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One critical factor limiting the size of neural cognitive models is the time required to

simulate such models. To reduce simulation time, specialized hardware is often used.

However, such hardware can be costly, not readily available, or require specialized

software implementations that are difficult to maintain. Here, we present an algorithm

that optimizes the computational graph of the Nengo neural network simulator, allowing

simulations to run more quickly on commodity hardware. This is achieved by merging

identical operations into single operations and restructuring the accessed data in larger

blocks of sequential memory. In this way, a time speed-up of up to 6.8 is obtained. While

this does not beat the specialized OpenCL implementation of Nengo, this optimization is

available on any platform that can run Python. In contrast, the OpenCL implementation

supports fewer platforms and can be difficult to install.

Keywords: Nengo, computation graph, optimization, Python, OpenCL, neural engineering framework

1. INTRODUCTION

Computational modeling is an important part of neuroscience and cognitive science. It allows us
to make sense of data, generate predictions, and explicitly test theories and our understanding of
cognitive mechanisms. In this endeavor there is a need for increasingly large models, especially as
more and more individual cognitive functions get unified within single models.

For example, Schmidt et al. (2015) presented a model of vision-related macaque cortex areas
with 4 million spiking neurons requiring a supercomputer to simulate. Similarly, the largest
functional brain model to date, Spaun (Eliasmith et al., 2012), consists of 2.5 million neurons
that originally required 2 h to simulate a single second of simulation time. Even though current
implementations of Spaun have improved the simulation speed significantly due to both better
hardware and improved simulation software—Spaun still imposes a considerable computational
burden. As well, newer versions of Spaun include approximately 4million neurons. Thus, it remains
important to reduce simulation times in order to accelerate the debugging and development
of large-scale models. Similar challenges are faced by the machine learning community as they
increase the scale of their models likewise.

One of the most common approaches to reduce the runtime of such neural network models
is to switch to more specialized hardware. It is perhaps most common to use GPUs (instead of
CPUs) that are optimized for parallel algebraic operations. There is also ongoing work that is
building even more specialized hardware for simulating spiking neural networks in real-time with
minimal energy consumption (Furber, 2016), for example SpiNNaker (Furber et al., 2014) and
Neurogrid (Benjamin et al., 2014).
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While specialized hardware platforms are quite effective,
they are, unfortunately, not available to everyone. Many such
platforms are still in heavy development, and SpiNNaker and
Neurogrid are only available to selected researchers. While GPUs
are more broadly available, they still result in an additional cost
and can be difficult to maintain for specialized applications.
Additional costs can range from hundreds to thousands of dollars
for GPUs, up to several thousands of dollars for neuromorphic
hardware, if it is available. In addition, many high-performance
clusters still predominantly use CPUs because the effective
utilization of a large number of GPUs within a cluster remains
an area of active research (Kindratenko et al., 2009). As a
result, many HPC platforms provide access to far more CPU
resources than GPUs. Consequently, there are many instances
where deploying dedicated hardware platforms is not a viable
option.

In these cases, the remaining options rely on software
optimizations. This usually involves a trade-off between
performance and maintainability. The reasons for this trade-off
are manifold. For example, highly optimized code often needs to
be written in low-level languages that are less suited to express
the programmer’s intent, whereas high-level languages incur
additional computational overheads. As such, most scientific
software today is written in a high-level language like Python,
and only the performance critical parts are implemented in a low-
level language like C or Fortran. A number of software tools like
F2PY (Peterson, 2009), SWIG, Boost.Python, Instant (Wilbers
et al., 2012), and SciPy Weave aim to make this integration
easier. A slightly different approach is taken by Cython (Behnel
et al., 2011) that extends the Python programming language to
allow type annotations which then enable Cython to compile the
annotated parts to efficient C code.

Nevertheless, there are downsides to these generic approaches
when applied to neural simulation. For instance, they all require
a working C or Fortran compiler. This can be a major hurdle in
installing a software package formany users. Moreover, switching
to a low-level language does not guarantee speed improvements.
For some programming constructs like for-loops there will be less
overhead, but performance problems are often more related to
the employed algorithms, data structures, and memory layouts.
Therefore, it can be more effective to improve these aspects of the
simulation in the high-level language before attempting to switch
to a low-level language.

One of the most common recommendations for scientific
code in languages like Python and Matlab is to use vectorized
operations instead of for-loops (van der Walt et al., 2011).
These will invoke optimized code (usually written in C or
Fortran) to perform the operation instead of looping within the
high-level language that incurs a high overhead. This can be
taken to an extreme where different array variables with the
same operations applied to them will be merged into a single
array. This can reduce the number of loops further and puts
all the data into a consecutive memory segment. This latter
aspect will be beneficial to the performance because due to the
locality of the memory access it can be optimized for better
caching in the CPU and for better pre-fetching of the required
data. In most circumstances, merging arrays in such a way

can easily lead to confusing code because it breaks the mental
mapping between a single variable name and a single set of
data described by that name. Here, we present a method to do
this merging hidden from the user to keep the mental mapping
intact.

Many packages for the simulation of neural networks like
Nengo, Theano, and Tensorflow (Bekolay et al., 2014; Abadi
et al., 2015; Al-Rfou et al., 2016) construct a computational
graph, an idea rooted in dataflow programming (Culler and
Culler, 1986; Johnston et al., 2004). Most of the work in the
field of dataflow programming is concerned with the parallel
execution of computation steps (e.g., Reiter, 1968; Miller, 1973;
Hendrickson and Leland, 1995). Unfortunately, Python’s global
interpreter lock (GIL) prevents efficient parallel execution in
Nengo. Less work has been done on ensuring locality of accessed
data (Kavi and Hurson, 1998), perhaps because it is more difficult
in the general case, and highly dependent on the instruction
set (Miller, 1973). In Nengo, however, we can benefit from some
pre-imposed structure on accessed memory, and the usage of the
same linear algebra operations on many data fragments.

Accordingly, we present an algorithm implemented within the
Nengo neural network simulator for automatic merging of arrays
and applied operations to improve performance by increasing
the locality of memory access. We demonstrate considerable
simulation speed improvements at the cost of a moderately
increased build time. This algorithm is of special importance
in Nengo in the context of the optimization method for
representational accuracy presented by Gosmann and Eliasmith
(2016). This prior optimization method applies to neurons
involved in the representation of uniformly distributed high-
dimensional unit vectors, which is common in large-scale
models like Spaun. The method makes use of the fact that a
subvector composed of k components of an n-dimensional unit
vector with k < n will usually be smaller than unit length.
Thus, by splitting up the representation of the n-dimensional
vectors across multiple small neuron groups representing k-
dimensional parts, each group of neurons can be optimized to
represent a smaller range which translates to an improvement in
representational accuracy. Unfortunately, this has the downside
of increasing the simulation time in Nengo. The algorithm
presented here counteracts this increase in simulation time and
allows the simulation to combine accurate representation and fast
simulation speeds.

We will first introduce the Nengo neural network simulator
(Section 2), before explaining the optimization algorithm in
Section 3. The results from testing it on models of different sizes
are presented in Section 4 and discussed in Section 5.

2. THE NENGO NEURAL NETWORK
SIMULATOR

The Nengo neural network simulator (Bekolay et al.,
2014) is based on the methods of the Neural Engineering
Framework (NEF; Eliasmith and Anderson, 2003). The NEF
proposes three principles to enable the construction of large-scale
neural models:
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1. Representation describes how groups of neurons can represent
time-varying vector values with non-linear encoding and
linear decoding.

2. Transformation describes how optimal connection weights
between two groups of neurons can be determined to
implement linear and non-linear functions.

3. Dynamics describes how dynamical systems can be realized in
neurons with recurrent connections.

Nengo uses these NEF principles to convert a high-level model
description written in Python into a spiking neural network. The
model description is independent of the hardware platform. As a
result, the same model can be run on different “backends” (or
“simulators”) that target specific hardware. Different backends
can be used to run the samemodel on different types of hardware.
Here we are mainly concerned with the reference backend that
targets commodity CPUs. We will also use the OpenCL backend
called Nengo-OCL as additional comparison in benchmarks that
can target either CPUs or GPUs.

Internally, the reference backend represents the neural
network with so-called signals and operators that implicitly define
the computational graph to be executed for every simulation
time step. Nengo-OCL uses a similar implementation, although
backends are free to adopt other implementational structures.

Signals define values that are read and written by the
simulator. For each high-level object, like a group of neurons,
usually several signals will be created. A signal defines aspects
like the vector or matrix shape of the value, data type, and
initial value. As such signals provide information retained in
consecutive blocks of memory that have to be allocated for the
simulation.

Operators define how signals are updated given the values
of other signals. Operators are typically common linear algebra
operations like an elementwise product or dot product, but more
specific operators are used for non-linear operations (such as the
neuron non-linearity). The general type of the operation defines
the operator type (e.g., copy), irrespective of the actual signals
available. For each accessed signal, operators have to declare
whether they set, increment, read, or update the signal. These
operations are defined as follows within a simulation time step:

1. At most one (optional) set operation that defines the value of
a signal at the start of the simulation time step.

2. Any number of increment operations modifying the signal
value.

3. Any number of read operations retrieving the signal value.
4. At most one update operation that sets the final value of the

signal for the next time step.

This implicitly defines a computational dependency graph. For
example, operators that increment a signal need to be executed
before that signal is read. The Nengo simulator constructs this
dependency graph G and performs a topological sort to obtain
the order in which the operators are executed. (There can bemore
than one valid order.)

Some operators will only operate on parts of a signal. In this
case a (signal) view is assigned to the operator instead of a signal.
Signal views are similar to views of NumPy arrays. In most cases

they behave like a normal signal and have the same attributes.
However, they do not define a distinct block of memory to be
used for the simulation, but map into the memory block defined
by another signal called the base of the view. The start of the
view data is defined by an offset relative to the start of the base;
the end of the view data is given by the view size relative to the
offset.

3. ALGORITHM FOR OPERATOR MERGING

Figure 1 shows a typical subset of operators and signals for
calculating the input currents to two groups of neurons in a
built Nengo model. Each of the signals corresponds to one
block of memory. The memory location of data for each
group of neurons can be considered random for our purposes.
While the operators are calls to efficient NumPy functions,
the reference backend loops over the operators in less efficient
Python. The depicted part of the computational graph can be
optimized by allocating data of the same type in sequential
blocks and merging corresponding operators as shown in
Figure 2. This allows the simulation to make better use of CPU
caching and pre-fetching as more data is in sequential memory
blocks, and the number of operators to loop over in Python
has been reduced. In the following we discuss the detailed
constraints of this optimization and how it can be performed
automatically.

3.1. Merging of Operators
Let us consider the copy operator as a simple example of
how the merging of operators works. This operator copies
the values from a source block of memory to a destination
block. Given multiple copy operators, all the source and all the
destination blocks can be concatenated to form sequential blocks
of memory. Then just a single copy operator can be used for
those concatenated blocks. While this requires allocating new
memory blocks and moving data to the new memory location,
there is a net benefit. This memory reorganization has only to
be done once, but provides a speed-up in every simulation time
step.

A more complicated example is merging the DotInc operator.
This operator implements y := y + Ax. To merge two of these
operators into a single operator,

[

y1
y2

]

: =

[

y1
y2

]

+

[

A1 0
0 A2

][

x1
x2

]

(1)

has to be implemented. Unfortunately, a naive implementation of
this would lead to a quadratic increase in memory consumption
with the number of operators merged due to the structure of the
Amatrix. Because of that, the merged operator is replaced with a
BsrDotInc operator that implements the same operation, but uses
a block sparse matrix representation. This data structure does not
need to represent the blocks of zeros in memory and thus does
not incur any additional memory cost compared to the unmerged
operators.
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FIGURE 1 | Signals and operators to calculate the input current to two neural groups. The gray boxes represent memory locations with allocated signals.

Ellipses represent operators accessing and modifying these signals. Both sets of operators for the two neural groups access unrelated memory locations.

FIGURE 2 | Signals and operators to calculate the input current to two neural groups after merging. The gray boxes represent memory locations with

allocated signals. Ellipses represent operators accessing and modifying these signals. Due to the merging, the number of operators has been reduced to two and the

memory access for corresponding signals is sequential.

In more general terms, to allow the merging of two operators
oi and oj, it is sufficient that all of the following conditions are
met:

1. Both operators need to be of the same type and that type

has to support merging (e.g., copy operators can be merged,

SimPyFunc operators implementing the execution of arbitrary
user-provided Python code cannot be).

2. The execution of one operator must not depend on the other
operator (e.g., DotInc depends on Copy in Figure 1). This is
checked with the transitive closure on the dependency graph
G, described in more detail in Section 3.6.

3. Each pair of signals (or signal views) (s
oi
l
, s
oj
l
) needs to allow

merging. The exact conditions will be discussed in the next
section.

4. The operator type might pose further requirements.
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Note that a sequence of operators o1, . . . , on can be merged as a
whole if all pairs (oi, oi+ 1) can be merged.

3.2. Merging of Signals and Signal Views
Two (non-view) signals sx and sy can be merged into a single
signal if two conditions are met: they have to use the same
data type and their shapes have to agree on all axes except for
the concatenation axis. To merge those signals, a new block of
sequential memory that is the size of the combined shape is
allocated and the initial data is copied over.

Signal views cannot be merged in this manner because one has
to assume that the whole signal base gets written to by another
operator and it is not possible to cut out a small piece and move it
to another memory location. Even if it were possible, this would
contradict the purpose of the optimization algorithm as views are
already parts of memory that are sequentially organized.

Consequently, views need to fulfill additional conditions to
allow merging: their strides1 need to agree and they have to be
sequential in memory. That is, the second view’s offset has to
be the first view’s offset incremented by its size. To merge the
views, no data is copied, but a new view encompassing both of
the merged views is created.

3.3. Global Effects of Merging
When merging operators, a number of further global updates
is required. Within the dependency graph all merged operators
need to be removed and the new merged operator needs to be
inserted. The dependencies of a new operator are given by the
union of dependencies of the merged operators. Furthermore,
when signals get merged, operators referencing these signals need
to be updated. This is done by replacing the signal with a view
into the merged signal.

3.4. Finding Mergeable Operators
A naive implementation would check whether each pair of
operators could be merged. However, this would lead to a
quadratic temporal scaling with the number of operators, which
is undesirable. Thus, we make use of several restrictions about
when it is possible to merge operators in order to improve the
temporal scaling. Signal views place the most restrictions on
which operators can be merged. As views with different bases can
never be merged, we can consider groups of operators O where
their first view shares the same base. (It is irrelevant how the
associated signals are sorted for determining the first view as long
as the sorting is consistent over all operators.) Operators without
any views are considered to be their own group. The algorithm to
find subsets of O that can be merged is given by the following:

Require: List O of operators. If any o ∈ O operates on a signal
view, the bases of the first signal of each operator o need to
be the same.

1: procedure PERFORM_MERGES(O)
2: O← SORT(O, sortkeys = [VOFFSET(o) for o ∈ O])

3: for oi ∈ O do

4: m← [o]

1The strides define the number of bytes to skip to move along a certain array axis.

5: for oj ∈ O with VOFFSET(oi)+ VSIZE(oi) ≤
VOFFSET(oj) do

6: if CAN_MERGE(m[−1], oj) then
7: m← APPEND(m, oj)
8: else if VOFFSET(m[−1]) + VSIZE(m[−1]) <

VOFFSET(oj) then
9: break

10: end if

11: end for

12: if LEN(m) > 1 then
13: MERGE(m)
14: else if oi uses a signal view then

15: O← O \ {oi}
16: end if

17: end for

18: end procedure

In this m[−1] denotes the last element of the list m.
Furthermore,VOFFSET(o) and VSIZE(o) return the offset and size,
respectively, of the first signal view associated with o. If an
operator is not associated with any signal view, 0 is returned
instead. This allows to use the same PERFORM_MERGES(O) for
operators with and without views. The algorithm first sorts
the operators by the offset of their first signal view. Then
for each operator, the sequence m of operators that can be
merged is determined. This is essentially checked with the
CAN_MERGE(m[−1], oj) function which evaluates the conditions
described in Section 3.1.

The inner loop is cut short at the beginning (line 5) by
skipping operators oj that cannot be merged because the offset
of the first view is lower than the end of the same view of oi. In
other words, if oj accesses items in a view that are in front of the
items accessed by oi, the operators cannot be merged because of
non-sequential memory access, and these cases are skipped. The
loop is cut short at the end in a similar way in line 8 when all
further operators cannot be merged to the current set m because
their views are not consecutive anymore. If none of the associated
signals of the operators in O is a view, those statements will not
have any effect as VOFFSET(o) and VSIZE(o) return 0. In that case
all combinations of oi, oj ∈ O, oi 6= oj have to be considered.

Furthermore, line 15 excludes operators that can never be
merged with any other operator from future optimization passes.
If an operator with a view cannot be merged with any other
operator in a single optimization pass, this will not change in later
optimization passes. If the views themselves are incompatible
for merging, they will stay incompatible because signal views
only change through merging. If other non-view signals are
incompatible, these might become signal views with further
merges, but this will not influence the compatibility for merging
as the data type and the shape (except for the concatenation axis)
do not change. Lastly, if the operator cannot bemerged because of
dependency relationships, these will not be changed by merging
of other operators either.

3.5. Pre-grouping Operators
It is possible to just group operators by the base of the first
view and then to pass them to PERFORM_MERGES(O). It is,
however, more efficient to group them by the operator type first,
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since different operator types can never be merged. Furthermore,
depending on which operator types are merged first, the final
computation graph will be different, and this can effect the final
efficiency. Consequently, we start with merging ElementwiseInc,
Copy, DotInc, SimNeurons (in this order) before merging other
operator types in an undefined order. This order is a heuristic
determined by trial and error that outperforms other orders in
most cases.

Notably, merges for one operator type might make merges
for other operator types possible. Thus, we do multiple passes
over merges of all operator types until no further reduction
in the number of operators is obtained. In these passes we
disallow the merging of operators by default that do not reference
any views. The rationale for this is that pure signals do not
impose any order on the merged operators. Thus, the order
might not correspond to the order imposed on other operators
preventing further merges. This is illustrated in Figure 3. When
no further reduction in the number of operators is possible, only
the merging of operators without a view reference is allowed for
one pass. In addition, we stop the optimization process once
the number of merged operators per second in one pass falls
below one percent of the average over all passes. This prevents
the optimization process from taking excessively long if only
small further reductions in the operator number are possible. The
following pseudo-code makes this process explicit:

Require: List O of all operators.
1: nall ←|O| , n0 ←|O| , n1 ← 0
2: tstart← TIME, tpass ← TIME

3: v← true

4: while v or n1 < n0 and 0.01 nall
TIME−tstart

< n0−n1
TIME−tpass

do

5: tpass ← TIME

6: v← n0 6= n1
7: Ô← [o for o ∈ O if HAS_VIEW(o) = v]

8: n0 ←|O|

9: for Ok ∈ GROUP_OPERATORS(Ô) do
10: PERFORM_MERGES(Ok)
11: end for

12: n1 ←|O|

13: end while

The variables n0 and n1 are used to compare the number of
operators |O| before and after an optimization pass; v indicates
whether the merging of operators without associated views is
allowed in the optimization pass. The TIME function retrieves
the current time. Whether an operator has an associated
signal view is checked with the HAS_VIEW(o) function. The
GROUP_OPERATORS(Ô) function is used to group operators by
their type and return a list of lists of single operator types. The
return value is sorted according to the aforementioned heuristic.

3.6. Transitive Closure of the Dependency
Graph
To check whether one operator depends on another operator
we use the transitive closure of the dependency graph. In the
transitive closure of a graph, one adds edges (vi, vj) for each vertex

vj that is reachable (in any number of steps) from vertex vi. Thus,
it enables checking whether one vertex, or operator in this case,
depends on another in amortized constant time with the usage of
hash-tables to store the edges of each vertex.

Some further care in the representation of this transitive
closure graph has to be taken. Because of the large number of
operators in many Nengo models, an adjacency matrix would
require too much memory as it size increase quadratically.
Storing the edges for each vertex in a hash-table would still
require too much memory as most nodes will have many edges in
the transitive closure. Luckily, due to the structure of the graph
generated by Nengo, many operators share the same transitive
closure. In other words, many vertices in the transitive closure of
a typical Nengo dependency graph will have exactly the same set
of outgoing edges. Thus, we can significantly reduce the memory
consumption by hashing each set of edges and reuse the same
set instance where appropriate instead of creating multiple set
instances representing the same information.

4. RESULTS

To demonstrate effect of the optimization of the computation
graph, we ran benchmarks on three different neural models
ranging from a small toy example to a very large scale model.
In all cases the optimizations provides a significant speed up of
the simulation times that will exceed the additional build time in
most cases. The source code to run the benchmarks is available at
https://github.com/ctn-archive/gosmann-frontiers2017.

Benchmarks followed the same protocol as in Bekolay et al.
(2014). For each trial the time required to build the model
was recorded as the build time, then 10 simulation time steps
were run to pre-fill memory buffers, and finally the model was
simulated for 1,000 time steps corresponding to one second
of simulated time. The time required to simulate those 1,000
time steps is reported as simulation time. The simulation times
stated in seconds can also be interpreted as the factor by
which the model runs slower than real time. The benchmarking
protocol gave a very low variability of measured times. For each
benchmarking condition, five trials were averaged.

Besides the Nengo reference backend and the optimized
(reference) backend, we ran the same benchmarks with Nengo-
OCL, the OpenCL implementation of Nengo, on CPU and GPU.
All benchmarks were run on a computer with two 4-core Intel
Xeon E5540 2.53GHz CPUs and an Nvidia Tesla C2050 GPU.
On the software side Python 3.4.2 with NumPy 1.12.0 on Debian
Linux 8 was used. To achieve optimal performance, NumPy was
linked against a version of OpenBLAS compiled for the specific
machine.

The Nengo simulator supports a variety of different neurons
models. Here we focus on the spiking leaky integrate-and-fire
(LIF) model, a simple model that captures the spiking behavior
of cortical neurons. The results are similar with rate-based LIF
neurons but are omitted for brevity. In addition, we report
the direct mode simulation results, where desired functions are
computed exactly without the use of individual neurons. This
mode is usually used for debugging because it eliminates neuron
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FIGURE 3 | The order of merge operations can matter. (A) Initial situation. The o1 operators access different views of the a signal. All other signals are

independent. If the o2 operators are merged first, no order is imposed on the b and c signals except that the order of the b and c signals need to correspond. As such

(b2,b1) and (c2, c1) might be chosen as the order, yielding the situation depicted in (B). Here, it is not possible to merge the o1 operators as the order of the a and b

signals is swapped in memory. This can be avoided by merging operators accessing views first as done in (C). Here, the o1 operators need to be merged first which

will impose the order of the a signal views onto the b signals. Then it is still possible to also merge the o2 operators as now the order of the b signals can be imposed

on the c signals.

noise and because it is faster for the reference backend, although
behavioral results can deviate significantly.

4.1. Circular Convolution Network
The operation of circular convolution, defined as

u = v ⊛ w : ui =

n
∑

j= 1

vjw(i− j) mod n, (2)

is used in many Nengo models of cognitive tasks based on the
Semantic Pointer Architecture (SPA; Eliasmith, 2013).Within the
SPA, circular convolution is used to bind and unbind different
concepts, represented by high-dimensional vectors.

The simulation time of circular convolutions with vectors of
different dimensionality and 500 neurons for each dimension
is shown in Figure 4. Higher dimensionalities require more
neurons to be simulated which leads to an increase in simulation
time. With the optimizations enabled, this increase is less
steep. Simulating a 500-dimensional circular convolution for 1 s
takes 287 s with the reference backend, but only 52 s with the
optimizations (5.5 times speed-up). The highest speed-up, with
a factor of 6.8, is achieved for 100 dimensions. This optimized
neural simulation takes less time than the reference backend in
direct mode. For 500 dimensions, for example, 99 s are taken
by the reference backend in direct mode while the optimized
backend only spends 52 s on simulating LIF neurons or 22 s when
in direct mode.

The optimizations increase the build time (Figure 5) only
marginally: by a factor of 1.3 (90 to 118 s) for 500 dimensions
with LIF neurons. The OCL backend on both CPU and GPU is

fastest in terms of simulations times and requires build times in-
between the reference and optimized backend. The optimization
decreases the number of operators in the graph from 26,167 to 85
for 500 dimensions.

4.2. N-Back Task Model
The n-back task is used in psychological research as a test of
working memory and its maintenance. In this task a subject is
sequentially presented with words or spatial locations and has
to indicate repetitions that are exactly n positions apart (e.g.,
by a button press). Gosmann and Eliasmith (2015) presented a
medium sized Nengo model performing this task with 92,250
neurons. Here we use this model as a benchmark. Items that have
to be remembered are represented as d-dimensional vectors with
d = 64 in this model. Neural groups within the model, however,
do not represent the full d-dimensional vectors, but s groups
representing d/s dimensional parts of the vectors are combined.
This is done for three reasons. First, to achieve the same accuracy,
a larger number of neurons would be required to represent the
full dimensionality in one large group of neurons than when
representing it in pieces in several smaller groups. Second, the
decoder computation requires an O(N3) matrix inversion where
N is the number of neurons in a single group of neurons, whereas
with s smaller groups of N/s neurons it is O(N3/s2). Third,
as noted in Section 1, optimizations to achieve an improved
representational accuracy (Gosmann and Eliasmith, 2016) work
better if the vector is split into smaller pieces. A disadvantage
of representing small parts of a vector is that the total number
of neural groups increases, which produces a larger number of
operators in the computation graph that have to be iterated over
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FIGURE 4 | Time required to simulate a circular convolution network of different dimensionalities with 500 neurons per dimension for one second.

Error bars show bootstrapped 95% confidence intervals but are small enough to be hidden behind the data point markers. Data were collected on four Nengo

backends: the reference backend (reference), the reference backend with the optimizations described here (optimized), Nengo-OCL using the CPU (ocl_cpu), and

Nengo-OCL using the GPU (ocl_gpu).

FIGURE 5 | Time required to build a circular convolution network of different dimensionalities with 500 neurons per dimension. Error bars show

bootstrapped 95% confidence intervals but are small enough to be hidden behind the data point markers. Data were collected on four Nengo backends: the reference

backend (reference), the reference backend with the optimizations described here (optimized), Nengo-OCL using the CPU (ocl_cpu), and Nengo OCL using the GPU

(ocl_gpu).

during the simulation. Thus, the simulation time increases. Here,
we look at the performance when using s = 64 and s = 4 splits.

For LIF neurons, the results are similar to the circular
convolution (Figure 6). The simulation time is decreased by a
factor of 4.7 and 4.0 for 64 and 4 splits, respectively, (121 to 26 s
and 94 to 24 s) by the optimizations. This again surpasses the
direct mode speed of the reference backend (49 and 28 s). Again
Nengo-OCL is faster (less than 7 s in all conditions except direct
mode), but in direct mode it ends up being considerably slower
(at least 124 s).

The build times (Figure 7) are slightly increased by the
optimizations, but about the same as for Nengo-OCL. The
number of operators is decreased from 14,905 to 1,135 (s = 64)
and from 6,265 to 407 (s = 4).

4.3. Spaun
Our final benchmark uses an updated version of the Spaun
model (Eliasmith et al., 2012). With originally 2.5 million and
almost 4 million neurons in the version used here, it is the largest
functional brain model reported to date. Thus, it is a good proxy
for the largest models that are currently run with Nengo. The
Spaun model can perform eight different cognitive tasks, such as
list learning or copy drawing. It gets input through 28 by 28 pixel
images and produces output with a simulated arm.

The optimization reduces the time required to simulate one
second from 8,926 to 1,886 s (factor 4.7 speed-up, Figure 8).
This is similar for the direct mode (7,723 s to 1,800 s equivalent
to a factor 4.3 speed-up). Again, with the optimizations LIF
neurons are barely more expensive to simulate than the direct
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FIGURE 6 | Time required to simulate the n-back model with different numbers of splits of the represented vectors for one second. Error bars show

bootstrapped 95% confidence intervals but are small enough to be hidden behind the markers. Data were collected on four Nengo backends: the reference backend

(reference), the reference backend with optimizations (optimized), Nengo-OCL using the CPU (ocl_cpu), and Nengo-OCL using the GPU (ocl_gpu).

FIGURE 7 | Time required to build the n-back model with different numbers of splits of the represented vectors. Error bars show bootstrapped 95%

confidence intervals but are small enough to be hidden behind the markers. Data were collected on four Nengo backends: the reference backend (reference), the

reference backend with optimizations (optimized), Nengo-OCL using the CPU (ocl_cpu), and Nengo-OCL using the GPU (ocl_gpu).

mode. Nengo-OCL takes 286 s to simulate one second on the
CPU and 66 s to simulate one second on the GPU, but for direct
mode it takes with 4,046 and 2,607 s, respectively, longer than the
optimized backend.

For Spaun, build times are increased to 2,891 from 1,760 s
(LIF) and to 1,615 from 577 s (direct mode) which also exceeds
the Nengo-OCL build times around 2,000 and 800 s (Figure 9).
The optimization process reduces 996,917 to 161,161 operators.

4.4. Memory Usage
While simulation time is our main concern in this work, the
memory usage is of some importance as well. In fact, some care
has to be taken in the representation of the transitive closure
graph (see Section 3.6) to ensure reasonable memory usage. With

this, however, memory usage is within reasonable bounds. To
verify this, we ran the same benchmark models as before and
recorded the maximum unique set size as an indication of the
memory usage. The unique set size is the amount of memory that
is private to a process and not shared with other processes.

With the optimizer, the maximum memory usage increased
to 420MiB from 284MiB for the circular convolution of 500
dimensions with 500 neurons per dimension. Surprisingly, the
maximummemory usage decreased to 216MiB from 223MiB for
the n-backmodel. This is most likely due to variability introduced
by the Python memory allocation mechanisms. Finally, the
maximum memory usage for the Spaun model increased to
31GiB from 12GiB. This is a large difference in absolute terms,
but not unreasonable for a model of that size.
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FIGURE 8 | Time required to simulate the Spaun model for one second.

Error bars show bootstrapped 95% confidence intervals. Data were collected

on four Nengo backends: the reference backend (reference), the reference

backend with the optimizations described here (optimized), Nengo-OCL using

the CPU (ocl_cpu), and Nengo-OCL using the GPU (ocl_gpu).

FIGURE 9 | Time required to build the Spaun model. Error bars show

bootstrapped 95% confidence intervals. Data were collected on four Nengo

backends: the reference backend (reference), the reference backend with the

optimizations described here (optimized), Nengo-OCL using the CPU

(ocl_cpu), and Nengo-OCL using the GPU (ocl_gpu).

5. DISCUSSION

We presented an algorithm to improve the simulation speed
of the Nengo neural network simulator. This is achieved by
reducing the number of operations in the computational
graph generated from the model description and allocating
manipulated data in consecutive memory blocks that better
utilize CPU pre-fetching and caching. We found a speed-up
over a wide range of model sizes and complexities. For complex
models the speed-up is typically around 4 times, but can be
less for very small models. The highest speed-up of 6.8 was
obtained for a circular convolution with 100 dimensions.
Nevertheless, the Nengo-OCL backend is still an additional
order of magnitude faster. This is not surprising as GPUs, due
to their specialized nature, can be powerful for linear algebra
applications. As well, on the CPU the OCL implementation

allows the simulator to utilize all CPU cores to the best extent.
The Python implementation of the reference backend is limited
in this regard. The main Python loop is single threaded and
only the NumPy function calls can make use of multiple cores
to the extent it is supported by the respective underlying linear
algebra library. Because of Python’s global interpreter lock (GIL),
a multi-threaded implementation would not provide any gain
in efficiency. Alternatively, one could use multi-processing to
circumvent the GIL, but would then lose efficiency due to the
communication overhead between different processes. Thus,
the execution of multiple operators cannot be parallelized in
an efficient manner in a pure Python implementation which
prevents the application of many methods from dataflow
programming that focus on scheduling a computation graph for
parallel execution (e.g., Reiter, 1968; Miller, 1973; Hendrickson
and Leland, 1995). If we were to drop the requirement of a pure
Python implementation, it might be worthwhile to investigate
whether further speed-ups for the reference backend can be
obtained with Cython (Behnel et al., 2011) to release the GIL
and parallelize the operator execution. But it is not clear if
this achieves a performance close to other non-pure Python
backends.

Given faster Nengo backends, one might ask whether these
optimizations to the reference backend are still worthwhile. We
believe that this is the case for several reasons. Most importantly,
not everyone is able to run Nengo-OCL because GPUs are a
cost in addition to the CPU and Nengo-OCL does not support
execution on CPUs on all platforms. Also, the installation of
Nengo-OCL is non-trivial on some platforms. Furthermore, the
optimizer allows modelers to use all features implemented in
the reference backend. Maintainers of other backends, including
Nengo-OCL, can decide to not implement a certain set of features
or only do so with a delay (only the reference backend is currently
feature complete). Similarly, it is easier to prototype and test
new features with a pure Python implementation in the reference
backend than developing specialized C code for the Nengo-
OCL backend. Finally, with the optimizations suggested here,
the reference backend is faster in direct mode than Nengo-
OCL except for very simple models. This can be explained by
the fact that Nengo-OCL cannot run arbitrary Python code on
its computing device and all functions applied to connections
between neural groups need to run some arbitrary Python code
in direct mode. While one of the main reasons to use direct mode
was simulation speed, it can also be helpful in debugging models
as it provides exact mathematical solutions instead of neural
approximations. In these debugging cases using the optimized
reference backend provides faster simulations than Nengo-OCL.

An increase in simulation speed would not be of much use if
it were to largely increase the model build times. Fortunately, this
is not the case. While build times increase moderately, the gain
in simulation speed will be larger in most cases. For example, the
increased build time for the Spaun model is completely offset by
the savings in simulation time for simulated durations of at least
0.16 s.

It is also worth highlighting synergies of this optimization
with methods presented by Gosmann and Eliasmith (2016). For
Nengo models employing the Semantic Pointer Architecture
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(SPA), which for example the n-back task model and Spaun
do, it is possible to optimize the neural representations to
require fewer neurons while keeping the representational error
constant. A greater reduction in neuron number can be achieved
by splitting the dimensions of a high-dimensional unit-vector
(a Semantic Pointer) into individual groups of neurons. This
changes the distribution of values that needs to be represented
by each group of neurons from a uniform distribution to
a skewed distribution. By optimizing the decoders only for
frequent values in that skewed distribution, the same accuracy
can be achieved with fewer neurons in total. One might assume
that fewer neurons leads to a decrease in simulation time,
but the total number of neural groups in the model increases.
This increases the number of operators in the generated
computation graph, increasing the simulation time. The merging
of operators through the optimization, while potentially not
completely eliminating this increase, counteracts much of it.
Thus, combining both optimization methods makes models
more efficient to simulate.

In the near future we expect to integrate the described
optimization into Nengo for inclusion in one of the upcoming
releases. Furthermore, we intend to investigate how much

other Nengo backends, like Nengo-OCL, can benefit from
similar optimization methods. We also believe that this sort of
optimizationmight be beneficial to other software packages using
computation graphs, most prominently Theano and Tensorflow
which are widely used in the deep learning community.
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