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Gaining a better understanding of the human brain continues to be one of the greatest 
challenges for science, largely because of the overwhelming complexity of the brain and 
the difficulty of analyzing the features and behavior of dense neural networks. Regarding 
analysis, 3D visualization has proven to be a useful tool for the evaluation of complex 
systems. However, the large number of neurons in non-trivial circuits, together with their 
intricate geometry, makes the visualization of a neuronal scenario an extremely chal-
lenging computational problem. Previous work in this area dealt with the generation of 
3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt 
to deal with the extremely high storage and computational cost required to manage 
a complex scene. This paper presents NeuroTessMesh, a tool specifically designed 
to cope with many of the problems associated with the visualization of neural circuits 
that are comprised of large numbers of cells. In addition, this method facilitates the 
recovery and visualization of the 3D geometry of cells included in databases, such as 
NeuroMorpho, and provides the tools needed to approximate missing information such 
as the soma’s morphology. This method takes as its only input the available compact, 
yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It 
uses a multiresolution approach that combines an initial, coarse mesh generation with 
subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For 
the coarse mesh generation, a novel approach, based on the Finite Element Method, 
allows approximation of the 3D shape of the soma from its incomplete description. 
Subsequently, the adaptive refinement process performed in the graphic card generates 
meshes that provide good visual quality geometries at a reasonable computational cost, 
both in terms of memory and rendering time. All the described techniques have been 
integrated into NeuroTessMesh, available to the scientific community, to generate, visu-
alize, and save the adaptive resolution meshes.

Keywords: geometry-based techniques, multiresolution techniques, GPUs and multi-core architectures, 
compression techniques, bioinformatics visualization
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1. INtRodUCtIoN

Understanding the human brain remains one of the greatest 
research challenges for Science, being one of the most active 
areas of research. Besides the intrinsic interest in understanding 
what makes us human, unraveling how the brain works will 
bring advances in many fields, from revolutionary computing 
technologies to the development of new treatments for brain 
disorders. Ambitious initiatives such as the Human Brain Project 
(EU) (Markram et  al., 2011) or the BRAIN Initiative (USA) 
(Jorgenson et  al., 2015) promote the collaborative efforts from 
multidisciplinary research teams, bringing this goal within reach 
for the very first time.

Multiple factors are behind the overwhelming complexity 
of the brain. First, the number of neurons and synapses is huge: 
it has been estimated that the human brain includes some 
1011 neurons and 1015 synapses (Sporns et al., 2005). Second, 
the availability of many different techniques for analyzing 
brain structure and function has resulted in a collection of 
multilevel descriptions of the brain, coming often from many 
different perspectives and disciplines. Neuroscience itself can 
be seen as a set of different subdisciplines that study the brain 
from complementary points of view (anatomical, physiologi-
cal, etc.).

Working at microscale, and from a morphological point of 
view, the acquisition of the anatomy of neurons from stacks of 
microscopy images can be accelerated using a range of software 
tools. However, the automation of this process requires the 
development of automatic segmentation processes, which is a 
milestone that has not yet been fully achieved. For this reason, 
acquiring the morphology of neurons usually involves the 
interactive tracing of neuron elements from microscopy images. 
This task is carried out by a human operator who typically has to 
perform operations such as setting parameters, marking sparse 
control points that describe the neurite trajectories and providing 
a soma approximation (a 2D contour, or a center and a radius 
in coarse approximations) before the morphological tracing is 
finished. This is particularly true with data acquired over recent 
years and stored in databases such as NeuroMorpho (George 
Mason University, 2017).

Regarding the visualization of digitized neurons, there are 
methods that allow the generation of 3D meshes to approximate 
the neuronal membrane, but the visualization of complex 3D 
neuronal scenes or large collections of individual neurons poses 
some challenges to these approximations, requiring special 
attention. First, the morphological tracings provided by neu-
roscience laboratories do not include a complete description of 
all the parts of the neuron. This is especially true in the case of 
the soma, where a 2D contour is not enough to recover the 3D 
shape of the cell body. Second, the number of neurons is often 
quite large, like in modern simulators that use neural models 
with detailed morphology. In these cases, it should be noted 
that the geometry of each neuron is unique and far from simple, 
making the visualization of complex neural scenes a challenging 
computational problem. Nevertheless, visualizing the scene is 
mandatory for designing and reviewing simulation scenarios, 
analyzing results, etc.

This paper presents a multiresolution approach for the 3D 
visualization of detailed neuron reconstructions, suited for the 
recovery of data from existing databases and for the visualization 
of complex neuronal simulation scenarios. The method presented 
here first generates an initial coarse mesh, from the incomplete 
descriptions obtained from morphological tracings and then 
refines it in the graphic card during visualization. In summary, 
the main contributions of this paper are as follows:

•	 An improved technique for the 3D reconstruction of the 
soma, for cases where it had not been previously generated. 
The method is based on a physical simulation approach that 
deforms an initial simple shape according to the distribution 
of the first-order neurites. The deformation is computed using 
a Finite Element Method (FEM).

•	 A set of techniques for the generation of low-resolution 3D 
models of cell membranes that follow the trajectories described 
in the morphological tracings, incorporating the plausible 3D 
soma shapes previously generated.

•	 An on-the-fly adaptive refinement method of the coarse mesh 
previously generated, making use of the tessellation capabili-
ties of the GPU.

•	 A first version of the tool that implements the techniques: 
NeuroTessMesh. This software, publicly available at http://
gmrv.es/neurotessmesh, allows meshes approximating neuron  
morphologies to be generated, visualized, and saved. Neuro-
TessMesh was developed in C++ and has been released for 
Linux and Windows operating systems.

The set of techniques presented here constitutes a framework 
that allows the visualization of neurons recovered from coarse 
mesh or even incomplete data. Also, it allows the rendering of 
complex neuronal scenarios, managing the high complexity 
derived from the intricate geometry and potentially huge number 
of elements involved. The techniques that have been developed 
are specifically adapted to the field of neuroscience, taking the 
compact descriptions of cell anatomies directly provided by 
neuroscience laboratories as input and incorporating specific 
techniques for the recovery of 3D shapes that are not completely 
described. Results show a good trade-off between visual quality 
and computational cost, both in terms of memory and rendering 
time.

2. BACKGRoUNd

The method for mesh generation proposed in this paper has 
been specifically designed for neuroscience data extracted from 
biological samples. The procedure for acquiring these samples 
starts with the staining of individual neurons in thin slices of 
brain tissue. There are different staining techniques, each of 
which is specifically suited for particular experiments, and 
selecting the appropriate method is crucial to ensure a proper 
acquisition (Parekh and Ascoli, 2013). After any of these chemical 
staining processes, microscopes are able to capture the neuron 
morphology, including the somata, dendrites, and axons. Modern 
techniques such as multiphoton microscopy (Zipfel et al., 2003) 
automatically generate 3D image stacks of brain tissue, with image 
planes separated from each other by only a few micrometers.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
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From these image stacks, it is possible to trace the 3D contour 
or path of the main components of each neuron to digitally 
reconstruct the neuron morphology in a manual (Glaser and 
Glaser, 1990), semiautomatic (Oaks et  al., 2016), or totally 
automatic way (Xie et al., 2010; Peng et al., 2011). The extracted 
shape and the placement accuracy of the morphological points 
traced along the neuron contour or path are highly dependent 
not only on the quality of the obtained image stacks but also on 
the expertise of the human operator, who is in charge of plac-
ing the morphological points within the neurites by manually 
clicking with a mouse, or by setting the parameters in (semi-)
automated algorithms.

The morphological tracing procedures described above define 
a unique tree structure, with a root node at the cell soma and 
an ordered sequence of interconnected nodes that defines seg-
ments within the original shape of the neurites, also including 
the neurite thickness at each morphological point. Unlike the 
neurite tracings, a detailed description of the soma is not com-
monly stored. Typically, the data stored in these tracings include 
a unique morphological point placed at the soma center plus 
the average soma radius, or a set of connected points tracing the 
2D projection of the soma contour from a specific point of view 
(which is clearly not valid for other points of view).

3. stAte oF the ARt

Although tracings provide essential information, one limitation 
when visualizing them is that it is not possible to perceive the 
neurite thickness. Also, visualizing several overlapping segments 
of the tracing can be ambiguous, since there are no “clues” to indi-
cate which segment is on top of the other. Visualizing their cor-
responding 3D meshes improves the spatial perception, allowing 
the user to better perceive relations and how the different neurites 
relate to one another spatially including their proximity. Also, 
the neurite thickness and volume are immediately perceived, 
and a 3D shape of the soma can be viewed. In addition, having 
a 3D mesh makes it possible to associate values with the neural 
membrane.

The 3D visualization of digitized neurons presents some 
problems. If mesh-based methods are to be used for rendering, 
it is necessary to generate meshes with enough resolution to 
capture fine detail. However “enough resolution,” is a fuzzy term 
that might depend on the particular task and user environment 
in question. This is a common problem in many 3D computer 
graphics applications, and perhaps the main issue in this case is 
that the number of neurons to be displayed can increase above 
any prespecified limit (such as in large-scale simulations using 
detailed geometric models for neurons). This imposes additional 
scalability restrictions when attempting to come up with practical 
solutions. In addition, it is common to find that publicly available 
collections of 3D neuron reconstructions do not have complete 
geometrical descriptions, which are necessary to generate the 
meshes from the available data.

Several software packages, such as Neurolucida (Glaser and 
Glaser, 1990), Imaris (Bitplane, 2016), NeuroConstruct (Gleeson 
et al., 2007), NeuGen (Eberhard et al., 2006), and Genesis (Wilson 
et al., 1988) provide approximations of neuron surfaces but are 

not focused on the realistic 3D reconstruction of soma shapes, 
leading to the generation of low quality soma meshes that are 
not connected with the dendrites. NeuroConstruct, Genesis, 
and NeuGen approximate the soma with very simple 3D shapes; 
NeuroConstruct uses a cylinder, and Genesis and NeuGen both 
use a sphere. In the case of Neurolucida, the soma is approxi-
mated with a 2D disk, which is not even saved when exporting 
the 3D model. More recently approximations such as the toolbox 
Py3DN (Aguiar et al., 2013) try to achieve more realistic soma 
reconstructions through geometric approximations. In this 
case, the tool adapts a set of successive overlapped planes that 
are generated taking into account the dendritic initial points. 
However, this toolbox does not connect the generated soma with 
the dendrites either. Other methods such as Lasserre et al. (2012) 
are able to obtain a smooth and connected representation of the 
soma. This method starts from a sphere (made with quads) with 
a fixed resolution, where the dendrites are generated by quad-
extrusion starting from the soma. At the end of the method, a 
Catmull–Clark subdivision smooths the whole mesh, generating 
realistic, smooth, and closed meshes. Nonetheless, due to the 
fixed initial soma geometry, the final shape of the obtained soma 
continues to be too spherical. Neuronize (Brito et  al., 2013) 
defines a physically based generation method using a mass-spring 
system. Neuronize generates not only a realistic soma but also 
a good approximation of important morphological parameters 
such as the soma volume and area. However, due to the versatility 
of the mass-spring system, this generation may require compli-
cated fine-tuning of several simulation parameters to achieve an 
accurate soma reconstruction.

The visualization of complex neuronal scenes requires 
special techniques for managing the intricate scene geometry. 
Multiresolution approaches (Clark, 1976; Luebke et  al., 2002) 
have been traditionally used in these kinds of situations, due 
to their ability to manage different representations of the same 
objects in a given scene, selecting the most appropriate represen-
tation in each case according to different criteria (Luebke et al., 
2002). This approach has been followed in methods for neural 
membrane CPU mesh generation with different levels of detail 
(Brito et al., 2013), where the mesh resolution is fixed through the 
specification of the number of sections and cross sections for each 
segment of the morphological tracing, and (Lasserre et al., 2012), 
where different levels of detail are obtained through consecutive 
application of the Catmull–Clark (Catmull and Clark, 1978) 
subdivision algorithm.

Clark’s classic approximation (Clark, 1976) improves render-
ing performance, but at the same time, presents some problems, 
such as huge memory requirements, due to the different rep-
resentations of each object in the scene. In neuronal scenes, it 
is not possible to store all the representations in the graphic 
card memory, due to (i) the vast number of neurons and their 
complex morphology and (ii) to the constant data transfer from 
the main memory that are required. Alternative multiresolution 
techniques (De Floriani et al., 1998) introduce a multitriangula-
tion approach, where a hierarchical model is generated and 
stored together with the approximation error of each mesh 
update. This data structure can be queried at runtime to extract 
a simplified mesh fulfilling some defined restrictions. Another 

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


FIGURe 1 | Method overview: generation and refinement modules. From the morphological tracing, a coarse mesh is generated with additional information.  
A dynamically adaptive LOD refinement is then applied to the coarse mesh for its real-time visualization.
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approximation is Progressive Meshes (Hoppe et al., 1993), where 
a sequence of edge collapse operations is applied over the mesh 
to simplify the model, recording the sequence applied to allow 
the original quality to be recovered. These two approximations 
result in substantial CPU loads to traverse the triangulation 
and, at the same time, large memory requirements to store the 
highly detailed meshes. These issues hamper their applicability 
to complex neuronal scenes.

Classical refinement approximations such as subdivision 
surfaces (see Shröder et al. (1998) for a survey) reduce memory 
requirements, since this type of process only requires a coarse 
mesh to generate high order surfaces over each polygon. The 
problem with this approximation is that the refinement process 
generates a huge number of primitives that need to be sent to the 
graphic card, generating large data transfer and bus bottlenecks. 
To avoid this, some of these algorithms are being deployed directly 
in GPUs, such as a hardware evaluation of the Catmull–Clark 
schemes, proposed in Shiue et  al. (2005) or loop subdivision 
proposed in Kim and Peters (2005). Also a procedural displace-
ment is performed over the new generated vertices, making use 
of local information in each of the patches being processed, using 
triangles (Boubekeur and Schlick, 2005) or quadruples (quads) 
(Guthe et  al., 2005). Schwarz and Stamminger (2009) have 
proposed a unified pipeline through GPGPU techniques. Their 
proposed framework applies refinement techniques using CUDA 
and incorporates several tessellation-based techniques from the 
literature, such as Bicubic rational Bézier patches (Farin, 2002) 
or Curved Point Normal Triangles (Vlachos et al., 2001), where 
the refinement is achieved by the construction of Bézier patches 
over each triangle of a coarse mesh. In this approximation, the 
construction of each Bézier patch only needs the local values of 
each triangle (the position and the normal of the vertices) for the 
refinement. Based on this idea of local refinement, Boubekeur and 
Alexa (2008) proposed the Phong Tessellation, inspired by Phong 
(1975), but instead of interpolating the normals, the authors use 
the plane’s tangent to the mesh vertices to define a curve geometry 
for each triangle. This last approximation provides a better per-
formance than Curved Point Normal Triangles (Boschiroli et al., 
2011); however, the memory access time remains prohibitive, 
even within the graphic card.

As a consequence of these problems, new stages have been 
included in the classical GPU pipeline, making the GPU more 
programmable and avoiding the need for storing each newly 
generated vertex in the graphic card memory. Geometry shaders 
can perform some simple refinements through simple tessellation 
techniques (Lorenz and Döllner, 2008), where the refinement is 

performed using an incremental multi-pass scheme based on 
previously refined meshes using precalculated patterns stored in 
the graphic card memory. However, this stage usually significantly 
slows down the pipeline, if it needs to manage a large number of 
geometry primitives (Schnetter et al., 2004). To avoid this prob-
lem, new generations of GPUs have added new stages into the 
classical pipeline to facilitate tessellation tasks. Thus, the pipeline 
is expanded allowing users to have a precise and easier control of 
the geometry, making it possible to manage the level of detail of 
the desired models directly on the GPU. A good overview of these 
types of techniques can be found in Nießner et al. (2016), where 
a large number of different examples using hardware tessellation 
for efficient rendering are analyzed in depth.

The mentioned techniques are oriented toward objects of 
generic shapes. For neuroscience data, the objects to be modeled 
have a number of specific features that should be considered early 
in the technical design process, because they are key for optimiz-
ing method performance when dealing with scenes composed 
of large numbers of neurons. Some examples of how this can be 
done are presented in the following sections.

4. Methods

The main goal of the techniques presented here is the design of 
efficient representations that:

•	 Are well adapted to the particularities of the elements that can 
be found in complex neuronal scenarios (from the point of 
view of computer graphics).

•	 Are accurate and faithful with respect to the real baseline data.

To accomplish this goal, this paper proposes a set of tech-
niques that can be grouped into two modules (Figure  1): the 
first module takes as input any existing morphological tracings 
from (possibly real) neurons and generates a coarse, low-poly 3D 
mesh, together with some additional information which allows 
the mesh to be used by any application capable of representing 3D 
meshes. The second module takes the coarse generated mesh with 
the additional information and performs a view-dependent (or 
other criterion-dependent) refinement to render it at dynamically 
adaptive levels of detail (LOD). The following sections describe 
these modules in detail.

4.1. Generation Module
The goal of this module is to generate an initial low-poly mesh 
that approximates the whole neuron. As previously mentioned, 
this method is based on existing morphological tracings such as 
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FIGURe 3 | FEM deformation. Variations of Poisson’s coefficient resulting in 
variations in soma volume.

FIGURe 2 | Top images: initial tetrahedral icosphere used in the soma 
generation process. View of its surface (left image) and of its internal structure 
(right image). Bottom images: FEM deformation process. During this process, 
the original icosphere is deformed by forces applied at the dendrites’ 
insertion points.

FIGURe 4 | Calculating the orientation vector according to the different types of tracing points. The current point is represented with a green sphere. Left image: 
standard tracing point. Middle image: bifurcation tracing point. Right image: ending tracing point.
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those stored in NeuroMorpho. These tracings usually describe 
the soma and neurites in different ways: neurites are described 
by polylines that trace their trajectories, while somata are often 
barely described (by a 2D contour at most). Therefore, the strate-
gies applied for the mesh generation of these two structures are 
different, obtaining separated meshes that are merged in a final 
step.

Regarding somata, the solution presented here for their 
generation is an improvement on the approach proposed in 
Neuronize (Brito et  al., 2013). The underlying idea is to select 
an initial simple shape (in our case, a sphere) and simulate the 
physical deformation this sphere would undergo in the hypo-
thetical case that the neurites attracted the sphere surface toward 
them, generating an elastic deformation of the sphere. In this 
paper, the original technique is improved by applying an FEM 
(Finite Element Method) (Erleben et  al., 2005) to simulate the 
deformation.

Since FEM works on volumetric models, the first step to 
obtain each soma is to create a volumetric representation of 
an icosphere. Hence, based on the soma center and radius as 
provided by the morphological tracings, a tetrahedral mesh is 
built (Figure 2; top). This volumetric mesh is taken as the initial 
equilibrium state for an elastic deformation process. The external 
faces of the tetrahedra form a triangular mesh that represents the 
surface of the icosphere. However, since quads are more suit-
able than triangles for subsequent steps of our method, pairs of 
adjacent triangles are merged into quads. Afterward, the surface 
quads closest to each neurite are selected, and their vertices are 
pulled toward the neurite insertion point in the soma. The size 
of this quad is adapted to match the neurite’s diameter at its 
starting point. Finally, applying a static linear FEM, the mesh is 
deformed until the final shape of the neuron soma is generated 
(Figure 2; bottom).

During the FEM-based deformation stage, variations in the 
Poisson’s coefficient, v, result in different soma deformations and 
final soma shapes; decreasing the Poisson’s coefficient results in 
a varying degree of soma swelling, as shown in Figure 3. Note 
that the Young’s modulus is not modified, since a static linear 
implementation is applied.

Regarding neurites, the soma quads which are already posi-
tioned at the beginning of each neurite define the initial section 
of their respective neurite. Next, each initial section is extruded 
between each pair of neurite tracing points, following the neurite 
trajectory, to approximate the tubular structure of the neurite 
membrane. In addition, since the changes in neurite directions 
occur at the traced morphological points, an orientation vector is 
computed at each one of these points to re-orient the quad section 
associated with each morphological point.

Three different cases can be distinguished for the computation 
of the orientation vectors: one associated with standard tracing 
points (points that have only one child), one with bifurcation or 
fork joint tracing points (points that have two children), and one 
with ending tracing points (points that do not have any children).

The orientation vector, o, of a standard tracing point is the 
result of adding the vectors r0 and r1 and normalizing the result-
ing vector (Figure 4; left), where r0 is the unit vector indicating 
the direction between the parent tracing point and the current 
tracing point and r1 indicates the direction between the current 
tracing point and the child tracing point.

Computing the orientation vector, o, at the bifurcation tracing 
point is performed in a similar way, but in this case, the unitary 
vectors r1 and r2 give the directions defined by the current tracing 
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FIGURe 5 | Generation of the extra vertex, v′, at bifurcation tracing points, at a distance equal to the radius of the bifurcation (left image), for its posterior stitching 
(right image). In this example, the new quads (separated by the bifurcation section-quad diagonal v0–v2) are [v0,v1,v2,v′] and [v0,v′,v2,v3].
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point and each of its children (consequently, o, does not depend 
on the parent segment orientation vector) (Figure  4; middle). 
Finally, at ending nodes, the orientation vector, o, is equal to the 
unit vector r0 (Figure 4; right).

Once the orientation vectors have been computed, a section-
quad is positioned at each tracing point, oriented according to 
its orientation vector computed as described above. The section-
quad is also scaled according to the radius of the tracing point. In 
the case of a bifurcation, an extra vertex is introduced to facilitate 
the stitching of these branches, placing this new vertex at a dis-
tance equal to the radius of the bifurcation tracing point in the 
direction of o, its orientation vector (Figure 5; left).

Once the section-quads for the whole neurite have been 
generated, all the vertices are connected to each other to obtain 
the neurite quad mesh. The quads connecting these vertices are 
called lateral quads, to distinguish them from the previously 
mentioned section-quads. There are two special cases that must 
be dealt with by this process. First, the union at bifurcations, 
given v0,v1,v2,v3 as the vertices of the bifurcation quad, and v′ 
as the extra vertex, two new quads (composed by three of the 
vertices from the bifurcation quad, and the extra v′ vertex) are 
created. A plane containing the two children tracing points and 
the bifurcation point is created. Then, based on this plane, we 
select the most appropriated of the two diagonals of the section-
quad (v0–v2 or v1–v3) separating the bifurcation section-quad 
vertices into two groups of three vertices, which will be used to 
create the new quads, together with the extra vertex v′. Hence, 
the two new quads will be either [v0,v1,v2,v′] and [v0,v′,v2,v3], 
or [v0,v1,v′,v3] and [v′,v1,v2,v3] (Figure 5; right). Second, the 
connection at the ending tracing points, where the 4 vertices of 
its section-quad do not need to be connected to any other vertex, 
is carried out by connecting these vertices to each other through 
another lateral quad.

Once the coarse neurites and the soma have been generated, 
their union is straightforward. This is because the first section-
quad of a neurite used for its extrusion was itself a soma-quad 
indicating the neurite starting point. At this point, the generated 
polygonal mesh provides a coarse approximation of the cell’s 
membrane that will be refined in the following stage. In addition 
to this base mesh, some additional information is kept to guide 

the subsequent refinement step. Specifically, each vertex of the 
coarse mesh keeps track of its associated tracing point. As a result, 
at each vertex, the position, radius, and orientation vector of its 
associated tracing point can be accessed in the following stage.

4.2. Refinement and Render Module
The goal of this module is the generation of higher resolution 
meshes that yield better approximations of the neuron mem-
brane, by building upon the initial coarse mesh obtained as 
described above. Regarding somata, their resolution is defined 
by the resolution of the initial icosphere that is subsequently 
deformed. With respect to the neurites, they undergo on-the-fly 
refinement procedures, which take advantage of the hardware tes-
sellation capabilities (tessellation shaders) supported by OpenGL 
from version 4.0 on; this OpenGL version requires a Radeon 
HD series 5000, an nVidia GTX series 400 or later series of this 
graphic card vendors. The tessellation process takes each input 
patch and subdivides it by computing new vertices together with 
their associated attributes (Shreiner et al., 2013). This tessellation 
stage is further decomposed into three substages.

The first substage, the Tessellation Control Shader, determines 
the number of subdivisions (i.e., subdivision levels) that each geo-
metric patch will go through. The second substage, the Tessellation 
Primitive Generator, takes as inputs the patch and the subdivision 
levels defined in the previous substage and subdivides the original 
patch accordingly. Finally, the third substage, the Tessellation 
Evaluation Shader, computes the attributes of each new vertex 
generated by the previous substage, such as vertex positions and 
so on. It should be noted that since only the first and the third 
substages are user programmable, the present method only needs 
to compute the number of subdivision levels and the attributes of 
the newly generated vertices.

Homogeneous refinements can be reached by setting the 
same subdivision levels for all the object patches. However, 
given the overwhelming geometric complexity present in regu-
lar neurons, the use of adaptive levels of detail is recommended, 
allowing the neurites closer to the camera to be refined while 
the detail for distant areas is kept lower. This distance to the 
camera can be encoded as a generic importance value associ-
ated to each tracing point, and this value could also be used 
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FIGURe 6 | Discontinuities on a refined mesh. The left image shows a refined 
mesh with discontinuities caused by the difference in contiguous subdivision 
levels. The right image shows the same mesh refined with our method, in 
which there are no discontinuities.

FIGURe 7 | Correspondence between the four lateral quad vertices and their 
two corresponding morphological tracing points.
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to encode criteria other than distance. Since each vertex keeps 
track of its associated tracing point, assigning importance values 
to the tracing points is analogous to labeling each vertex with an 
importance value.

As mentioned above, the first refinement step involves deter-
mining the subdivision levels for each patch (it should be noted 
that each lateral quad of the coarse mesh will be taken as a single 
patch). To define the subdivision pattern, two different levels 
must be taken into consideration: an outer subdivision level and 
an inner subdivision level. The outer subdivision level determines 
the number of subdivisions at each edge, requiring therefore four 
parameters in the case of a quad patch (one for each edge). The 
inner subdivision level determines the number of subdivisions 
in each edge direction (longitudinal and traversal), requiring 
therefore two more parameters (Shreiner et al., 2013).

Since these levels are set according to the importance of the 
vertices, discontinuities can occur whenever the importance 
values of adjacent vertices are very different. For this reason, the 
outer subdivision level of each edge is computed as a weighted 
sum of the importance of its two vertices. In addition, both 
inner subdivision levels have the same value, obtained also as 
a weighted sum of the importance of the four vertices of the 
quad. This way of determining the subdivision levels avoids 
discontinuities on the refined mesh; Figure 6 illustrates a mesh 
refinement operation that does not prevent discontinuities, 
which clearly contrasts with the results obtained with the pro-
posed solution, where no discontinuities are created. Note that 
this method prevents the appearance of discontinuities not only 
along the neurites but also at the refined neurite-soma connec-
tions. Finally, once the subdivisions levels have been defined, 
the second substage (the Tessellation Primitive Generator) can 
divide each original patch accordingly.

Finally, the third substage, the Tessellation Evaluation Shader, 
must compute the position of each new vertex generated by the 
previous substage. These new vertices are initially positioned on 
the quad plane to which they belong, so that their final positions 
are calculated from the homogeneous tessellation coordinates 
generated in the previous stage: x, the transversal coordinate and 
y, the longitudinal coordinate.

In our specific case, each new vertex of the patch needs 
to be displaced to approximate a cylinder, which is the best 

approximation to the neurite cross section that can be obtained 
with the available data. In the case of vertices that lie within a 
section-quad (centered at a tracing point), this operation can be 
easily performed by displacing each vertex. The displacement 
magnitude for each vertex should be equal to the radius associ-
ated with the tracing point, with the displacement performed 
in a radial direction from the tracing point. However, the new 
vertices that do not lie in a section-quad require the computation 
of a point along the neurite trajectory that behaves as a center 
point from which the radial directions originate. This process is 
outlined in the following paragraphs.

Figure  7 presents a portion of a coarse mesh, where a set 
of four lateral quads represents the union between two mor-
phological tracing points (only one lateral quad, in purple, is 
depicted). The first two vertices of each lateral quad, v0 and v1, 
correspond to the first tracing point, t0, of a tracing segment, 
and the last two vertices, v2 and v3, correspond to the second 
tracing point, t1, of that segment. Because of this, the position 
of the center, the radius, and the orientation vector associated 
with the first two vertices of the lateral quad are those of t0, while 
the values of t1 are associated with the last two vertices of the 
lateral quad.

For any new vertex, the position of its associated center, as well 
as the direction and module of the displacement, which will be 
applied to that vertex, are calculated based on (i) the information 
of the four vertices of the lateral quad to be tessellated and (ii) 
the parameters of the two tracing points associated with these 
four vertices. Therefore, the position of the center associated with 
any new vertex could be easily computed along the segments that 
define the neurite trajectory; however, the neuritic paths can 
be smoothed by interpolating the tracing points with a cubic 
Hermite spline function. In this case, the position of the center 
point, c, will be computed according to the expression:

 

c y y t y y y
y y y y t

= − + + − +

+ − + − + ,

( ) ( )
( ) ( )

2 3 1 2
2 3

3 2
0

3 2

3 2 3 2
1

o
o

0

1  (1)

where c is the center to be calculated, t0 and o0 are the position and 
the orientation vector of the first tracing point, t1 and o1 are the 
position and the orientation vector of the second tracing point, 
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FIGURe 10 | Based on the information associated with the four vertices of 
the lateral quad and the two corresponding morphological tracing points, the 
center, c, the normal, n, and the displacement, r, are calculated to obtain the 
position of the new vertex, v.

FIGURe 9 | Left image: resulting path when a fixed module for the orientation 
vectors is maintained. Right image: resulting path when an adaptive module 
is applied.

FIGURe 8 | Top image: original neurite path. Bottom image: smoothed path 
using cubic Hermite spline functions.
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and y is the longitudinal tessellation coordinate. Figure 8 shows 
the original path of a neurite and the path smoothed using a cubic 
Hermite spline.

This basic formulation of cubic Hermite splines can produce 
undesired loops when abrupt changes in the orientation vectors 
of two adjacent tracing points occur. To avoid these artifacts, the 
module of the orientation vector can be modified, taking into 
account the distance between the two tracing points of the seg-
ment. Figure 9 shows the effects of this improvement.

Once the center of the new vertex, c, is calculated, the direc-
tion of the displacement, n, is calculated by performing a bilinear 
interpolation of the normals of the four vertices of the lateral 
quad, where these normals represent the radial directions from 
their associated tracing points. The module of the displacement, 
r, will also be computed by interpolating the radii of the first and 
second tracing points, r0 and r1. Hence, the position of the new 
vertex, v, is calculated using the following expression, as can be 
seen in Figure 10:

 v = +r cn . (2)

5. ResULts

This paper presents a technique for generating 3D mesh neuron 
models based on standard, widely used morphological trac-
ings, such as those available in public repositories. The method 
approximates the cell bodies and the dendritic and axonal arbors 
in independent procedures that are later merged, resulting in 
closed surfaces that approximate whole neurons. As described 
in the previous section, a coarse mesh is the starting point for 
the method, which dynamically applies subsequent refinement 
processes to adaptively smooth and improve the quality of the 
3D approximation of the cell membrane. This initial coarse 
mesh presents some desirable properties that make it suitable 
for visualization and simulation purposes, such as being closed 
and 2D-manifold. It should be noted that the techniques applied 
during the mesh generation process guarantee that the traced 
dendritic and axonal trajectories are preserved, also providing 
a plausible reconstruction of the soma, specifically built for 
each cell. This soma reconstruction process is able to recover 
information that was not recorded when the neuron was traced, 
which is often the case in existing data repositories.

The following subsections present an evaluation of the quality 
of the generated meshes and a performance analysis in terms of 
memory and rendering time.

5.1. soma Reconstruction
In this paper, the original 3D shape of somata is approximated 
through the deformation of initial spheres, taking into account 
the anatomy of the dendrites and axon. An initial version of the 
method was proposed in Neuronize (Brito et al., 2013) using a 
mass-spring approach. In this new version, the mass-spring 
method has been replaced by an FEM-based deformation 
procedure, making control over the deformation results easier, 
since static FEM implementations only require the configuration 
of the Poisson’s coefficient, which significantly eases the model 
generation process with respect to the mass-spring approach 
used in Neuronize. Figure 3 shows the influence of the Poisson’s 
coefficient on the volume of the generated soma, obtained after 
deforming an initial icosphere with 258 vertices and 502 facets.

Concerning the accuracy of the soma reconstructions and their 
estimated volume (which is of interest for electrophysiological 
simulations), there were no volume data acquired from digitized 
neurons, which could serve for quantitative assessment purposes 
regarding the accuracy of the method. However, to evaluate the 
method’s accuracy, a visual assessment can give an approximate 
idea of the reconstruction quality. In addition, measuring the 
volume of the generated somata can provide some quantitative 
assessment. For this purpose, soma volumes have been measured 
and compared with:
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•	 The volume of the real somata, directly estimated from the 
original data by thresholding, using the Imaris Software 
(Bitplane, 2016), a very commonly used software program 
in neuroscience laboratories. These real volumes have been 
obtained specifically for testing purposes, since they are not 
usually measured, and have been taken as the ground truth, 
even though Imaris also introduces volume estimation errors.

•	 The volume of the reconstructions generated by Neuronize.

Figure  11 presents these results visually, while Tables  1 
and 2 present them numerically. Table  1 presents the soma 
volumes using the different methods, and Table 2 presents the 
Hausdorff Distance (mean, maximum, and minimum), as a 
metric to quantify the distance between the real somata and the 
generated somata (Rockafellar and Wets, 1998). As can be seen, 
the somata generated with the FEM-based method are closer 
to the somata obtained with Imaris than the somata generated 
with Neuronize, according to the Hausdorff Distance metric. In 
addition, the FEM deformation process returns smoother soma 
surfaces, avoiding the noisy artifacts that appear on the soma 
surface when generating it with isosurfaces after thresholding 
(from Imaris) and with Neuronize. Regarding soma volume, 
the values obtained with the FEM method correctly approxi-
mate the results obtained with Imaris and Neuronize, and the 
FEM method is much easier to parameterize than Neuronize. 
However, given the lack of accurate, ground-truth data, it is not 
possible to state anything specific other than the impression that 
the results obtained with the proposed method appeared to be 
largely compatible with those provided by the other methods 
considered.

5.2. Neurite Reconstruction
The neurite reconstruction process presented in this paper 
guarantees that the reconstructed neurites preserve the original 
morphological point positions and diameters, as extracted from 
the original tracings. This is not only the case for the coarse mesh 
reconstruction but also for the refined meshes generated on the 
fly, using a procedure that creates very high resolution meshes 
with low memory penalties.

The neurite refinement process has been specifically designed 
for constructing cylindrical shapes from the initial low resolution 
mesh, since the data available in morphological tracings do not 
facilitate other approximations for neuron processes beyond those 
based on generalized cylinders. The reconstructed cylindrical 
shapes are always crack-free, due to the intrinsic characteristics of 
the proposed hardware tessellation process, even when the mesh 
includes sections with different degrees of resolution. In addi-
tion, to increase the visual quality of the generated meshes, the 
trajectories of the morphological tracings can be smoothed using 
a spline based technique. In this way, the neurite paths become 
more even, avoiding abrupt trajectory changes that are not found 
in biological samples but that are created during the morphology 
acquisition process, as can be seen it Figure 12. It should be noted 
that, even after smoothing, the original morphological points of 
the neuronal tracings are always maintained.

After generating the different neuron component meshes, 
they need to be connected to assemble the whole modeled 

neuron. The connection strategies used here were designed 
for providing neurites with smooth and continuous meshes, 
taking special care with the connections at neurite bifurcations 
and at the soma. The method presented in this paper generates 
smooth unions of mesh components regardless of the resolu-
tion of the final mesh, increasing the overall quality of the 
resulting mesh. Figure 13 (top) shows a junction in a neurite 
bifurcation in detail, while Figure 13 (bottom) shows a soma-
neurite junction.

5.3. Performance Analysis
This section analyzes the graphic card memory consumption 
and the rendering time required for visualizing neuronal scenes 
measured in frames per second (FPS) using the proposed tech-
niques. Four different scenarios were generated: one, ten, thirty, 
and one hundred neurons (see Figure 14). Note that in the scene 
with one hundred neurons, only thirty different morphologies, 
which are replicated more than once, are stored. The reason 
for this replication is that, otherwise, the graphic card memory 
consumption in the pre-refined case would be prohibitively high, 
and using this approach makes it feasible to compare techniques. 
These scenarios were rendered using following three different 
methods:

1. Meshes pre-refined at a fixed resolution and rendered follow-
ing the standard pipeline. These pre-generated meshes were 
stored in the graphic card memory, and the time to transfer 
them from the CPU to the GPU was not computed.

2. Coarse mesh generation and homogeneous refinement fol-
lowing the proposed approach. The coarse mesh was stored in 
the graphic card memory, and the time needed to transfer it 
from the CPU to the GPU was not computed.

3. Coarse mesh generation and adaptive refinement according to 
the distance to the camera, following the proposed approach. 
The coarse mesh was stored in the graphic card memory, and 
the time needed to transfer it from the CPU to the GPU was 
not computed.

Methods 1 and 2 visualize scenes with the same number of 
polygons on the screen, but method 2 requires less graphic card 
memory, since it only requires the coarse neurons meshes, that 
are refined on-the-fly until they achieve the same quality as 
the pre-generated meshes. Method 3 allows evaluation of the 
benefits of adapting the resolution according to the distance 
to the point of view, and therefore lowering the polygon count 
while maintaining a good visual quality. For all the methods, 
the frame rate in FPS and the total memory consumption in 
the graphic card, including the storage of the extra data used 
for the adaptive refinement, were measured. All results were 
obtained in a Pentium i7 3.30 GHz with 8 GB of RAM and a 
Geforce 960 GPU with 4 GB of video memory and a viewport of 
600 × 600. All tests were performed using the OpenGL Shading 
Language. Figure  15 shows the results for the four different 
scenes analyzed.

Analyzing the memory consumption, it can be seen that 
in all cases, both the proposed homogeneous and adaptive 
refinement approaches require less memory than storing 
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tABLe 2 | Hausdorff distance (mean, maximum, and minimum) between the real 
somata, obtained with Imaris, and the generated somata, using Neuronize and 
the FEM-based method.

hausdorff distance (μm)

soma Imaris–FeM Imaris–Neuronize

Mean Maximum Minimum Mean Maximum Minimum

A 0.7721 1.6521 0.0003 0.8735 1.6512 0.0011
B 0.8285 1.8180 0.0032 0.9171 1.8196 0.0059
C 0.6482 1.5417 0.0006 0.7819 1.5415 0.0015

tABLe 1 | Estimated soma volumes using FEM, Neuronize, and Imaris.

Volume (μm3)

soma FeM Neuronize Imaris

A 2,513.8 2,511.85 2,734.8
B 3,473.6 3,516.9 3,618.9
C 1,869.9 1,958.4 1,862.7

FIGURe 11 | Comparison between the real somata (middle images), the meshes generated with Neuronize (right images), and the meshes generated with our 
proposal (left images), for three different somata A, B, and C.
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the fully refined meshes, despite the fact that there are extra 
data included for the purposes of applying the refinement. 
The differences are such that the proposed approaches allow 
high quality visualization of dense scenes with one hundred 
neurons, which are impossible to render using pre-refined 

neurons stored in the graphic card. Moreover, refining the 
mesh using the tessellation hardware of the GPUs means that 
the amount of memory required to store a particular scene is 

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


FIGURe 12 | Trajectory smoothing. Top image: refinement method applied to 
dendrites without any trajectory smoothing. Bottom image: refinement 
applied to the same dendrites using the Hermite spline-based method 
proposed in this paper.

FIGURe 13 | Top images: close view of a generated neurite fork junction rendered in shading mode (left image) and wireframe mode (right image). Bottom images: 
close view of soma–neurite junction for neuron meshes with homogeneous level of detail (left image) and adaptive level of detail based on the camera distance  
(right image).

FIGURe 14 | Neuronal scenes used to evaluate the proposed method. Left image: a simple scene with just one neuron. Middle image: a scene with 10 different 
neurons showing one that has been selected. Right image: a more complex scene with one hundred neurons.
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constant and independent of the final refinement level, making 
the method more scalable for high neuron counts and highly 
refined meshes.

In terms of frame rates, the direct rendering of pre-refined 
meshes is only faster than the methods proposed here when no 
refinement is applied, that is, when working at the first level of 
detail. For the rest of the cases, whenever a refinement pattern is 
applied (either homogeneously or adaptively), the frame rate is 
always higher using hardware tessellation than reading the same 
geometry directly from the graphic card memory. This is because 
of the high latency of the graphic card memory compared with 
the intense arithmetic power derived from its massive multi-core 
architecture.
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FIGURe 15 | Memory consumption for the 30 neurons scene at 6 different levels of refinement (top left image). Changes in the level of refinement are represented 
by the dots in the graphics. Both our homogeneous and our adaptive refinement approaches (in red), even including the extra data necessary to apply the 
refinement, require less memory than storing the pre-refined mesh in the graphic card (in blue). Performance in FPS for the scenes with a single neuron (top right 
image), ten neurons (bottom left image), and one hundred neurons (bottom right image). Changes in the level of refinement are represented by dots.
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Moreover, reading the geometry directly from the graphic card 
memory has a higher penalization in consecutive subdivision 
levels when compared with the hardware tessellation approach, 
where the adaptive refinement scales much better in successive 
refinement levels than the other two methods. For example, 
in the scene with 100 neurons, from levels of detail of 1 to 6, 
where the complexity of the geometry becomes 36 times higher, 
the adaptive refinement has an FPS penalization of only 1.9 
times, whereas the homogeneous refinement achieves an FPS 
penalization of 4.7 times, and the pre-refined meshes obtain a 
penalization 90 times higher.

Finally, the adaptive refinement approach is not only 2.4 times 
faster than the homogeneous refinement but also 12.5 times 
faster than using pre-refined meshes stored in the graphic card 
memory for the four proposed scenes. From these figures, it is 
possible to state that the proposed method, using an adaptive 
refinement approach, scales much better than the other methods 
assessed, and our method therefore facilitates the interactive 
exploration of dense, complex neuronal scenes.

6. CoNCLUsIoN ANd FUtURe WoRK

The analysis of neuronal systems will benefit from the develop-
ment of new computational tools that facilitates the exploration 
of the data gathered by neuroscience laboratories. Visualizing 
the anatomy of complex sets of neurons can be of great 

interest, not only for their analysis from a morphological point 
of view but also as an underlying process for the exploration  
of electrophysiological simulations or connectivity in neuron 
net works. Continuous improvements in computing power are 
leading to changes in the way simulations are carried out in 
computational neuroscience. In recent years, this has resulted in 
ever increasingly complex simulations using full neuron anatomy 
models, instead of the point-neuron models that have tradition-
ally been used for large-scale simulations. In a parallel trend, the 
improvements in microscopes and laboratory techniques are 
allowing neuroscience laboratories to gather larger and larger sets 
of neurons, at increasing levels of resolution.

This paper presents a domain-specific set of techniques for 
the generation and visualization of neuronal scenes, lowering 
the computational costs derived from the high complexity of 
neuronal data, while still providing a good approximation 
of the real anatomy of the cells. In addition, the techniques 
presented here allow for the reconstruction of models from 
previously acquired neurons stored in repositories such as 
NeuroMorpho.

The direct use of morphological tracings as the input descrip-
tion for the developed techniques bridges a gap between neu-
roscience and computer graphics. In addition, morpho logical 
tracings give a compact description of neuron geometry that can 
be further deployed in standard polygonal meshes suitable for 
use in the field of computer graphics or in detailed-geometry 
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simulations. In this regard, the generated meshes have some 
desirable properties such as being closed and 2D-manifold.

The proposed multiresolution visualization relies on the 
initial generation of a coarse mesh that approximates the neural 
membrane. This coarse mesh can be easily refined later on, either 
homogeneously or according to any criteria such as distance to 
camera.

Regarding the first stage (coarse mesh generation), the novel 
method applied for the reconstruction of the 3D geometry of 
the soma from the incomplete descriptions provided by the 
morphological tracings achieves promising results. Most of the 
existing tools do not deal with the generation of the 3D shape 
of the soma; the FEM deformation model improves the results 
obtained in Neuronize (Brito et al., 2013), by making it easier to 
parameterize and by generating a smoother membrane surface. 
The final neuronal model presents seamless connections between 
the soma and the neurites, and smooth trajectories even in fork 
joints.

The second stage (refinement and render) takes advantage of 
the coarse mesh properties that allow an easy correspondence 
between the mesh vertices and the tracing points of the morpho-
logical description. Using this approach, some additional and 
easy-to-compute information can guide the positioning of the 
vertices in the Tessellation Evaluation Shader.

The performance of our approach, compared with the render-
ing of pre-generated meshes, is clearly better both in terms of ren-
dering times and memory requirements. It should be pointed out 
that in our current implementation the generation of the coarse 
mesh is performed in the CPU, while refinement is achieved in 
the graphic card. The designed techniques are suitable to be fully 
implemented in the GPU (both the generation of the coarse mesh 
and its refinement), thereby avoiding the need to transfer meshes 
from CPU to GPU and reducing the computational time of this 
initial coarse mesh.

The work presented here may be extended in different ways. 
The implementation of the whole process in the GPU is the most 
straightforward. The generation of the soma shape can also be 
improved by using the 2D contour (when available) either to 
guide the deformation process or as a final step that makes it 
possible to fit the generated 3D shape into this extracted 2D 
contour.

Dendritic membrane could also be improved by adding 
spines, which could be refined during visualization, following a 

similar approach to the one presented in this work. Regarding the 
refinement process, it is not difficult to incorporate criteria other 
than the distance to the camera, to achieve adaptively refined 
meshes.

The generated meshes are appropriate for visualization pur-
poses; however, they also have some desirable properties (like 
being closed and manifold) that could make them suitable for 
simulation, for example, by mapping the electrophysiological 
properties to the cells membrane.

Finally, the presented techniques have been designed to work 
with neuronal data, but they could also be useful in other fields 
where there are filiform structures or biological elements with 
incomplete descriptions of some of their parts.
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