction

in manipulation tasks. IEEE Trans. Neural Netw. 22, 1321–1328.

doi: 10.1109/TNN.2011.2156809

Luque, N. R., Garrido, J. A., Carrillo, R. R., Coenen, O. J., and Ros, E.

(2011b). Cerebellarlike corrective model inference engine for manipulation

tasks. IEEE Trans. Syst. Man, and Cybern. B Cybern. 41, 1299–1312.

doi: 10.1109/TSMCB.2011.2138693

Luque, N. R., Carrillo, R. R., Francisco, N., Jesús, A. G., and Sáez-Larac, M. J.

(2014a). Integrated neural and robotic simulations. Simulation of cerebellar

neurobiological substrate for an object-oriented dynamic model abstraction

process. Rob. Auton. Syst. 62, 1702–1716. doi: 10.1016/j.robot.2014.08.002

Luque, N. R., Garrido, J. A., Carrillo, R. R., D’Angelo, E., and Ros, E. (2014b).

Fast convergence of learning requires plasticity between inferior olive and

deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

Front. Comput. Neurosci. 8:97. doi: 10.3389/fncom.2014.00097

Luque, N. R., Garrido, J. A., Naveros, F., Carrillo, R. R., D’Angelo, E.,

and Ros, E. (2016). Distributed cerebellar motor learning; a spike-

timing-dependent plasticity model. Front. Comput. Neurosci. 10:17.

doi: 10.3389/fncom.2016.00017

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S, McDougal, R. A., Schürmann,

F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing brain

research: parallelizing large networks in NEURON. Neural Computat. 28,

2063–2090. doi: 10.1162/NECO_a_00876

Mattia, M., and Del Giudice, P. (2000). Efficient event-driven simulation of large

networks of spiking neurons and dynamical synapses. Neural Comput. 12,

2305–2329. doi: 10.1162/089976600300014953

Mcculloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biol. 5, 115–133. doi: 10.1007/bf02478259

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).

Exact subthreshold integration with continuous spike times in

discrete-time neural network simulations. Neural Comput. 19, 47–79.

doi: 10.1162/neco.2007.19.1.47

Naveros, F., Luque, N. R., Garrido, J. A., Carrillo, R. R., Anguita, M., and

Ros, E. (2015). A spiking neural simulator integrating event-driven and

time-driven computation schemes using parallel CPU-GPU co-processing:

a case study. IEEE Trans. Neural Netw. Learn. Syst. 26, 1567–1574.

doi: 10.1109/TNNLS.2014.2345844

Neumann, J. (1958). The Computer and the Brain. New Haven, CT: Yale University

Press.

Pecevski, D., Kappel, D., and Jonke, Z. (2014). NEVESIM: event-driven neural

simulation framework with a Python interface. Front. Neuroinform. 8:70.

doi: 10.3389/fninf.2014.00070

Pelayo, F. J., Ros, E., Arreguit, X., and Prieto, A. (1997). VLSI implementation of a

neural model using spikes. Analog Integr. Circuits Signal Process. 13, 111–121.

doi: 10.1023/A:1008240229616

Reutimann, J., Giugliano, M., and Fusi, S. (2003). Event-driven simulation of

spiking neurons with stochastic dynamics. Neural Comput. 15, 811–830.

doi: 10.1162/08997660360581912

Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., and Agís, R. (2006a).

Event-driven simulation scheme for spiking neural networks using lookup

tables to characterize neuronal dynamics. Neural Comput. 18, 2959–2993.

doi: 10.1162/neco.2006.18.12.2959

Ros, E., Ortigosa, E. M., Agis, R., Carrillo, R., and Arnold, M. (2006b). Real-time

computing platform for spiking neurons (RT-Spike). IEEE Trans. Neural Netw.

17, 1050–1063. doi: 10.1109/TNN.2006.875980

Rudolph, M., and Destexhe, A. (2006). Analytical integrate-and-fire neuron

models with conductance-based dynamics for event-driven simulation

strategies. Neural Comput. 18, 2146–2210. doi: 10.1162/neco.2006.18.

9.2146

Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., and Millner, S.

(2010). A wafer-scale neuromorphic hardware system for large-scale neural

modeling. IEEE Int. Symp. Circuits Syst. 1947–1950. doi: 10.1109/iscas.2010.

5536970

Schoppa, N. E. (2006). Synchronization of olfactory bulb mitral

cells by precisely timed inhibitory inputs. Neuron 49, 271–283.

doi: 10.1016/j.neuron.2005.11.038

Serrano, E., Nowotny, T., Levi, R., Smith, B. H., andHuerta, R. (2013). Gain control

network conditions in early sensory coding. PLoS Comput. Biol. 9:e1003133.

doi: 10.1371/journal.pcbi.1003133

Skeel, R. D. (1986). Construction of variable-stepsize multistep formulas. Math.

Comput. 47, 503–510. doi: 10.1090/S0025-5718-1986-0856699-X

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of

asynchronous networks is limited by one-to-one mapping between

effective connectivity and correlations. PLoS Comput. Biol. 11:e1004490.

doi: 10.1371/journal.pcbi.1004490

Van Rossum,M. C.W. (2001). A novel spike distance.Neural Comput. 13, 751–763.

doi: 10.1162/089976601300014321

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Naveros, Garrido, Carrillo, Ros and Luque. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 22 February 2017 | Volume 11 | Article 7

https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1109/TNN.2011.2156809
https://doi.org/10.1109/TSMCB.2011.2138693
https://doi.org/10.1016/j.robot.2014.08.002
https://doi.org/10.3389/fncom.2014.00097
https://doi.org/10.3389/fncom.2016.00017
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1007/bf02478259
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1109/TNNLS.2014.2345844
https://doi.org/10.3389/fninf.2014.00070
https://doi.org/10.1023/A:1008240229616
https://doi.org/10.1162/08997660360581912
https://doi.org/10.1162/neco.2006.18.12.2959
https://doi.org/10.1109/TNN.2006.875980
https://doi.org/10.1162/neco.2006.18.9.2146
https://doi.org/10.1109/iscas.2010.5536970
https://doi.org/10.1016/j.neuron.2005.11.038
https://doi.org/10.1371/journal.pcbi.1003133
https://doi.org/10.1090/S0025-5718-1986-0856699-X
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.1162/089976601300014321
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
	Introduction
	Methods
	Neural Dynamic Evaluation Techniques-Why and for What?
	Event-Driven Neuron Models
	Combined Look-Up Tables for Complex Neuron Models
	Leaky Integrated-and-Fire Model (LIF)
	Adaptive Exponential Integrate-and-Fire Model (AdEx)
	Hodgkin-Huxley Model (HH)
	Synchronous Event-Driven Neuron Models

	Time-Driven Neuron Models
	Fixed-Step Integration Methods
	Variable-Step Integration Methods
	A New Integration Method; The Bi-Fixed-Step Integration Method
	Bi-fixed-step integration method for differential equation solvers in CPU
	Bi-fixed-step integration method for differential equation solvers in GPU

	Test-Bed Experiments
	Simulation Parameter Analyses
	Scalability Analyses
	Input Activity Analyses
	Connectivity Analyses

	Results
	Simulation Parameter Results: The Look-Up Table, Synchronization Period and Integration Step Size Implications
	Look-Up Table Size Implications
	Synchronization Period Size Implications
	Integration Step Size Implications

	Scalability Results: Implications When Increasing the Number of Network Units
	Input Activity Results: Implication When Increasing the Mean Firing Activity
	Connectivity Results: Implications When Increasing the Number of Synapses in the Recurrent Topology

	Discussion
	Event-Driven Main Functional Aspects
	Time-Driven Main Functional Aspects
	EDLUT Hybrid Architecture into Perspective

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

