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A number of recent studies using accelerometer features as input to machine learning

classifiers show promising results for automatically detecting stereotypical motor

movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However,

replicating these results across different types of accelerometers and their position on

the body still remains a challenge. We introduce a new set of features in this domain

based on recurrence plot and quantification analyses that are orientation invariant and

able to capture non-linear dynamics of SMM. Applying these features to an existing

published data set containing acceleration data, we achieve up to 9% average increase

in accuracy compared to current state-of-the-art published results. Furthermore, we

provide evidence that a single torso sensor can automatically detect multiple types of

SMM in ASD, and that our approach allows recognition of SMM with high accuracy in

individuals when using a person-independent classifier.

Keywords: autism, ASD, recurrence plots, repetitive behavior, stereotypical motor movement, recurrence analysis

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized
by common behavioral and social characteristics that can significantly impact daily living for
individuals with ASD and their families. About 1 in 68 children by age eight are currently being
diagnosed with ASD, wherein it is 5 times more common among boys (1 in 54) than girls (1 in
252) (Baio, 2012). Lifetime costs for one individual with ASD is estimated to be more than 2.3
million (Ganz, 2007), compared to 0.36 million spent on a child without the disorder (Alemayehu
and Warner, 2004). Reducing the burden of ASD on both families and society is limited as a
result of the great heterogeneity in symptom presentation seen across the autism spectrum, and
reliance on behavioral observation rather than objective biomarkers for diagnosing the condition
and evaluating intervention outcomes. More objective and efficient measures are needed in order
to stratify subtypes within the ASD population, develop more targeted and effective therapies and
drugs, and evaluate their success remediating core symptoms.
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The Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5, 2013) identifies two main criteria for
diagnosing ASD: (a) persistent deficits in social communication
and social interaction across contexts, and (b) restricted,
repetitive patterns of behavior, interests, and/or activities. One of
the ways restricted and repetitive behaviors manifest in ASD is
stereotypical motor movements (SMM) that appear to observers
to be invariant in form, having no obvious eliciting stimuli, and
no adaptive function (Baumeister and Forehand, 1973). Themost
frequent forms of SMM observed in ASD are hand flapping,
body rocking, and finger flicking. According to a recent review
(Goodwin et al., 2011), between 60 and 100% of individuals with
ASD exhibit at least one form of SMM.

Reliably and efficiently detecting and monitoring SMM over
time could provide important insights for understanding and
intervening upon a core symptom of ASD. SMM can negatively
affect a child with ASD’s development. If it becomes a dominant
behavior in a child’s repertoire, which it often does in ASD, it
can interfere with learning and acquisition of new skills. Timely
detection, characterization, and appropriate interventions can
reduce the impact SMM have on learning and development.
However, efficient and accurate monitoring of SMM is needed
to reliably and validly assess which therapies and/or drugs
are efficacious across the autism spectrum and over time.
Continuous and objectivemonitoring capabilities are also needed
to elucidate the mechanisms that drive SMM, which may include
physiological, affective, and environmental factors.

Traditional measures of SMM primarily include general
rating scales, either as part of a diagnostic tool, such as the
Autism Diagnostic Observation Schedule-Second Edition (Lord
et al., 2012) or Autism Diagnostic Interview- Revised (ADI-R,
Le Couteur et al., 2003), or as part of a specific measure like
the Repetitive Behavior Scale Revised Lam and Aman (RBS-
R, 2007). While useful for documenting presence or absence
of SMM, these measures rely on clinician interviews, limited
behavioral observation, and/or parental report, all of which can
be subjective, inaccurate, and difficult to compare across different
individuals with ASD. Extended direct behavioral observation
may provide a more objective alternative to these methods;
however, it too can be inaccurate given limited samples of time to
make observations and the difficulty documenting precise timing
of SMMas it happens (Sprague andNewell, 1996; Gardenier et al.,
2004; Goodwin et al., 2011). Video-based observation methods
are more accurate at behavioral classification than interviews,
rating scales, and direct observation, but they are time consuming
in that they require detailed off-line annotation of videos. In
addition, both direct and video measures of SMM are usually
based on observations in controlled environments (i.e., lab or
clinic), not in natural environments (i.e., home or classrooms).
Taken together, there is a need for less obtrusive and more
objective methods that allow continuous monitoring of SMM
over time in naturalistic settings.

A number of investigators have begun to use wearable
accelerometers and pattern recognition classifiers to develop
better and more efficient measures of SMM in ASD. Extracting
a standard set of movement features from one or more 3-
axis accelerometers worn on fingers, wrists, and/or the torso

while individuals with ASD engage in SMM, and feeding those
features to commonly used machine learning techniques (e.g.,
Support Vector Machines; SVM), have yielded promising results
for automatically detecting different types of SMM. Standard
feature sets found to perform well in this domain to-date
typically include: lower and higher order statistics, spectral
components, correlation, entropy, and signal peak zero crossing
number. An important caveat to this prior work is that while
automated detection accuracy has been relatively high in specific
ASD populations, generalizing these results using different
accelerometer types and positions, has proved to be more
challenging (Goodwin et al., 2014).

In the current work, we introduce novel features to this
domain, namely, recurrence plots (Eckmann et al., 1987).
Recurrence plots have been used in autism research for
quantification of social interaction (Fusaroli et al., 2014), social
motor coordination (Romero et al., 2016), as well as EEG-based
diagnosis of autism (Bhat et al., 2014). The main advantage of
recurrence plots over features traditionally explored are that:
(a) they capture non-linear aspects of SMM, and (b) they are
unaffected by orientation of acceleration sensors. As a result,
and evidenced in the results reported herein, they can provide
a robust way of detecting SMM that is not dependent on a
particular type of accelerometer or where it is positioned on
the body while recording. As reported in more detail below, we
employed random forest to complementary SVM and decision
tree methods, and to evaluate the usefulness of recurrence plots
in the automated SMM detection domain. We found that this
method is both highly accurate and useful in evaluating the
contribution of each feature uniquely to the detection task.

Our proposed method was applied to an open-access data set
previously collected and published by Goodwin et al. (2014). The
purpose of the current study was three-fold. First, we sought to
determine whether it is possible to improve on state-of-the-art
published recognition accuracy using novel features andmachine
learning techniques in this domain. Second, we sought to identify
the most useful features to enable optimization of accelerometer
sensor type and placement for future recordings. Third, we aimed
to estimate the reliability and robustness of features captured by
accelerometer sensors positioned at different body parts.

In the following, we provide an overview of current research
in automated recognition of SMM in ASD. We then describe
in detail recurrence plots and recurrence quantification analyses
we used for feature extraction. Next, we briefly review the
data used for our analyses, followed by a detailed report of
experiments we performed on the data. To evaluate our results,
we focus on accuracy, training size, and sensor position. Finally,
we present and discuss our results, ending with conclusions, and
opportunities for future work.

2. RELATED WORK

Existing approaches to automated monitoring of SMM are based
either on webcams or accelerometers. In a series of publications
(Gonçalves et al., 2012a,b,c) a group from the University of
Minho createdmethods based on the Kinect webcam sensor from
Microsoft. Although, their approach shows promising results, the
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authors restricted themselves to detecting only one type of SMM,
namely hand flapping. In addition, the Kinect sensor is limited
to monitoring within a confined space and requires users to be
in close proximity to the sensor. This limits the application of
the approach, as it does not allow continuous recording across a
range of contexts and activities.

Alternative approaches to the Kinect are based on the use
of wearable 3-axis accelerometers (see Figure 1). Although, the
primary aim of previously published accelerometer-based studies
is to detect SMM in individuals with ASD, some studies have been
carried out with healthy volunteers mimicking SMM (Westeyn
et al., 2005; Plötz et al., 2012)1, and therefore do not necessarily
generalize to the ASD population.

To-date, there have been two different approaches to
automatically detecting SMM in ASD using accelerometer data.
One approach is to use a single accelerometer to detect one type
of SMM, such as hand flapping when a sensor is worn on the
wrist (Gonçalves et al., 2012a; Rodrigues et al., 2013). The second
approach is to use multiple accelerometers to detect multiple
SMM, such as hand flapping from sensors worn on the wrist,
and body rocking with a sensor worn on the torso (Min et al.,
2009; Min and Tewfik, 2010a,b, 2011; Min, 2014). Other studies
have done the same, but included a detection class where hand
flapping and body rocking occur simultaneously in time (i.e.,
“flap-rock,” see Albinali et al., 2009, 2012; Goodwin et al., 2011,
2014).

While more sensors appear to improve recognition accuracy
in these studies, one practical drawback is that many individuals
with ASD have sensory sensitivities that might make them
less able or willing to tolerate wearing multiple devices.
To accommodate for different sensory profiles in the ASD
population, it would be ideal to limit the number of sensors to
a minimum, while still optimizing accurate multiple class SMM
detection.

Typical features used for acceleration analyses of SMM
in prior studies have focused on: distances between mean
values along accelerometer axes, variance along axes directions,
correlation coefficients, entropy, Fast Fourier Transform (FFT)
peaks, and frequencies (Albinali et al., 2009, 2012; Goodwin

1Here it should be noted that Plötz et al. (2012) did not aim to detect SMM,

but rather more general challenging behaviors such as aggression, tantrums, and

property destruction seen in ASD.

et al., 2011, 2014), Stockwell transform (Goodwin et al., 2014),
mean standard deviation, root mean square, number of peaks,
and zero crossing values (Gonçalves et al., 2012a; Rodrigues
et al., 2013), and skewness and kurtosis (Min, 2014; Min and
Tewfik, 2011). These features are mainly aimed at characterizing
oscillatory features of SMM as statistical characteristics of values
distributed around mean values in each accelerometer axis, joint
relation of changes in different axial directions, or frequency
components of oscillatory moves. While useful in many regards,
these features fail to capture potentially important dynamics of
SMM that can change over time, namely, when they do not
follow a consistent oscillatory pattern or when patterns differ in
frequency, duration, speed, and amplitude (Goodwin et al., 2014).
A final limitation to previous publications in this domain, is that
different sensor types have been used across studies. These may
have different orientations, resulting in features with different
values, despite representing the same SMM. To overcome this
limitation, other sets of features are required that do not vary
in their characteristics across different types of SMM and sensor
orientations.

3. METHODOLOGY

3.1. Recurrence Plots Features
Rather than considering changes in accelerometer recordings
from oscillations along each accelerometer axis separately, we
propose to characterize these changes from the recurrence point-
of-view and locally consider similarity between trajectories in
phase space. In other words, we represent an accelerometer
recording Eat = (xt , yt , zt) as a trajectory in 3D space and
analyze where it recurs to nearly the same position. With such
an approach, similar SMM events will produce similar phase
space trajectories, regardless of oscillation patterns or offsets.
By considering a sliding window in time with length T, we are
able to characterize SMM via trajectory recurrences in phase
space for a short time interval (which covers only one SMM
incident). Recurrence metrics allow us to locally detect SMM
even if the pattern changes from event to event. As we are aiming
for local characterization, changes in amplitudes between SMM
events should not result in much disturbance to our recurrence
assessment. Additionally, as shown further below, this approach
is not dependent on accelerometer axis orientations and their

FIGURE 1 | Accelerometer readings of one second in length from the class flapping. The accelerometer was mounted to the right wrist. Each line

corresponds to one of the three acceleration axes.
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changes because one can simultaneously consider all three axes
of an accelerometer in phase space.

Recurrence plots (Eckmann et al., 1987) are represented as
quadratic matrices whose elements describe if a phase space
trajectory returns to a location it has visited before. The elements
are associated with two points in time in which the trajectory
was at the same place in a phase space, or gets sufficiently
close to a point it has been previously. As a result of the
dynamics of the trajectory, a recurrence plot contains small-
scale structures such as single dots, diagonal lines, and vertical
lines that, in combination, result in large-scale structures that
characterize an underlying system. As illustrated in Figure 2, a
visual representation of recurrence matrices as plots, where all
recurrence points are denoted as black dots, can reveal insights
about the chaotic vs. deterministic nature of the phase space
trajectory in question.

Recurrence plots are computed by comparing distances
between all points of a trajectory

R(i, j) = 2(ε − ||Eai − Eaj||). (1)

Here, R is the matrix of recurrence points,2 is the Heaviside step
function, and ||·|| is a norm. For our analysis, we chose Euclidean
distance.

Since a rotation Q is an isometry in Euclidean space, i.e.,

||QEai − QEaj|| = ||Eai − Eaj||, (2)

the distances in Equation 1 are identical. Thus, the recurrence
matrix R is also invariant to rotations in the space.

However, measurements from accelerometers contain two
components: acceleration relative to the containing space Ea, as
well as earth acceleration Eg, i.e., gravity.

||Q(Eai+Eg)−Q(Eaj+Eg)|| = ||(Eai+Eg)− (Eaj+Eg)|| = ||Eai−Eaj|| (3)

In this case, the distances are independent of the
given rotation matrix Q and the influence of gravity Eg,
and the resulting recurrence matrices are invariant to
orientation.

3.2. Recurrence Quantification Analysis
Recurrence plots provide a good visual characterization of
a dynamic system, however, they cannot be directly used as
features. It is desirable to further describe the number and
duration of recurrences in order to allow the application
of recurrence plot features in standard machine learning
approaches. Such descriptors are known as recurrence
quantification analysis (RQA) and multiple measures have
been proposed (Webber and Zbilut, 1994; Marwan et al., 2002;
Naschitz et al., 2004). They are based either on the density
of recurrence points in a recurrence plot, or the number and
frequency of diagonal and vertical lines. For further information
on recurrence plots, please refer to the overview by Marwan et al.
(2007).

In our experiments, we used the following RQA measures to
quantify the recurrence plots from accelerometer readings:

• Recurrence rate (RR) describes the density of recurrence
points in a recurrence plot, i.e., the fraction of recurrence
points over the total amount of points.

• Determinism (DET) is the ratio of recurrence points which
form diagonal lines in the recurrence plot. In contrast to
chaotic processes, deterministic behavior yields less isolated
recurrence points, and longer diagonals; the length of the lines
is thus related to the inverse of the largest positive Liapunov
exponent (Eckmann et al., 1987).

• Laminarity (LAM) represents the occurrence of laminar states
in the system without describing the length of these laminar
phases.

• Ratio (RATIO) can be used to uncover transitions in the
dynamics: during certain types of qualitative transitions RR
decreases, whereas DET remains constant (Webber and Zbilut,
1994).

• Averaged diagonal line length (L) represents the average time
that two segments of a trajectory are close to each other.

• Trapping time (TT) estimates the mean length of vertical
lines, similar to L. This value corresponds to the mean time
a system will stay in a specific state and how long the state will
be trapped.

• Longest diagonal line (Lmax) is related to the exponential
divergence of the phase space trajectory: the faster the
trajectory segments diverge, the shorter the diagonal lines.

FIGURE 2 | Recurrence plots computed from the data displayed in Figure 1 and for three different values of the threshold parameter ε.
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• Longest vertical line (Vmax) are able to find chaos-to-
chaos transitions (Marwan et al., 2002) and allow for the
investigation of intermittency, even for rather short and non-
stationary data (Marwan et al., 2007).

• Entropy (ENTR) reflects the complexity of the recurrence plot
in respect to the diagonal lines, e.g., for uncorrelated noise the
value of ENTR is rather small, indicating low complexity.

Table 1 summarizes these RQA features in detail.
Note that the results of RQA are subject to the chosen

threshold value ε (see Equation 1). On one hand, if ε is made
too large, almost all points are in the ε-neighborhood of all other
points, resulting in a recurrence plot which is too dense. On the
other hand, if ε is made too small, one may not be able to identify
any recurrence points and corresponding structures (Marwan,
2011), see Figure 2. In our analyes, we treat ε as a hyperparameter
during model selection (cf. Section 5.1).

3.3. Decision Tree Classifier
Decision Trees (DTs) are a supervised learning method used
for classification (Breiman et al., 1984). The goal is to create a
model that predicts the value of a target variable by learning
simple decision rules inferred from data features that can be
represented as a search tree. While DTs are able to learn a
model that is simple to understand and interpret, they are
prone to overfitting that might result in poor generalization
properties. Several algorithms exist to automatically extract DTs
from a set of observations. We use the python implementation
of the CART algorithm to learn a DT as provided by the
scikits-learn python package (Pedregosa et al., 2011) with
Gini splitting rule and constructed a tree until all leaves are
pure.

3.4. Random Forests Classifier
Random forest classifiers (RF) are an ensemble method
for classification that combine predictions of multiple DT
classifiers (Breiman, 2001). RF classifiers are easy-to-use, yield
state-of-the art performance (Fernández-Delgado et al., 2014),
and scale to very large data sets.

The training algorithm for RF applies the general technique
of bagging to tree learners. Given a training set, bagging
repeatedly selects a bootstrap of n sample and fits DTs to
these samples. In addition to the bagging procedure, RF
uses a modified tree-learning algorithm that selects, at each
candidate split in the learning process, a random subset of

features. As it is typically done, we use
√
d features in

each split based on Gini splitting rule, where d is the total
number of features. After training, predictions for unseen
samples can be made by taking the majority vote of the DT
ensemble.

Typical values for the number of trees range from a few
hundred to several thousand, depending on the size and nature of
the training set. Training and test error tend to reach a stable level
after some number of trees have been fit. An optimal number of
trees can be found using cross-validation, or by observing out-
of-bag error: the mean prediction error on each training sample,
using only trees not included in the bootstrap sample.

TABLE 1 | Overview of the RQA features used in this study.

RQA measure name Equation

Recurrence rate RR = 1
N2

∑N
i,j=1 R(i, j)

Determinism DET =
∑N

ℓ=ℓmin
ℓP(ℓ)

∑N
i,j=1 R(i,j)

Laminarity LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

Ratio RATIO = N2

∑N
ℓ=ℓmin

ℓP(ℓ)

(
∑N

l=1 P(ℓ))
2

Average diag. length L =
∑N

ℓ=ℓmin
ℓP(ℓ)

∑N
ℓ=ℓmin

P(ℓ)

Trapping time TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)

Entropy ENTR = −∑N
ℓ=ℓmin

p(ℓ) lnp(ℓ)

Longest diag. line Lmax = max({ℓi}Nℓ

i=1)

Longest vert. line Vmax = max({vi}Nvi=1)

ℓ and v are the length of diagonal and vertical lines in recurrence plots, respectively, ℓmin

and vmin are the minimal diagonal and vertical length that should be considered. The

total number of diagonal and vertical lines of lengths ℓ and v is expressed as histograms

P(ℓ) and P(v), respectively. While p(ℓ) and p(v) describe the estimated length distributions,

Nℓ = ∑
ℓ≥ℓmin

P(ℓ) is the total number of diagonal lines and, similarly, Nv the total number

of vertical lines.

Based on the selection of a random subset of features, RF
enables variables to be ranked in order of importance for
classification problems, in a natural way. If one or a few features
are very strong predictors for the target output, these features
will be selected in many of the trees, causing them to become
correlated.

To measure the importance of the j-th feature after training,
the values of the j-th feature are permuted in the training data
and out-of-bag error is again computed. The importance score
for the j-th feature is computed by averaging the difference in
out-of-bag error before and after permutation over all trees.
The score is normalized by the standard deviation of these
differences. Features which produce large values for this score
are ranked as more important than features which produce small
values.

3.5. Support Vector Machines
SVMs are binary classifiers to distinguish two classes (Burges,
1998; Vapnik, 1998). SVMs aim to minimize the empirical
risk of an incorrect classification by means of a separating
hyperplane. The idea of SVMs is to constrain the capacity
of a learned hyperplane function in order to maximize its
generalization properties. SVMs incorporate a hyperparameter
C by which value miss-classifications are penalized during
training. For a detailed introduction to SVMs refer to Burges
(1998). In the experiments described below, each feature
was normalized to z-score with respect to the training
data.
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4. DATA SET

In order to directly compare results from prior studies,
we performed our analyses on data described and made
publicly available in Goodwin et al. (2014). Wherever
we compare results between the current paper and those
reported in Goodwin et al. (2014), we followed the
same exact process for generating training and testing
sets.

Data were collected from 6 children between the ages of 12
and 20 years recruited from The Groden Center, RI–a school
for children an adults with autism and other developmental
difficulties (cf. Table 2 for participant characteristics). All
participants were diagnosed with ASD and had a significant
score on the RSB-R (Lam and Aman, 2007) for body rocking
and/or hand flapping. The same individuals participated in
two studies, three years apart, referred to here as Study 1
and Study 2. The study was approved by a human subjects
review board and parental consent including permission to
release deidentified data for additional data analyses by
additional parties for research purposes was obtained for each
participant.

During both studies, participants wore three 3-axis
accelerometers, one in a band on each wrist, and the other
on the torso, secured with a strip of fabric around the chest.
Different accelerometers were used in each study. Study 1 used
MITes 3-axis sensors recording ±2 g data at 60 Hz. Study 2
used Wockets 3-axis sensors recording ±4 g data at 90Hz.
Recordings were done across multiple sessions within each
study.

While wearing sensors, participants were video recorded
wherein video time was synchronized with sensor time.
These recordings were consequently annotated offline by two
behavioral science experts, where time segments noting hand
flapping (flap), body rocking (rock), and simultaneous rocking
and flapping (flap-rock) start and end times were labeled. These
annotations (with 90% joint agreement between two independent
raters achieved) served as ground truth labels for 3+1 (3 types
of stereotyped motor behavior + non stereotyped activity)
classification tasks. Figure 1 illustrates accelerometer readings of
one second length from the class flapping. The accelerometer was
mounted to the right wrist of participant 1. Each line corresponds
to one of the three acceleration axes.

Table 3 lists descriptive statistics on our dataset, including
total length of combined sessions in which data were
collected from participants, number of different SMM
observed, and total SMM durations. A bout describes a
contiguous time range in which an individual engaged in SMM
behavior.

To reduce influence of class skewness resulting from different

amounts and durations of the SMM classes in the data, we

followed an identical balancing scheme as suggested in Goodwin

et al. (2014). We used balanced data for training and natural
imbalanced data for testing; balancing the data was done by
randomly under-sampling the majority class (i.e., unknown) and
re-sampling the minority classes (i.e., SMM).

We accessed the data set at http://cbslab.org/smm-dataset/.

TABLE 2 | Participant characteristics including total score of Childhood

Autism Rating Scale (CARS).

Participant Age Sex Diagnosis CARS

1 14 Male ASD 42

2 14 Male ASD 33

3 13 Male ASD 43.5

4 16 Male ASD 39

5 20 Male ASD 36

6 13 Male ASD 38

TABLE 3 | Overall SMM statistics in our dataset calculated using manual

video annotation.

Participant Sessions No. of bouts Dur. bouts (min)

No. Dur. (min) Rock Flap Flaprock Rock Flap Flaprock

STUDY 1

1 2 50.2 52 2 57 5.2 0.2 4.9

2 2 32.1 1 209 0 0.1 8.1 0

3 2 64.5 1 52 28 0.1 2.9 2.4

4 2 38.9 55 70 0 12.7 6.2 0

5 2 44.7 12 75 17 1.2 8.6 1.6

6 2 55.8 112 0 9 31.3 0 1.6

STUDY 2

1 3 49.8 77 57 64 7.4 6.5 5

2 2 51.1 77 33 1 7.7 1 0.1

3 2 75.9 1 18 0 0.02 0.5 0

4 3 87.5 46 38 0 13.2 2 0

5 2 55.2 68 11 6 10.9 1.3 0.3

6 1 25.3 64 0 6 20.2 0 6

The left three column donates the participant number, followed by the number of sessions

the participant was observed and the combined duration of all sessions in minutes.

Columns three to five summarize the number of bouts per SMM class the participant

engaged in during sessions, while columns six, seven, and eight denote the combined

duration of the SMM behavior in minutes.

5. EXPERIMENTS

We designed an experimental setup to investigate the following
research questions:

• Accuracy: are RQA features for accelerometers with different
classifiers able to represent SMM with high accuracy?

• Generalization: can a classifier trained using all but one
participant’s data accurately classify SMM movements in the
left-out participant?

• Training size: how many observations are needed to train a
classifier before high accuracy is achieved on the participant
left out?

• Sensor position: which sensor position has the most accuracy
to detect these three classes of SMM?

• Feature importance: which RQA features contribute the
most to describing differences between SMM and non-SMM
movements?
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5.1. Experiment 1: Accuracy
In order to assess the accuracy of RQA features for detecting
SMM, we reproduced the experimental procedure described
in Goodwin et al. (2014). Here, data from all sessions within
each study for each participant was combined. Subsequently,
a k-fold cross-validation was performed such that k is the
number of sessions a participant was observed within each study,
and every fold consists of data from a specific session. For
this experiment, we extracted RQA features for each available
accelerometer stream (one for each wrist and one on the
torso), resulting in d = 27 features. Feature extraction
was performed identical to those described in Goodwin et al.
(2014): data streams were segmented with T = 1s windows
and an overlap between consecutive data segments of 87%.
As classifiers, we used (i) RF classifiers for which we selected
the number of trees ntrees ∈ {100, 250, 500} during cross-
validation; (ii) linear SVMs for which we evaluated the optimal
penalty weight C ∈ {1, 100, 10, 000, 100, 000} also during cross-
validation; and (iii) DT classifiers. To select the optimal ε-
values (Ohgi et al., 2007; Marwan, 2011) for RQA feature
extraction, we treated ε as a hyperparameter in cross-validation
with ε ∈ {2 · 0.65i|i = 0, . . . , 15}. In order to allow a
comparison of our findings with previously published results,
we used all four annotated behavior classes (i.e., rock, flap, flap-
rock, non-stereotyped). All experiments were implemented in
the Python programming language; the SVM implementation
provided by libsvm (Chang and Lin, 2011) was used, which
incorporates a one-vs.-one scheme to address multi-class
classification.

5.2. Experiment 2: Training Size
The experimental setup followed a leave-one-participant-out
validation scheme: all data from Study 1 was combined across all
sessions and the classifiers were trained on data from all except
one participant. The data from the remaining participant was
then used for testing. This was done 6 times, once for each
participant. To determine minimum required training size to
achieve stable accuracy in a leave-one-out-participant validation
scheme, we created additional training sets of decreasingly fewer
training examples from the original training data available during
cross-validation. The number of training examples is relative to
the total amount of training data according to a training set size
factor K. For example, if the total number of training examples is
N = 1, 000, then the actual number of examples used in training
for a training set size factor K = 0.5 is NK=0.5 = 500. Note
that NK was rounded to the closest natural number if necessary.
In total, we evaluated 15 different values for training set size
factor K with K ∈ {0.5i|i = 0, 1, . . . , 14} for each training
data set.

5.3. Experiment 3: Sensor Position and
Feature Importance
In order to evaluate which sensor position contributed most to
accurately detecting SMM, we designed an experimental setup
where a combination of all three accelerometer streams and
different sensor positions were evaluated separately. The data
dimensionality for the latter was d = 9 in this experiment

TABLE 4 | This table shows the classification accuracies from

Experiment 1.

Participant Classifier

RFRQA SVMRQA SVMGW DTRQA DTGW

STUDY 1

1 0.83 0.82 0.87 0.77 0.79

2 0.89 0.87 0.85 0.81 0.80

3 0.93 0.93 0.94 0.92 0.89

4 0.91 0.91 0.66 0.87 0.48

5 0.80 0.81 0.75 0.79 0.71

6 0.88 0.88 0.84 0.82 0.81

STUDY 2

1 0.80 0.79 0.71 0.77 0.62

2 0.69 0.68 0.80 0.65 0.72

3 0.99 0.99 0.99 0.99 0.99

4 0.95 0.93 0.90 0.91 0.90

5 0.85 0.85 0.73 0.84 0.69

6 − − − − −

Columns labeled with RF, SVM, or DT indicate results from random forest, support vector

machines, or decision tree classifiers, respectively. Columns subscripted with RQA show

results from our RQA features, while columns with subscripted GW show best results

reported in Goodwin et al. (2014). Note that the latter represents the highest classification

accuracy selected from 3 different feature sets for both classifiers. Since participant 6

engaged in only one session in Study 2, we cannot report leave-one-session-out cross-

validation results.Bold values indicate best classification accuracy in each row (i.e., for

each subject and for each study).

(i.e., x, y, and z for 3 sensors). Again, we followed the protocol
from Experiment 1, but limited our analysis to data from
Study 1.

Subsequently, we further investigated which features yielded
the highest feature importance values in the trained RF
classifiers comprising the optimal number of trees found in
Experiment 1.

6. RESULTS AND DISCUSSION

6.1. Accuracy
Table 4 summarizes the results from Experiment 1. We first
sought to estimate a possible increase in performance using
the new feature set compared to the features used in prior
analyses of the current data set Goodwin et al. (2014). For
this reason we followed the same training procedure and
incorporated the same classifiers as presented in Goodwin
et al. (2014). Columns denoted with SVMGW, and DTGW show
highest results reported in Goodwin et al. (2014) for SVM
and DT classifiers. The result with the new set of features
are shown in columns indicated with RFRQA, SVMRQA, and
DTRQA.

In 8 out of 11 analyzed cases, our approach yielded
higher accuracy values as compared to classifiers that used
standard features. For DT classifiers, our approach yielded on
average ≈ 0.83 accuracy, while DTGW showed on average
≈ 0.76 (an increase of ≈ 9.2%). For SVM classifiers,
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FIGURE 3 | This figure illustrates the results from Experiment 2. Each

line characterizes the dependency between the training set size (y-axis) and

the reached accuracy (x-axis) for one participant by means of RF classifiers.

The accuracy values were derived in a k-fold cross-validation where the folds

correspond to the recording sessions of Study 1. The training examples where

randomly selected from all available training data.

FIGURE 4 | This plot shows average precision and recall values based

on training set size, corresponding to Figure 3 and RF classifiers.

our RQA feature set reached an averaged classification
accuracy of ≈ 0.86, while the features used in Goodwin
et al. (2014) yielded ≈ 0.82 (equals an increase of ≈ 5%).
In some cases, classification accuracies for both feature sets
are almost identical (e.g., participant 3, Study 2), however,
differences of more than 40% points can be observed
(participant 4, Study 1). With an average accuracy of >0.86,
RF classifiers yield a slightly higher classification accuracy than
SVMs.

6.2. Generalization
Figures 3, 4 list results from Experiment 2. In Figure 3, each
line characterizes the dependency between the training set size
(x-axis) and achieved accuracy (y-axis) for one participant, which
was excluded from training. Figure 4 illustrates precision and
recall values from the same experiment averaged across all 6
participants. We found that classifiers reached good classification
accuracy for data from each left out participants, i.e., were
able to generalize over participants. These findings suggest
that it is possible to deploy a system that incorporate a pre-
trained classifier that can be used to accurately recognize SMM
without further requirements for personalization or adaption to
a particular user.

FIGURE 5 | This plot shows the classification accuracy based on

sensor position with RF classifiers. Each bar corresponds to one sensor

from one participant. Sensors are grouped by participants, where the

right-most group summarizes the average accuracy per sensor. We estimated

the accuracy by means of k-fold cross-validation where folds correspond to

recording sessions.

6.3. Training Size
Results from the experiment toward training size (see Figure 3)
suggests that <100 training examples are sufficient to train a
RF classifier that is able to identify SMM with a stable level
of accuracy on data from participants who were unknown
to the classifier in training. Adding more examples increased
classification performance only marginally. Some participants’
movements could be classified with substantially fewer training
examples. For example, results for participant 3 reached a
stable plateau of ≈ 0.87 classification accuracy with only
32 training examples. For participant 6, a classifier trained
with only 19 examples yielded an accuracy value of ≈ 0.94.
However, the performance of classifiers trained with such a
low number of training examples heavily depends on which
training examples were randomly selected while sub-sampling
the data set.

6.4. Sensor Position
Figure 5 illustrates classification accuracy yielded for each
individual sensor position as well as all sensor positions
combined. On average, classifiers that used data only from the
torso sensor reached comparable classification accuracy (> 0.8)
to a model trained with features from all sensors. In contrast,
classifiers utilizing data from a single wrist sensor yielded lower
classification accuracy on average (< 0.7). However, these results
differ substantially between participants. For example, data from
participant 5 can be classified with high accuracy when all or
only right-wrist sensor is used, while utilizing data from the
torso sensor resulted in a decrease in accuracy. In contrast,
a classifier trained for participant 2 with only data from the
torso sensor yielded highest classification accuracy from all
evaluated sensor configurations. This is particularly important
since participant 2 showed 209 flap bouts and only one rock or
flaprock bout (cf. Table 3), i.e., the SMM symptoms of participant
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FIGURE 6 | This figure illustrates the five most important features

yielded by the RF classifier for data collected from participant 2. Each

bar corresponds to a single feature. RQA features were extracted from a

sensor position (right, left, torso) and the optimal ε value found in

cross-validation was used.

FIGURE 7 | This figure illustrates the five most important features

yielded by the RF classifier for data collected from participant 4. Each

bar corresponds to a single feature. RQA features were extracted from a

sensor position (right, left, torso) using the optimal ε value found in

cross-validation.

2 were almost exclusively hand movements rather than upper-
body movements, and yet were better detected by a sensor worn
on the torso. For participant 6, whose majority of SMMs are rock
or flaprock events, data collected from the torso sensor only also
yielded higher accuracies than data from a single wrist sensor or
the combination of all available sensors. Participants 3 and 4 show
amore evenly distributed weighting of SMM classes. Results from
those participants also indicate that using exclusively data from
the torso sensor reached higher classification accuracies than the
wrist worn sensors.

Taken together, these findings suggest that reducing the sensor
array to a single torso mounted sensor has little impact on
recognition—even when detecting hand flapping. This is an
important finding, suggesting that a single sensor could be
used to recognize SMM, which is less burdensome and more
likely to be accepted by participants with ASD who suffer
from sensory sensitivities. One possible explanation for high
classification accuracy using only a torso sensor relates to body
mechanics. Due to the mechanical coupling of the body, arm
motions may be propagated to the torso muscles, where they
are picked up as movements of smaller amplitude by the torso

accelerometer. Similar observations were noted in earlier studies
(Min, 2014).

6.5. Feature Importance
Figures 6, 7 illustrate which features in the RF were
ranked as the five most important for data collected from
participant 2 and 4, respectively. For both participants, the
5 most important features were associated with the torso
region.

The most important RQA features for participant 2 were ratio
and longest diagonal line features, while for participant 4 ratio and
recurrence rate lead the list of important features. Even though
only one rock event was observed from participant 2 in Study 1
(cf. Table 3), features from the torso sensor are still ranked
most important by the RF classifier. Participant 4 shows a more
uniform class distribution between hand and upper-body related
SMMs. Here, the feature importance measure of the RF classifier
also indicates that features from the torso sensor contributed
most to recognizing and classifying SMM events accurately. The
ratio feature, as well as the maximal diagonal length, are both
associated with the length distribution of vertical lines in the
recurrence plots. The high ranking of recurrence rate features
suggests that the number of recurrences in a recurrence plot is
already a good indicator of a trajectory associated with SMM.
This further emphasizes that the number and length of similar
SMM segments in torso-based acceleration measurements is a
reliable and valid indicator of SMM in individuals with ASD.

7. CONCLUSION

In this paper, we introduce a new set of features based on
recurrence plot and recurrence quantification analysis that are
able to capture the non-linear nature of SMM in individuals
with ASD despite sensor orientation. By using the new feature
set on an existing corpus of data that involved three 3-axis
accelerometers, we achieved between 5 and 9% increase in
accuracy compared to current state-of-the-art published results.
The results also indicate that our approach allows us to recognize
SMM in a leave-one-participant-out fashion. Furthermore, at
least for some participants, a few tens of samples in the training
set are sufficient to achieve high detection accuracy on data from
participants left out from classifier training. We also identified
that the most useful features for classification were obtained
from the accelerometer mounted on the torso. This suggests
the potential for using only a single torso sensor to detect
both body rocking and hand flapping in a reliable and valid
way. In contrast to the wrist sensors, accuracy achieved when
only using the torso sensor was almost as high as when all
sensors were used in classification. If replicated, these findings
would suggest that simpler sensor deployments could be used
while still achieving automated multi-class SMM recognition
with high accuracy. This is an important discovery with the
potential to increase end user acceptance and thereby better
facilitating wider scale deployments of accelerometers in the ASD
population to evaluate functional significance of SMM and their
response to intervention. To overcome limitations of our current
analysis, future research should incorporate a larger data set
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from a wider ASD population to address differences in age or
gender.
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