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Object: Subdural or deep intracerebral electrodes are essential in order to precisely

localize epileptic zone in patients with medically intractable epilepsy. Precise localization

of the implanted electrodes is critical to clinical diagnosing and treatment as well as

for scientific studies. In this study, we sought to automatically and precisely extract

intracranial electrodes using pre-operative MRI and post-operative CT images.

Method: The subdural and depth intracranial electrodes were readily detected using

clustering-based segmentation. Depth electrodes were tracked by fitting a quadratic

curve to account for potential bending during the neurosurgery. The identified electrodes

can be manipulated using a graphic interface and labeled to cortical areas in individual

native space based on anatomical parcellation and displayed in the volume and surface

space.

Results: The electrodes’ localizations were validated with high precision. The electrode

coordinates were normalized to a standard space. Moreover, the probabilistic value being

to a specific area or a functional network was provided.

Conclusions: We developed an integrative toolbox to reconstruct and label the

intracranial electrodes implanted in the patients with medically intractable epilepsy. This

toolbox provided a convenient way to allow inter-subject comparisons and relation of

intracranial EEG findings to the larger body of neuroimaging literature.

Keywords: intracranial EEG, SEEG, ECoG, electrode localization, intractable epilepsy

INTRODUCTION

Intracranial electroencephalograph techniques, including electrocorticography (ECoG) and
stereotactic electroencephalography (SEEG), have been widely used in clinics to assess the
localization of seizure onset zone for patients with medically intractable epilepsy. In addition to
the remarkable contribution to clinical diagnosis, this technology provides a window to investigate
neural mechanisms of human cognitive functions (Engel et al., 2005; Gonzalez-Martinez et al.,
2013; Wang et al., 2016).

For surgical planning and neurobiological studies, a crucial point is to precisely determine
anatomical localizations of the implanted electrodes. There have been several useful approaches
developed to accomplish this goal (Morris et al., 2004; Hunter et al., 2005; Kovalev et al., 2005;
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Sebastiano et al., 2006; Hermes et al., 2010; Dykstra et al., 2012;
Yang et al., 2012; Princich et al., 2013; Arnulfo et al., 2015).
For examples, early studies (Hunter et al., 2005; Sebastiano
et al., 2006) tried to use single CT or X-ray photos to
reconstruct the cortical surface and localize the electrode,
which was simple and precise within modality, but it suffered
from the poor electrode/skull and tissue contrast and was
not able to deal with the brain shift problem after electrode
implantation. One recent method proposed (Arnulfo et al.,
2015) introduced an appropriate way to automatically segment
the SEEG contacts with good reliability, but their method
requires two high-resolution CT images (i.e., before and after
electrode implantation), which might be unconventional for
many hospitals. This constraint also applied to the previous
studies using two MRI images (Kovalev et al., 2005). So far,
few studies have developed different methods to localize ECoG
electrodes in a manual or semi-automatic manner. However,
these methods are accompanied by more or less deficiencies,
such as relatively time consuming, unsatisfied accuracy, no
precisely cortical information or only application to subdural
electrodes.

In this study, we proposed an integrative solution to localize
both SEEG and ECoG electrodes based on pre-operative T1 and
post-operative CT. The identified electrodes can be marked to
cortical labels and rendered to a brain surface in the native
space and a standard space for group statistics. Notably, we
also provided probabilistic values of each contact to be a brain
area and functional network according to either anatomical or
function atlas (e.g., Brodmann areas and fMRI-based functional
networks). Those functions have been integrated into an
open MATLAB toolbox, which can be freely downloaded.
This study is aimed to provide a practical tool for the
precise localization and representation of intracranial electrodes
and to advance the progressing of clinical and cognitive
studies.

METHODS AND MATERIALS

Subjects
Patients with medically intractable epilepsy underwent routine
long-term video monitoring to assess the seizure onset zone.
High-resolution structural T1 image was acquired before
electrode implantation. After surgical operation, a CT image was
acquired for roughly checking electrode locations. Patients with
either SEEG or ECoG electrodes implanted were included in this
study.

The SEEG depth electrodes usually contain 8–16 contacts
(DIXI Medical, Lyon). Each contact is a platinum-iridium
cylinder of 0.8 mm diameter, 2 mm long with 1.5 mm of inter-
contact distance.

The ECoG subdural electrodes had 4 mm diameter (2.3 mm
exposed), 1 cm inter-electrode distance, and were embedded in
silastic (Adtech Medical, Racine, WI). Electrode selections and
locations were determined merely by neurosurgeons based on
clinical perspective. Informed consent was obtained from all
subjects and procedures were approved by the ethical committee
of Institute of Psychology, Chinese Academy of Sciences.

Data Acquisition
MRI scanning was performed at the either Tsinghua university
or Xuanwu hospitals using a 3T scanner prior to electrode
implantation. The T1-weighted images were acquired with
final in-plane isotropic resolution of 1 mm (TR/TE/TI =
7.8/3.1/400ms, matrix= 256× 256, FOV= 256× 256 mm, and
190 slices) in∼7 min.

CT scanning was always performed immediately after
placement of electrodes and as part of the clinical protocol
for the evaluation of possible complications such as hematoma,
contusions or subdural effusions. CT images were acquired using
215 mm FOV, Matrix = 512 × 512, 0.8 mm slice thickness,
207 slices with in-plane isotropic reconstruction of 0.42 mm in
∼3min.

Pre-processing
Both T1 and CT images of each patient was imported from
the scanner as DICOM format and transformed to NITFI
format (http://nifti.nimh.nih.gov). A basic reconstruction step
was performed on pre-implant structural T1 image to get an
individual cortex parcellation for each patient using Freesurfer
(http://surfer.nmr.mgh.harvard.edu/). This reconstruction
process would take several hours and can be largely accelerated
using computing cluster. The outputs were carefully checked for
each subject.

The cortical parcellation was based on gyral and sulcal
structures (Fischl et al., 2004; Desikan et al., 2006). To achieve
this automatic parcellation, the pial surfaces are inflated to obtain
a sphere (Fischl et al., 1999a) and registered to a spherical atlas.
This atlas used individual cortical folding patterns to match a
group-based cortical geometry (Fischl et al., 1999b). Freesurfer’s
automatic surface extraction and parcellation procedures have
been demonstrated to show good test-retest reliability across
scanner manufacturers and across field strengths (Han et al.,
2006; Reuter et al., 2012). Moreover, this step has been validated
by measuring mean distance of error maps for cortical labels
on the brain surface and revealed that the mismatch is minimal
(Desikan et al., 2006; Klein and Tourville, 2012). We then
co-registered individual CT to the T1 image in Freesurfer’s
conformed space using normalizedmutual information function.
The mutual information function has been approved to be
effective by several studies in the co-registration of T1 and CT
images (Studholme et al., 1995; Maes et al., 1997).

Image Display and Surface Render
One of basic functions was to simultaneously display a volume
image (CT or T1) and the corresponding 3D brain surface (e.g.,
pial surface) and showed the cursor location in two spaces in
real time. The used surface included the conventional pial surface
and the brain-outline surface which was separately created and
smoothed for better performance. The brain outlined surface
was created using the matlab function isosurface to computes
isosurface data (vertices and faces) from the brain volume
generated by Freesurfer. The cortical parcellation from Freesurfer
was also used for color-coding a brain region in a native volume.

The density map was calculated to represent a set of
overlapped regions (e.g., activations in specific electrode sites).
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The density map used a gaussian kernel centered at the
coordinate of each electrode with different Full width at half
maximum (FWHM = 5 mm for ECoG and 2 mm for SEEG)
which was approximately equal to electrode length (Tsuchiya
et al., 2008). The density Di of the electrode i is denote as

Di =
wie

−(x2i + y2i + z2i )

2c2

where c = FWHM

2
√

2log2
. The wi indicates the weight for the electrode

i (e.g., equal to 1 at default to represent electrode density maps
or power spectrum for brain activity maps). xi/yi/zi are the
coordinate of the electrode i in the standard space.

A full electrode-based display for SEEG can be completed by
obliquely reslicing the original volume to show the full electrode
in a coronal view. The peri-coronal plane was calculated as follow,

Va = Vc × Vr

θ = acos(Vc · Vr)

where Vr is the norm vector of the slicing plane defined by the
most outside and inside brain contacts (i.e., two ends); Vc is the
norm vector of a constructed plane (e.g., [0 0 1] for a coronal
view);Va is a norm vector representing the rotation axis from the
center of the plot box.

Localization of Intracranial Electrodes
Themost difficulties involving in the segmentation of intracranial
electrodes using post-operative CT image were the skull signals
and the noises induced by the interpolation error during the
coregistration step. To solve these problems, a skull stripping
process was essential. Previous studies proposed some methods,
such as a single threshold filter or subtraction between two same
modality images with and without electrodes implanted (Morris
et al., 2004; Kovalev et al., 2005; Sebastiano et al., 2006; Tao et al.,
2009; Yang et al., 2012; Arnulfo et al., 2015). For the first case, a
single value threshold filter was the most simple and applicable
way to remove the majority of skull tissue in a CT image, but
it was very rough and might leave a lot of scattered noises that
significantly affected the segmentation of the real electrodes. In
contrast, the subtraction of two sets of same modality image
(one pre-surgical and one post-surgical) was a very efficient
way to remove the skull and leave a clean image containing
the real electrodes. However, two high quality CT images were
usually unconventional in many hospitals’ clinical procedures.
Here we proposed two semi-auto segmentation methods using
different skull stripping processes for SEEG and ECoG electrodes,
respectively.

ECoG

For subdural electrode arrays with or without depth electrodes,
a good skull stripping process was critical to the performance
of an auto-segmentation method. Since ECoG contacts touched
the cortical surface and they were also close to the inner skull
boundary, it was difficult to implement a skull stripping without
removing any contacts in a CT image. Here we proposed a skull

stripping method utilizing two brain masks to extract the most
brain tissue with implanted electrodes.

The basic skull stripping mask was taken from the freesurfer
output (i.e., brain.mgz with the skull properly stripped) which
denoted all the brain tissue separated from the T1 image. This
image was threshold and binarized. Then the brain mask was
slightly dilated by adding several layers of pixels to the boundaries
of the mask volume to make another brain mask. Two masks
were separately multiplied with the coregistered CT image and
threshold to get two masked CT images. Automated connectivity
based cluster segmentation was implemented for the two masked
CT images separately. We assumed that the voxels belonging to
clusters of different size in the two masked images should be
skull voxels. Based on this assumption, the clusters containing
those voxels were removed from further rectification. This step
eliminated the most of non-electrode tissues and retained the
most of valid clusters. The remaining clusters (i.e., electrode’s
contacts) were put into a threshold iteration process using
inter-cluster distance as constraints. The initial cluster number
was usually larger than the predefined number(default is the
total contact number). Subsequently, the process automatically
adjusted the threshold to a level higher than initial settings during
the auto-segmentation procedure. Then size of each cluster and
number of clusters can be reduced dramatically. Then an inter-
cluster distance would be calculated. The clusters that have less
than 2 near neighbors would be considered as irrelevant tissue
and removed according to the spatial distribution of the electrode
array. The cluster number was counted in each iteration and
compared with the predefined number. Once the cluster number
was very close or equal to the predefined number (±5%), the
iteration was terminated and the centroid of the remaining
clusters denoted the contact coordinates. As noted by other iEEG
segmentation methods, a manual validation was still needed to
remove any incorrect contact points and add lost points. This
correction can be done more easily here by referring to the
neighboring contacts’ positions on the rendered surface and only
took about several minutes.

After rectifying all the contacts’ positions, the updated
coordinates can be output. In order to decrease the influence
of brain deformation caused by the electrode implantation (Hill
et al., 1998), our approach had integrated a minimal energy
projection method proposed recently (Dykstra et al., 2012) to
project the electrodes to the brain surface.

SEEG

For stereotactic depth electrodes, we performed a different semi-
automatic segmentation process. Those electrodes were usually
connected with the skull in a CT volume. Though a high value
threshold can separate the electrode clusters from the skull, there
raised a risk in cutting off electrodes with relative low intensity
that could be caused by different CT scan angles. Thus, the
ECoG-based skull stripping process can not be applied to SEEG
electrode segmentation.

Here we used an eroded brain mask to multiply with the
CT volume (eroded 4mm as default) to cut off the majority of
the outer skull tissue to reveal the electrodes position. A single
value threshold was applied to remove some irrelevant points.
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Then the electrode clusters were detected in the masked volume.
As shown in Figure 1, electrode clusters together with some
outer skull tissue were displayed. The figure can be rotated and
zoomed for a better view. An instant threshold adjustment can
be performed to separate near or cross electrode clusters and
exclude disturbing clusters. Based on the differences in spatial
distribution of electrode clusters and non-electrode clusters, it
was easy to choose the clusters for real electrode by an interactive
interface. After all electrode clusters have been chosen correctly,
we can view the electrodes’ relative positions on the rendered
surface and edit the electrode orders if needed (Figure 2).

Once all the electrodes were rearranged in a correct order, all
the contacts along each electrode were tracked out automatically.
In this step, each electrode track was fitted to a curve. To
estimate the electrode’s trajectory as accuracy as possible, we
tested different order for curves to fit the electrode cluster and
concluded that a cubic curve was sufficient for almost all of the
electrodes, except for very rare patients where a high order of
curve was required. The fitted trajectory of each electrode was
represented as a bunch of equally spaced dots. For each electrode
trajectory, two farthest points were first defined to determine the
starting point. As a common situation, an electrode stretched out
in one direction and the most inside point was defined as the
starting or deepest point of the electrode trajectory. A similar
centroid estimation step (Arnulfo et al., 2015) was then applied
to the starting point to get a more precise approximation of the
optimized electrode contact. The same centroid processes were
applied to other contacts along each electrode one by one. This
step should follow two spacial constraints: (1) the fixed inter-
contact center distance (i.e., 3.5 mm); (2) the axis deviations
occurring within electrode trajectory under a predefined level.
For those electrodes that could be cut off in the first threshold
process at the removal of skull, the missing contacts can be
automatically padded based on the contact number of each
electrode.

Anatomical Localization and Atlas-Based
Label
The iEEG contact can be anatomically labeled with a cortical area
based on Freesurfer’s pacellation (Fischl et al., 2002) in native
space. So far, many atlases have been created using functional and
structural imaging data and can be downloaded freely (Mazziotta
et al., 2001; Desikan et al., 2006; Yeo et al., 2011). Thus, we also
sought to label all converted iEEG contacts in standard space
based on those atlases.

Spherial ROI (radius= 3.5mm for SEEG and 5mm for ECoG)
was created for each contact around the electrode coordinate
in native space. The transformation parameters were calculated
based on the transformation of individual T1 image to a MNI
template and then applied to each spheral ROI. Thus, all
electrodes can be pooled together in the standard space.

For both anatomical and functional localizations, the region
label of each ROI was determined by comparing the probabilities
of all tissues included in the ROI as implemented in our
previous study (Wang et al., 2015). Briefly, to avoid assigning
a ROI to a region label with low probability, we first

FIGURE 1 | Clustering-based automatic segmentation for electrode

detection. Color-coded clusters with unique number are displayed in a stereo

space. The real electrode-related clusters can be detected by specifying the

corresponding cluster number. Rotating and zooming functions can be used

to facilitate this process.

FIGURE 2 | The distribution of electrodes. The clusters detected for the

implanted electrodes are superimposed on the individual brain surface. The

electrodes shown can be rearranged in a right order if needed.

calculated the percentage of voxels labeled as gray matter
(anatomical localization) or all atlas-based areas (functional
localization) within the ROIs (inclusion) and compare that to
the percentage of voxels in this ROI being outside (exclusion).
If the probability of inclusion exceeded that of exclusion, the
ROI was determined to be in the gray matter; otherwise, it
was marked to be in the white matter or unknown area.
For each included ROI, the probability values were compared
between brain areas involved and the ROI was labeled as
the structural or functional area with maximal probability
value.
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FIGURE 3 | Validation of the electrode reconstruction. The points marked by A, B, C, D, E, F, and G are the outer positions of the depth electrodes included in

the validation step for 4 patients. The left panel denotes the real electrodes’ positions from an intraoperative picture and the right panel denotes the reconstructed

electrodes’ positions on the pial.
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Validation of SEEG Electrodes
Reconstruction
Though the SEEG contacts were directly detected from the
coregistered MRI and CT images, it was important to validate
the reconstruction results. The intraoperative picture can clearly
show some electrode traces marked by the wounded patches on
the brain tissue. These patches were used to compare with the
reconstructed sites along the tissue. The position of the electrode
track on the cortical surface was determined by the cross point
between the reconstructed electrode trajectory and the brain

surface (Figure 3). Notably, this approach cannot fully validate
all the localization of SEEG electrodes only because the superficial
positions can be photographed.

RESULTS

Volume Display and Surface Rendering
Real-time updating cursor coordinate, image intensity, and
anatomical information were displayed in a concise panel. The
parcellation map obtained from Freesurfer can be superimposed

FIGURE 4 | Density map. Volume and surface view of a density map (here for instance brain activity map shown in power spectrum). The warm-color voxels indicate

the positive value and cool-color for the negative value. The volume image was displayed in a radiology view (i.e., left side = right hemisphere).

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2017 | Volume 11 | Article 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Qin et al. Localization and Cortical Labeling of Intracranial Electrodes

and color-coded on the origin image. A yoked window displaying
the rendered individual surface was invisible by default and can
be turned on and off at any time. The transparency of the surface
can be adjusted for a clear representation of the cortical gyri.

The density map can be used to display many indices,
including the group-level electrode distributions and neural
activity distribution. An example was shown in volume and
surface space using different smoothing parameters (Figure 4).
The standard view of the rendered surface can be pictured in a
full range of perspectives and superimposed with a predefined
density map. The oblique view of the whole electrodes was
useful to highlight a single track and check the crossing anatomy
along it. Figure 5 showed a full SEEG electrode in peri-coronal
view.

Segmentation of iEEG Electrodes
ECoG

With an appropriate brain mask, the ECoG auto-segmentation
process was able to locate about 80–90% of the electrode contacts
(Figure 6A). The manual corrections include removing some
contacts wrongly detected and adding lost contacts. Electrode
contacts identified can be compared before and after correction,
which was shown in the Figure 6B for a typical patient.

Electrodes implantation may induce structural deformation
due to brain edema. The extent of displacement was associated
with many factors such as the size of the implanted grid and
the surgical operation. As shown in Figure 7C, many auto-
segmented contacts appeared to be buried in the gray matter
due to the tissue deformation. Hence a correction procedure was
applied by projecting the segmented contacts first to a smoothed
pial surface and subsequently back to the raw pial surface. Here
we employed a minimal energy projection method to correct this
deformation (Dykstra et al., 2012), which has been demonstrated
to present a good reliability. The final segmentation
process will output the estimated coordinate of each
contact.

SEEG

The electrode segmentation provided a high accuracy estimation
of the real electrodes positions. All of the contacts are color-coded
and represented in relative positions in the transparent surface
view (Figure 7). Similarly, this procedure output all the estimated
contact coordinates.

Anatomical Localization and Atlas-Based
Parcellation
The electrode information was regularly summarized into a text
file, together with the probability value being to an anatomical
area or a functional network. The electrode coordinates in the
MNI152 space (Figure 8) were also exported for group statistics.
The contents of the generated text file can be customized as well.

Validation of SEEG Electrodes
Reconstruction
Given that the subdural ECoG electrodes can be manually
corrected in the segmentation procedure and the projection
method has been approved to be effective (Dykstra et al.,
2012), we didn’t provide further validation for ECoG electrodes
segmentation in this study. For with SEEG electrodes, validation
procedure was performed in four patients. We chose a total of
20 contacts (4,7,4,5 for each patient) among all patients, which
was visibly located on the brain surface; first we measured the
relative Euclidean distance between each pair of contacts both
on the intraoperative picture (which we consider as a plane) and
the reconstructed surface for each patient, then we calculated the
correlation between the two distances and use this correlation
coefficient as the measure of consistency between true electrode
locations and our reconstructed locations. For each patient, the
correlation of the chosen distance pair was 0.99, 0.97, 0.98, or 0.98
respectively; thereby one can be confidential about the accuracy
of our reconstruction process.

FIGURE 5 | Peri-coronal view for displaying an electrode strip. (A) Showing typically orthogonal SEEG electrodes in coronal view. (B) Showing a full SEEG

electrode displaying in a non-orthogonal coronal view.
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FIGURE 6 | Subdural electrode reconstruction, manual correction, and surface projection. (A) The subdural grid contacts are detected by the automatic

process. The missing and dislocated contacts can be easily recognized. (B) The final electrode arrays are displayed on the pial surface after manual correction. (C)

Due to the brain deformation caused by electrode implantation, some electrode points appear to be buried beneath the cortical surface. (D) The electrode arrays are

projected onto the brain surface.

DISCUSSION

The accurate localization and parcellation of intracranial
electrodes are crucial issues for medical diagnosis and
scientific research. Several techniques are available for the
localization of subdural or depth electrodes. In this study
we proposed an integrated framework for anatomical and
functional localization of intracranial electrodes by developing
semi-automatic segmentation methods for ECoG and SEEG
electrodes. In this study, the segmentation methods used
commonly available preoperative T1 and post-operative CT
as source images. After coregistering the CT with T1, we
were able to locate and parcellate intracranial electrodes with
minimal manual interventions. To achieve more accurate
localization of the implanted electrodes, our methods utilized
the advantages that have been proposed in previous studies

including the center of mass calibration (Arnulfo et al.,
2015) and surface projection (Dykstra et al., 2012). The
cubic line-fitting algorithm was the first time introduced to
solve the common problem of bending electrodes occurring
for depth electrodes. Moreover, the estimation error of the
localized electrodes in SEEG was less than or comparable with
previous methods using a similar procedure (Hermes et al.,
2010).

Usually tracking the locations of intracranial electrodes
was time consuming and labeling each contact to a cortical
region with high precision was also difficult. In this
study we completed and integrated many useful functions
in a single toolbox. Notably, this tool automated the
whole processes mentioned above as much as possible to
save human resources. Transformation of native space
to the MNI standard space and the following cortical
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FIGURE 7 | Display electrodes of one patient. Showing all the electrodes’ relative positions on a rendered cortical surface using color and number to differentiate.

FIGURE 8 | Electrodes representation in standard space. The electrodes’ distributions of patients included in the validation process on a standard MNI152

surface, green dots indicate contacts in white matter area; blue dots indicate contacts in gray matter area.

label provided us a convenient way to combine multiple
patients and study the potential relationship between
electrophysiology- and fMRI-based functional brain
networks.

There were also several limitations in this study. First,
sometimes it was difficult to automatically deal with close
electrodes in SEEG and correctly seed all contacts in ECoG.
Thus, the electrodes localizations proposed in the current
method still required human interventions in manipulating the
parameters, selecting the proper clusters and correcting the
tracked electrodes. Second, the validation steps used in this
study only measured the deviation of the cross point between
electrode trajectories and the cortical surface in SEEG. Given
that the inside-brain contacts cannot be pictured, we cannot
quantitatively assess the accuracy of the reconstruction for
the full depth electrode. Thus, the results obtained from 20
points may not implicate that the accuracy of the current
method was superior to other published methods (Pieters et al.,
2013).

In conclusion, we developed a toolbox for an effective
localization and cortical label of intracranial electrodes
with user interfaces as well as visualization utilities based
on preoperative MRI and post-operative CT. To our best
knowledge, this toolbox for the first time integrated SEEG
and ECoG electrode localization and labeling processes and
would provide a more precise and intuitive view for clinical
assessment and human intracranial electrophysiological
study.
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