
June 2017 | Volume 11 | Article 381

Methods
published: 22 June 2017

doi: 10.3389/fninf.2017.00038

Frontiers in Neuroinformatics | www.frontiersin.org

Edited by:
Eilif Benjamin Muller,

École Polytechnique Fédérale de
Lausanne, Switzerland

Reviewed by:
Weiliang Chen,

Okinawa Institute of Science
and Technology, Japan

Torbjørn Vefferstad Ness,
Norwegian University of Life

Sciences, Norway

*Correspondence:
Susana Mata

susana.mata@urjc.es

Received: 23 January 2017
Accepted: 02 June 2017
Published: 22 June 2017

Citation:
Garcia-Cantero JJ, Brito JP, Mata S,

Bayona S and Pastor L (2017)
NeuroTessMesh: A Tool for the
Generation and Visualization of
Neuron Meshes and Adaptive

On-the-Fly Refinement.
Front. Neuroinform. 11:38.

doi: 10.3389/fninf.2017.00038

NeurotessMesh: A tool for the
Generation and Visualization of
Neuron Meshes and Adaptive
on-the-Fly Refinement
Juan J. Garcia-Cantero1,2, Juan P. Brito2,3, Susana Mata1,2*, Sofia Bayona1,2
and Luis Pastor1,2

1 Department of Computer Engineering, Universidad Rey Juan Carlos, Madrid, Spain, 2 Center for Computational Simulation,
Universidad Politécnica de Madrid, Madrid, Spain, 3 Universidad Politécnica de Madrid, Madrid, Spain

Gaining a better understanding of the human brain continues to be one of the greatest
challenges for science, largely because of the overwhelming complexity of the brain and
the difficulty of analyzing the features and behavior of dense neural networks. Regarding
analysis, 3D visualization has proven to be a useful tool for the evaluation of complex
systems. However, the large number of neurons in non-trivial circuits, together with their
intricate geometry, makes the visualization of a neuronal scenario an extremely chal-
lenging computational problem. Previous work in this area dealt with the generation of
3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt
to deal with the extremely high storage and computational cost required to manage
a complex scene. This paper presents NeuroTessMesh, a tool specifically designed
to cope with many of the problems associated with the visualization of neural circuits
that are comprised of large numbers of cells. In addition, this method facilitates the
recovery and visualization of the 3D geometry of cells included in databases, such as
NeuroMorpho, and provides the tools needed to approximate missing information such
as the soma’s morphology. This method takes as its only input the available compact,
yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It
uses a multiresolution approach that combines an initial, coarse mesh generation with
subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For
the coarse mesh generation, a novel approach, based on the Finite Element Method,
allows approximation of the 3D shape of the soma from its incomplete description.
Subsequently, the adaptive refinement process performed in the graphic card generates
meshes that provide good visual quality geometries at a reasonable computational cost,
both in terms of memory and rendering time. All the described techniques have been
integrated into NeuroTessMesh, available to the scientific community, to generate, visu-
alize, and save the adaptive resolution meshes.

Keywords: geometry-based techniques, multiresolution techniques, GPUs and multi-core architectures,
compression techniques, bioinformatics visualization

http://www.frontiersin.org/Neuroinformatics/
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00038&domain=pdf&date_stamp=2017-06-22
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00038
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:susana.mata@urjc.es
https://doi.org/10.3389/fninf.2017.00038
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00038/abstract
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00038/abstract
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00038/abstract
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00038/abstract
http://loop.frontiersin.org/people/399382
http://loop.frontiersin.org/people/79676
http://loop.frontiersin.org/people/79669
http://loop.frontiersin.org/people/94991

2

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

1. INtRodUCtIoN

Understanding the human brain remains one of the greatest
research challenges for Science, being one of the most active
areas of research. Besides the intrinsic interest in understanding
what makes us human, unraveling how the brain works will
bring advances in many fields, from revolutionary computing
technologies to the development of new treatments for brain
disorders. Ambitious initiatives such as the Human Brain Project
(EU) (Markram et al., 2011) or the BRAIN Initiative (USA)
(Jorgenson et al., 2015) promote the collaborative efforts from
multidisciplinary research teams, bringing this goal within reach
for the very first time.

Multiple factors are behind the overwhelming complexity
of the brain. First, the number of neurons and synapses is huge:
it has been estimated that the human brain includes some
1011 neurons and 1015 synapses (Sporns et al., 2005). Second,
the availability of many different techniques for analyzing
brain structure and function has resulted in a collection of
multilevel descriptions of the brain, coming often from many
different perspectives and disciplines. Neuroscience itself can
be seen as a set of different subdisciplines that study the brain
from complementary points of view (anatomical, physiologi-
cal, etc.).

Working at microscale, and from a morphological point of
view, the acquisition of the anatomy of neurons from stacks of
microscopy images can be accelerated using a range of software
tools. However, the automation of this process requires the
development of automatic segmentation processes, which is a
milestone that has not yet been fully achieved. For this reason,
acquiring the morphology of neurons usually involves the
interactive tracing of neuron elements from microscopy images.
This task is carried out by a human operator who typically has to
perform operations such as setting parameters, marking sparse
control points that describe the neurite trajectories and providing
a soma approximation (a 2D contour, or a center and a radius
in coarse approximations) before the morphological tracing is
finished. This is particularly true with data acquired over recent
years and stored in databases such as NeuroMorpho (George
Mason University, 2017).

Regarding the visualization of digitized neurons, there are
methods that allow the generation of 3D meshes to approximate
the neuronal membrane, but the visualization of complex 3D
neuronal scenes or large collections of individual neurons poses
some challenges to these approximations, requiring special
attention. First, the morphological tracings provided by neu-
roscience laboratories do not include a complete description of
all the parts of the neuron. This is especially true in the case of
the soma, where a 2D contour is not enough to recover the 3D
shape of the cell body. Second, the number of neurons is often
quite large, like in modern simulators that use neural models
with detailed morphology. In these cases, it should be noted
that the geometry of each neuron is unique and far from simple,
making the visualization of complex neural scenes a challenging
computational problem. Nevertheless, visualizing the scene is
mandatory for designing and reviewing simulation scenarios,
analyzing results, etc.

This paper presents a multiresolution approach for the 3D
visualization of detailed neuron reconstructions, suited for the
recovery of data from existing databases and for the visualization
of complex neuronal simulation scenarios. The method presented
here first generates an initial coarse mesh, from the incomplete
descriptions obtained from morphological tracings and then
refines it in the graphic card during visualization. In summary,
the main contributions of this paper are as follows:

•	 An improved technique for the 3D reconstruction of the
soma, for cases where it had not been previously generated.
The method is based on a physical simulation approach that
deforms an initial simple shape according to the distribution
of the first-order neurites. The deformation is computed using
a Finite Element Method (FEM).

•	 A set of techniques for the generation of low-resolution 3D
models of cell membranes that follow the trajectories described
in the morphological tracings, incorporating the plausible 3D
soma shapes previously generated.

•	 An on-the-fly adaptive refinement method of the coarse mesh
previously generated, making use of the tessellation capabili-
ties of the GPU.

•	 A first version of the tool that implements the techniques:
NeuroTessMesh. This software, publicly available at http://
gmrv.es/neurotessmesh, allows meshes approximating neuron
morphologies to be generated, visualized, and saved. Neuro-
TessMesh was developed in C++ and has been released for
Linux and Windows operating systems.

The set of techniques presented here constitutes a framework
that allows the visualization of neurons recovered from coarse
mesh or even incomplete data. Also, it allows the rendering of
complex neuronal scenarios, managing the high complexity
derived from the intricate geometry and potentially huge number
of elements involved. The techniques that have been developed
are specifically adapted to the field of neuroscience, taking the
compact descriptions of cell anatomies directly provided by
neuroscience laboratories as input and incorporating specific
techniques for the recovery of 3D shapes that are not completely
described. Results show a good trade-off between visual quality
and computational cost, both in terms of memory and rendering
time.

2. BACKGRoUNd

The method for mesh generation proposed in this paper has
been specifically designed for neuroscience data extracted from
biological samples. The procedure for acquiring these samples
starts with the staining of individual neurons in thin slices of
brain tissue. There are different staining techniques, each of
which is specifically suited for particular experiments, and
selecting the appropriate method is crucial to ensure a proper
acquisition (Parekh and Ascoli, 2013). After any of these chemical
staining processes, microscopes are able to capture the neuron
morphology, including the somata, dendrites, and axons. Modern
techniques such as multiphoton microscopy (Zipfel et al., 2003)
automatically generate 3D image stacks of brain tissue, with image
planes separated from each other by only a few micrometers.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://gmrv.es/neurotessmesh
http://gmrv.es/neurotessmesh

3

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

From these image stacks, it is possible to trace the 3D contour
or path of the main components of each neuron to digitally
reconstruct the neuron morphology in a manual (Glaser and
Glaser, 1990), semiautomatic (Oaks et al., 2016), or totally
automatic way (Xie et al., 2010; Peng et al., 2011). The extracted
shape and the placement accuracy of the morphological points
traced along the neuron contour or path are highly dependent
not only on the quality of the obtained image stacks but also on
the expertise of the human operator, who is in charge of plac-
ing the morphological points within the neurites by manually
clicking with a mouse, or by setting the parameters in (semi-)
automated algorithms.

The morphological tracing procedures described above define
a unique tree structure, with a root node at the cell soma and
an ordered sequence of interconnected nodes that defines seg-
ments within the original shape of the neurites, also including
the neurite thickness at each morphological point. Unlike the
neurite tracings, a detailed description of the soma is not com-
monly stored. Typically, the data stored in these tracings include
a unique morphological point placed at the soma center plus
the average soma radius, or a set of connected points tracing the
2D projection of the soma contour from a specific point of view
(which is clearly not valid for other points of view).

3. stAte oF the ARt

Although tracings provide essential information, one limitation
when visualizing them is that it is not possible to perceive the
neurite thickness. Also, visualizing several overlapping segments
of the tracing can be ambiguous, since there are no “clues” to indi-
cate which segment is on top of the other. Visualizing their cor-
responding 3D meshes improves the spatial perception, allowing
the user to better perceive relations and how the different neurites
relate to one another spatially including their proximity. Also,
the neurite thickness and volume are immediately perceived,
and a 3D shape of the soma can be viewed. In addition, having
a 3D mesh makes it possible to associate values with the neural
membrane.

The 3D visualization of digitized neurons presents some
problems. If mesh-based methods are to be used for rendering,
it is necessary to generate meshes with enough resolution to
capture fine detail. However “enough resolution,” is a fuzzy term
that might depend on the particular task and user environment
in question. This is a common problem in many 3D computer
graphics applications, and perhaps the main issue in this case is
that the number of neurons to be displayed can increase above
any prespecified limit (such as in large-scale simulations using
detailed geometric models for neurons). This imposes additional
scalability restrictions when attempting to come up with practical
solutions. In addition, it is common to find that publicly available
collections of 3D neuron reconstructions do not have complete
geometrical descriptions, which are necessary to generate the
meshes from the available data.

Several software packages, such as Neurolucida (Glaser and
Glaser, 1990), Imaris (Bitplane, 2016), NeuroConstruct (Gleeson
et al., 2007), NeuGen (Eberhard et al., 2006), and Genesis (Wilson
et al., 1988) provide approximations of neuron surfaces but are

not focused on the realistic 3D reconstruction of soma shapes,
leading to the generation of low quality soma meshes that are
not connected with the dendrites. NeuroConstruct, Genesis,
and NeuGen approximate the soma with very simple 3D shapes;
NeuroConstruct uses a cylinder, and Genesis and NeuGen both
use a sphere. In the case of Neurolucida, the soma is approxi-
mated with a 2D disk, which is not even saved when exporting
the 3D model. More recently approximations such as the toolbox
Py3DN (Aguiar et al., 2013) try to achieve more realistic soma
reconstructions through geometric approximations. In this
case, the tool adapts a set of successive overlapped planes that
are generated taking into account the dendritic initial points.
However, this toolbox does not connect the generated soma with
the dendrites either. Other methods such as Lasserre et al. (2012)
are able to obtain a smooth and connected representation of the
soma. This method starts from a sphere (made with quads) with
a fixed resolution, where the dendrites are generated by quad-
extrusion starting from the soma. At the end of the method, a
Catmull–Clark subdivision smooths the whole mesh, generating
realistic, smooth, and closed meshes. Nonetheless, due to the
fixed initial soma geometry, the final shape of the obtained soma
continues to be too spherical. Neuronize (Brito et al., 2013)
defines a physically based generation method using a mass-spring
system. Neuronize generates not only a realistic soma but also
a good approximation of important morphological parameters
such as the soma volume and area. However, due to the versatility
of the mass-spring system, this generation may require compli-
cated fine-tuning of several simulation parameters to achieve an
accurate soma reconstruction.

The visualization of complex neuronal scenes requires
special techniques for managing the intricate scene geometry.
Multiresolution approaches (Clark, 1976; Luebke et al., 2002)
have been traditionally used in these kinds of situations, due
to their ability to manage different representations of the same
objects in a given scene, selecting the most appropriate represen-
tation in each case according to different criteria (Luebke et al.,
2002). This approach has been followed in methods for neural
membrane CPU mesh generation with different levels of detail
(Brito et al., 2013), where the mesh resolution is fixed through the
specification of the number of sections and cross sections for each
segment of the morphological tracing, and (Lasserre et al., 2012),
where different levels of detail are obtained through consecutive
application of the Catmull–Clark (Catmull and Clark, 1978)
subdivision algorithm.

Clark’s classic approximation (Clark, 1976) improves render-
ing performance, but at the same time, presents some problems,
such as huge memory requirements, due to the different rep-
resentations of each object in the scene. In neuronal scenes, it
is not possible to store all the representations in the graphic
card memory, due to (i) the vast number of neurons and their
complex morphology and (ii) to the constant data transfer from
the main memory that are required. Alternative multiresolution
techniques (De Floriani et al., 1998) introduce a multitriangula-
tion approach, where a hierarchical model is generated and
stored together with the approximation error of each mesh
update. This data structure can be queried at runtime to extract
a simplified mesh fulfilling some defined restrictions. Another

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 1 | Method overview: generation and refinement modules. From the morphological tracing, a coarse mesh is generated with additional information.
A dynamically adaptive LOD refinement is then applied to the coarse mesh for its real-time visualization.

4

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

approximation is Progressive Meshes (Hoppe et al., 1993), where
a sequence of edge collapse operations is applied over the mesh
to simplify the model, recording the sequence applied to allow
the original quality to be recovered. These two approximations
result in substantial CPU loads to traverse the triangulation
and, at the same time, large memory requirements to store the
highly detailed meshes. These issues hamper their applicability
to complex neuronal scenes.

Classical refinement approximations such as subdivision
surfaces (see Shröder et al. (1998) for a survey) reduce memory
requirements, since this type of process only requires a coarse
mesh to generate high order surfaces over each polygon. The
problem with this approximation is that the refinement process
generates a huge number of primitives that need to be sent to the
graphic card, generating large data transfer and bus bottlenecks.
To avoid this, some of these algorithms are being deployed directly
in GPUs, such as a hardware evaluation of the Catmull–Clark
schemes, proposed in Shiue et al. (2005) or loop subdivision
proposed in Kim and Peters (2005). Also a procedural displace-
ment is performed over the new generated vertices, making use
of local information in each of the patches being processed, using
triangles (Boubekeur and Schlick, 2005) or quadruples (quads)
(Guthe et al., 2005). Schwarz and Stamminger (2009) have
proposed a unified pipeline through GPGPU techniques. Their
proposed framework applies refinement techniques using CUDA
and incorporates several tessellation-based techniques from the
literature, such as Bicubic rational Bézier patches (Farin, 2002)
or Curved Point Normal Triangles (Vlachos et al., 2001), where
the refinement is achieved by the construction of Bézier patches
over each triangle of a coarse mesh. In this approximation, the
construction of each Bézier patch only needs the local values of
each triangle (the position and the normal of the vertices) for the
refinement. Based on this idea of local refinement, Boubekeur and
Alexa (2008) proposed the Phong Tessellation, inspired by Phong
(1975), but instead of interpolating the normals, the authors use
the plane’s tangent to the mesh vertices to define a curve geometry
for each triangle. This last approximation provides a better per-
formance than Curved Point Normal Triangles (Boschiroli et al.,
2011); however, the memory access time remains prohibitive,
even within the graphic card.

As a consequence of these problems, new stages have been
included in the classical GPU pipeline, making the GPU more
programmable and avoiding the need for storing each newly
generated vertex in the graphic card memory. Geometry shaders
can perform some simple refinements through simple tessellation
techniques (Lorenz and Döllner, 2008), where the refinement is

performed using an incremental multi-pass scheme based on
previously refined meshes using precalculated patterns stored in
the graphic card memory. However, this stage usually significantly
slows down the pipeline, if it needs to manage a large number of
geometry primitives (Schnetter et al., 2004). To avoid this prob-
lem, new generations of GPUs have added new stages into the
classical pipeline to facilitate tessellation tasks. Thus, the pipeline
is expanded allowing users to have a precise and easier control of
the geometry, making it possible to manage the level of detail of
the desired models directly on the GPU. A good overview of these
types of techniques can be found in Nießner et al. (2016), where
a large number of different examples using hardware tessellation
for efficient rendering are analyzed in depth.

The mentioned techniques are oriented toward objects of
generic shapes. For neuroscience data, the objects to be modeled
have a number of specific features that should be considered early
in the technical design process, because they are key for optimiz-
ing method performance when dealing with scenes composed
of large numbers of neurons. Some examples of how this can be
done are presented in the following sections.

4. Methods

The main goal of the techniques presented here is the design of
efficient representations that:

•	 Are well adapted to the particularities of the elements that can
be found in complex neuronal scenarios (from the point of
view of computer graphics).

•	 Are accurate and faithful with respect to the real baseline data.

To accomplish this goal, this paper proposes a set of tech-
niques that can be grouped into two modules (Figure 1): the
first module takes as input any existing morphological tracings
from (possibly real) neurons and generates a coarse, low-poly 3D
mesh, together with some additional information which allows
the mesh to be used by any application capable of representing 3D
meshes. The second module takes the coarse generated mesh with
the additional information and performs a view-dependent (or
other criterion-dependent) refinement to render it at dynamically
adaptive levels of detail (LOD). The following sections describe
these modules in detail.

4.1. Generation Module
The goal of this module is to generate an initial low-poly mesh
that approximates the whole neuron. As previously mentioned,
this method is based on existing morphological tracings such as

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 3 | FEM deformation. Variations of Poisson’s coefficient resulting in
variations in soma volume.

FIGURe 2 | Top images: initial tetrahedral icosphere used in the soma
generation process. View of its surface (left image) and of its internal structure
(right image). Bottom images: FEM deformation process. During this process,
the original icosphere is deformed by forces applied at the dendrites’
insertion points.

FIGURe 4 | Calculating the orientation vector according to the different types of tracing points. The current point is represented with a green sphere. Left image:
standard tracing point. Middle image: bifurcation tracing point. Right image: ending tracing point.

5

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

those stored in NeuroMorpho. These tracings usually describe
the soma and neurites in different ways: neurites are described
by polylines that trace their trajectories, while somata are often
barely described (by a 2D contour at most). Therefore, the strate-
gies applied for the mesh generation of these two structures are
different, obtaining separated meshes that are merged in a final
step.

Regarding somata, the solution presented here for their
generation is an improvement on the approach proposed in
Neuronize (Brito et al., 2013). The underlying idea is to select
an initial simple shape (in our case, a sphere) and simulate the
physical deformation this sphere would undergo in the hypo-
thetical case that the neurites attracted the sphere surface toward
them, generating an elastic deformation of the sphere. In this
paper, the original technique is improved by applying an FEM
(Finite Element Method) (Erleben et al., 2005) to simulate the
deformation.

Since FEM works on volumetric models, the first step to
obtain each soma is to create a volumetric representation of
an icosphere. Hence, based on the soma center and radius as
provided by the morphological tracings, a tetrahedral mesh is
built (Figure 2; top). This volumetric mesh is taken as the initial
equilibrium state for an elastic deformation process. The external
faces of the tetrahedra form a triangular mesh that represents the
surface of the icosphere. However, since quads are more suit-
able than triangles for subsequent steps of our method, pairs of
adjacent triangles are merged into quads. Afterward, the surface
quads closest to each neurite are selected, and their vertices are
pulled toward the neurite insertion point in the soma. The size
of this quad is adapted to match the neurite’s diameter at its
starting point. Finally, applying a static linear FEM, the mesh is
deformed until the final shape of the neuron soma is generated
(Figure 2; bottom).

During the FEM-based deformation stage, variations in the
Poisson’s coefficient, v, result in different soma deformations and
final soma shapes; decreasing the Poisson’s coefficient results in
a varying degree of soma swelling, as shown in Figure 3. Note
that the Young’s modulus is not modified, since a static linear
implementation is applied.

Regarding neurites, the soma quads which are already posi-
tioned at the beginning of each neurite define the initial section
of their respective neurite. Next, each initial section is extruded
between each pair of neurite tracing points, following the neurite
trajectory, to approximate the tubular structure of the neurite
membrane. In addition, since the changes in neurite directions
occur at the traced morphological points, an orientation vector is
computed at each one of these points to re-orient the quad section
associated with each morphological point.

Three different cases can be distinguished for the computation
of the orientation vectors: one associated with standard tracing
points (points that have only one child), one with bifurcation or
fork joint tracing points (points that have two children), and one
with ending tracing points (points that do not have any children).

The orientation vector, o, of a standard tracing point is the
result of adding the vectors r0 and r1 and normalizing the result-
ing vector (Figure 4; left), where r0 is the unit vector indicating
the direction between the parent tracing point and the current
tracing point and r1 indicates the direction between the current
tracing point and the child tracing point.

Computing the orientation vector, o, at the bifurcation tracing
point is performed in a similar way, but in this case, the unitary
vectors r1 and r2 give the directions defined by the current tracing

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 5 | Generation of the extra vertex, v′, at bifurcation tracing points, at a distance equal to the radius of the bifurcation (left image), for its posterior stitching
(right image). In this example, the new quads (separated by the bifurcation section-quad diagonal v0–v2) are [v0,v1,v2,v′] and [v0,v′,v2,v3].

6

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

point and each of its children (consequently, o, does not depend
on the parent segment orientation vector) (Figure 4; middle).
Finally, at ending nodes, the orientation vector, o, is equal to the
unit vector r0 (Figure 4; right).

Once the orientation vectors have been computed, a section-
quad is positioned at each tracing point, oriented according to
its orientation vector computed as described above. The section-
quad is also scaled according to the radius of the tracing point. In
the case of a bifurcation, an extra vertex is introduced to facilitate
the stitching of these branches, placing this new vertex at a dis-
tance equal to the radius of the bifurcation tracing point in the
direction of o, its orientation vector (Figure 5; left).

Once the section-quads for the whole neurite have been
generated, all the vertices are connected to each other to obtain
the neurite quad mesh. The quads connecting these vertices are
called lateral quads, to distinguish them from the previously
mentioned section-quads. There are two special cases that must
be dealt with by this process. First, the union at bifurcations,
given v0,v1,v2,v3 as the vertices of the bifurcation quad, and v′
as the extra vertex, two new quads (composed by three of the
vertices from the bifurcation quad, and the extra v′ vertex) are
created. A plane containing the two children tracing points and
the bifurcation point is created. Then, based on this plane, we
select the most appropriated of the two diagonals of the section-
quad (v0–v2 or v1–v3) separating the bifurcation section-quad
vertices into two groups of three vertices, which will be used to
create the new quads, together with the extra vertex v′. Hence,
the two new quads will be either [v0,v1,v2,v′] and [v0,v′,v2,v3],
or [v0,v1,v′,v3] and [v′,v1,v2,v3] (Figure 5; right). Second, the
connection at the ending tracing points, where the 4 vertices of
its section-quad do not need to be connected to any other vertex,
is carried out by connecting these vertices to each other through
another lateral quad.

Once the coarse neurites and the soma have been generated,
their union is straightforward. This is because the first section-
quad of a neurite used for its extrusion was itself a soma-quad
indicating the neurite starting point. At this point, the generated
polygonal mesh provides a coarse approximation of the cell’s
membrane that will be refined in the following stage. In addition
to this base mesh, some additional information is kept to guide

the subsequent refinement step. Specifically, each vertex of the
coarse mesh keeps track of its associated tracing point. As a result,
at each vertex, the position, radius, and orientation vector of its
associated tracing point can be accessed in the following stage.

4.2. Refinement and Render Module
The goal of this module is the generation of higher resolution
meshes that yield better approximations of the neuron mem-
brane, by building upon the initial coarse mesh obtained as
described above. Regarding somata, their resolution is defined
by the resolution of the initial icosphere that is subsequently
deformed. With respect to the neurites, they undergo on-the-fly
refinement procedures, which take advantage of the hardware tes-
sellation capabilities (tessellation shaders) supported by OpenGL
from version 4.0 on; this OpenGL version requires a Radeon
HD series 5000, an nVidia GTX series 400 or later series of this
graphic card vendors. The tessellation process takes each input
patch and subdivides it by computing new vertices together with
their associated attributes (Shreiner et al., 2013). This tessellation
stage is further decomposed into three substages.

The first substage, the Tessellation Control Shader, determines
the number of subdivisions (i.e., subdivision levels) that each geo-
metric patch will go through. The second substage, the Tessellation
Primitive Generator, takes as inputs the patch and the subdivision
levels defined in the previous substage and subdivides the original
patch accordingly. Finally, the third substage, the Tessellation
Evaluation Shader, computes the attributes of each new vertex
generated by the previous substage, such as vertex positions and
so on. It should be noted that since only the first and the third
substages are user programmable, the present method only needs
to compute the number of subdivision levels and the attributes of
the newly generated vertices.

Homogeneous refinements can be reached by setting the
same subdivision levels for all the object patches. However,
given the overwhelming geometric complexity present in regu-
lar neurons, the use of adaptive levels of detail is recommended,
allowing the neurites closer to the camera to be refined while
the detail for distant areas is kept lower. This distance to the
camera can be encoded as a generic importance value associ-
ated to each tracing point, and this value could also be used

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 6 | Discontinuities on a refined mesh. The left image shows a refined
mesh with discontinuities caused by the difference in contiguous subdivision
levels. The right image shows the same mesh refined with our method, in
which there are no discontinuities.

FIGURe 7 | Correspondence between the four lateral quad vertices and their
two corresponding morphological tracing points.

7

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

to encode criteria other than distance. Since each vertex keeps
track of its associated tracing point, assigning importance values
to the tracing points is analogous to labeling each vertex with an
importance value.

As mentioned above, the first refinement step involves deter-
mining the subdivision levels for each patch (it should be noted
that each lateral quad of the coarse mesh will be taken as a single
patch). To define the subdivision pattern, two different levels
must be taken into consideration: an outer subdivision level and
an inner subdivision level. The outer subdivision level determines
the number of subdivisions at each edge, requiring therefore four
parameters in the case of a quad patch (one for each edge). The
inner subdivision level determines the number of subdivisions
in each edge direction (longitudinal and traversal), requiring
therefore two more parameters (Shreiner et al., 2013).

Since these levels are set according to the importance of the
vertices, discontinuities can occur whenever the importance
values of adjacent vertices are very different. For this reason, the
outer subdivision level of each edge is computed as a weighted
sum of the importance of its two vertices. In addition, both
inner subdivision levels have the same value, obtained also as
a weighted sum of the importance of the four vertices of the
quad. This way of determining the subdivision levels avoids
discontinuities on the refined mesh; Figure 6 illustrates a mesh
refinement operation that does not prevent discontinuities,
which clearly contrasts with the results obtained with the pro-
posed solution, where no discontinuities are created. Note that
this method prevents the appearance of discontinuities not only
along the neurites but also at the refined neurite-soma connec-
tions. Finally, once the subdivisions levels have been defined,
the second substage (the Tessellation Primitive Generator) can
divide each original patch accordingly.

Finally, the third substage, the Tessellation Evaluation Shader,
must compute the position of each new vertex generated by the
previous substage. These new vertices are initially positioned on
the quad plane to which they belong, so that their final positions
are calculated from the homogeneous tessellation coordinates
generated in the previous stage: x, the transversal coordinate and
y, the longitudinal coordinate.

In our specific case, each new vertex of the patch needs
to be displaced to approximate a cylinder, which is the best

approximation to the neurite cross section that can be obtained
with the available data. In the case of vertices that lie within a
section-quad (centered at a tracing point), this operation can be
easily performed by displacing each vertex. The displacement
magnitude for each vertex should be equal to the radius associ-
ated with the tracing point, with the displacement performed
in a radial direction from the tracing point. However, the new
vertices that do not lie in a section-quad require the computation
of a point along the neurite trajectory that behaves as a center
point from which the radial directions originate. This process is
outlined in the following paragraphs.

Figure 7 presents a portion of a coarse mesh, where a set
of four lateral quads represents the union between two mor-
phological tracing points (only one lateral quad, in purple, is
depicted). The first two vertices of each lateral quad, v0 and v1,
correspond to the first tracing point, t0, of a tracing segment,
and the last two vertices, v2 and v3, correspond to the second
tracing point, t1, of that segment. Because of this, the position
of the center, the radius, and the orientation vector associated
with the first two vertices of the lateral quad are those of t0, while
the values of t1 are associated with the last two vertices of the
lateral quad.

For any new vertex, the position of its associated center, as well
as the direction and module of the displacement, which will be
applied to that vertex, are calculated based on (i) the information
of the four vertices of the lateral quad to be tessellated and (ii)
the parameters of the two tracing points associated with these
four vertices. Therefore, the position of the center associated with
any new vertex could be easily computed along the segments that
define the neurite trajectory; however, the neuritic paths can
be smoothed by interpolating the tracing points with a cubic
Hermite spline function. In this case, the position of the center
point, c, will be computed according to the expression:

c y y t y y y
y y y y t

= − + + − +

+ − + − + ,

() ()
() ()

2 3 1 2
2 3

3 2
0

3 2

3 2 3 2
1

o
o

0

1 (1)

where c is the center to be calculated, t0 and o0 are the position and
the orientation vector of the first tracing point, t1 and o1 are the
position and the orientation vector of the second tracing point,

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 10 | Based on the information associated with the four vertices of
the lateral quad and the two corresponding morphological tracing points, the
center, c, the normal, n, and the displacement, r, are calculated to obtain the
position of the new vertex, v.

FIGURe 9 | Left image: resulting path when a fixed module for the orientation
vectors is maintained. Right image: resulting path when an adaptive module
is applied.

FIGURe 8 | Top image: original neurite path. Bottom image: smoothed path
using cubic Hermite spline functions.

8

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

and y is the longitudinal tessellation coordinate. Figure 8 shows
the original path of a neurite and the path smoothed using a cubic
Hermite spline.

This basic formulation of cubic Hermite splines can produce
undesired loops when abrupt changes in the orientation vectors
of two adjacent tracing points occur. To avoid these artifacts, the
module of the orientation vector can be modified, taking into
account the distance between the two tracing points of the seg-
ment. Figure 9 shows the effects of this improvement.

Once the center of the new vertex, c, is calculated, the direc-
tion of the displacement, n, is calculated by performing a bilinear
interpolation of the normals of the four vertices of the lateral
quad, where these normals represent the radial directions from
their associated tracing points. The module of the displacement,
r, will also be computed by interpolating the radii of the first and
second tracing points, r0 and r1. Hence, the position of the new
vertex, v, is calculated using the following expression, as can be
seen in Figure 10:

 v = +r cn . (2)

5. ResULts

This paper presents a technique for generating 3D mesh neuron
models based on standard, widely used morphological trac-
ings, such as those available in public repositories. The method
approximates the cell bodies and the dendritic and axonal arbors
in independent procedures that are later merged, resulting in
closed surfaces that approximate whole neurons. As described
in the previous section, a coarse mesh is the starting point for
the method, which dynamically applies subsequent refinement
processes to adaptively smooth and improve the quality of the
3D approximation of the cell membrane. This initial coarse
mesh presents some desirable properties that make it suitable
for visualization and simulation purposes, such as being closed
and 2D-manifold. It should be noted that the techniques applied
during the mesh generation process guarantee that the traced
dendritic and axonal trajectories are preserved, also providing
a plausible reconstruction of the soma, specifically built for
each cell. This soma reconstruction process is able to recover
information that was not recorded when the neuron was traced,
which is often the case in existing data repositories.

The following subsections present an evaluation of the quality
of the generated meshes and a performance analysis in terms of
memory and rendering time.

5.1. soma Reconstruction
In this paper, the original 3D shape of somata is approximated
through the deformation of initial spheres, taking into account
the anatomy of the dendrites and axon. An initial version of the
method was proposed in Neuronize (Brito et al., 2013) using a
mass-spring approach. In this new version, the mass-spring
method has been replaced by an FEM-based deformation
procedure, making control over the deformation results easier,
since static FEM implementations only require the configuration
of the Poisson’s coefficient, which significantly eases the model
generation process with respect to the mass-spring approach
used in Neuronize. Figure 3 shows the influence of the Poisson’s
coefficient on the volume of the generated soma, obtained after
deforming an initial icosphere with 258 vertices and 502 facets.

Concerning the accuracy of the soma reconstructions and their
estimated volume (which is of interest for electrophysiological
simulations), there were no volume data acquired from digitized
neurons, which could serve for quantitative assessment purposes
regarding the accuracy of the method. However, to evaluate the
method’s accuracy, a visual assessment can give an approximate
idea of the reconstruction quality. In addition, measuring the
volume of the generated somata can provide some quantitative
assessment. For this purpose, soma volumes have been measured
and compared with:

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

9

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

•	 The volume of the real somata, directly estimated from the
original data by thresholding, using the Imaris Software
(Bitplane, 2016), a very commonly used software program
in neuroscience laboratories. These real volumes have been
obtained specifically for testing purposes, since they are not
usually measured, and have been taken as the ground truth,
even though Imaris also introduces volume estimation errors.

•	 The volume of the reconstructions generated by Neuronize.

Figure 11 presents these results visually, while Tables 1
and 2 present them numerically. Table 1 presents the soma
volumes using the different methods, and Table 2 presents the
Hausdorff Distance (mean, maximum, and minimum), as a
metric to quantify the distance between the real somata and the
generated somata (Rockafellar and Wets, 1998). As can be seen,
the somata generated with the FEM-based method are closer
to the somata obtained with Imaris than the somata generated
with Neuronize, according to the Hausdorff Distance metric. In
addition, the FEM deformation process returns smoother soma
surfaces, avoiding the noisy artifacts that appear on the soma
surface when generating it with isosurfaces after thresholding
(from Imaris) and with Neuronize. Regarding soma volume,
the values obtained with the FEM method correctly approxi-
mate the results obtained with Imaris and Neuronize, and the
FEM method is much easier to parameterize than Neuronize.
However, given the lack of accurate, ground-truth data, it is not
possible to state anything specific other than the impression that
the results obtained with the proposed method appeared to be
largely compatible with those provided by the other methods
considered.

5.2. Neurite Reconstruction
The neurite reconstruction process presented in this paper
guarantees that the reconstructed neurites preserve the original
morphological point positions and diameters, as extracted from
the original tracings. This is not only the case for the coarse mesh
reconstruction but also for the refined meshes generated on the
fly, using a procedure that creates very high resolution meshes
with low memory penalties.

The neurite refinement process has been specifically designed
for constructing cylindrical shapes from the initial low resolution
mesh, since the data available in morphological tracings do not
facilitate other approximations for neuron processes beyond those
based on generalized cylinders. The reconstructed cylindrical
shapes are always crack-free, due to the intrinsic characteristics of
the proposed hardware tessellation process, even when the mesh
includes sections with different degrees of resolution. In addi-
tion, to increase the visual quality of the generated meshes, the
trajectories of the morphological tracings can be smoothed using
a spline based technique. In this way, the neurite paths become
more even, avoiding abrupt trajectory changes that are not found
in biological samples but that are created during the morphology
acquisition process, as can be seen it Figure 12. It should be noted
that, even after smoothing, the original morphological points of
the neuronal tracings are always maintained.

After generating the different neuron component meshes,
they need to be connected to assemble the whole modeled

neuron. The connection strategies used here were designed
for providing neurites with smooth and continuous meshes,
taking special care with the connections at neurite bifurcations
and at the soma. The method presented in this paper generates
smooth unions of mesh components regardless of the resolu-
tion of the final mesh, increasing the overall quality of the
resulting mesh. Figure 13 (top) shows a junction in a neurite
bifurcation in detail, while Figure 13 (bottom) shows a soma-
neurite junction.

5.3. Performance Analysis
This section analyzes the graphic card memory consumption
and the rendering time required for visualizing neuronal scenes
measured in frames per second (FPS) using the proposed tech-
niques. Four different scenarios were generated: one, ten, thirty,
and one hundred neurons (see Figure 14). Note that in the scene
with one hundred neurons, only thirty different morphologies,
which are replicated more than once, are stored. The reason
for this replication is that, otherwise, the graphic card memory
consumption in the pre-refined case would be prohibitively high,
and using this approach makes it feasible to compare techniques.
These scenarios were rendered using following three different
methods:

1. Meshes pre-refined at a fixed resolution and rendered follow-
ing the standard pipeline. These pre-generated meshes were
stored in the graphic card memory, and the time to transfer
them from the CPU to the GPU was not computed.

2. Coarse mesh generation and homogeneous refinement fol-
lowing the proposed approach. The coarse mesh was stored in
the graphic card memory, and the time needed to transfer it
from the CPU to the GPU was not computed.

3. Coarse mesh generation and adaptive refinement according to
the distance to the camera, following the proposed approach.
The coarse mesh was stored in the graphic card memory, and
the time needed to transfer it from the CPU to the GPU was
not computed.

Methods 1 and 2 visualize scenes with the same number of
polygons on the screen, but method 2 requires less graphic card
memory, since it only requires the coarse neurons meshes, that
are refined on-the-fly until they achieve the same quality as
the pre-generated meshes. Method 3 allows evaluation of the
benefits of adapting the resolution according to the distance
to the point of view, and therefore lowering the polygon count
while maintaining a good visual quality. For all the methods,
the frame rate in FPS and the total memory consumption in
the graphic card, including the storage of the extra data used
for the adaptive refinement, were measured. All results were
obtained in a Pentium i7 3.30 GHz with 8 GB of RAM and a
Geforce 960 GPU with 4 GB of video memory and a viewport of
600 × 600. All tests were performed using the OpenGL Shading
Language. Figure 15 shows the results for the four different
scenes analyzed.

Analyzing the memory consumption, it can be seen that
in all cases, both the proposed homogeneous and adaptive
refinement approaches require less memory than storing

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

tABLe 2 | Hausdorff distance (mean, maximum, and minimum) between the real
somata, obtained with Imaris, and the generated somata, using Neuronize and
the FEM-based method.

hausdorff distance (μm)

soma Imaris–FeM Imaris–Neuronize

Mean Maximum Minimum Mean Maximum Minimum

A 0.7721 1.6521 0.0003 0.8735 1.6512 0.0011
B 0.8285 1.8180 0.0032 0.9171 1.8196 0.0059
C 0.6482 1.5417 0.0006 0.7819 1.5415 0.0015

tABLe 1 | Estimated soma volumes using FEM, Neuronize, and Imaris.

Volume (μm3)

soma FeM Neuronize Imaris

A 2,513.8 2,511.85 2,734.8
B 3,473.6 3,516.9 3,618.9
C 1,869.9 1,958.4 1,862.7

FIGURe 11 | Comparison between the real somata (middle images), the meshes generated with Neuronize (right images), and the meshes generated with our
proposal (left images), for three different somata A, B, and C.

10

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

the fully refined meshes, despite the fact that there are extra
data included for the purposes of applying the refinement.
The differences are such that the proposed approaches allow
high quality visualization of dense scenes with one hundred
neurons, which are impossible to render using pre-refined

neurons stored in the graphic card. Moreover, refining the
mesh using the tessellation hardware of the GPUs means that
the amount of memory required to store a particular scene is

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 12 | Trajectory smoothing. Top image: refinement method applied to
dendrites without any trajectory smoothing. Bottom image: refinement
applied to the same dendrites using the Hermite spline-based method
proposed in this paper.

FIGURe 13 | Top images: close view of a generated neurite fork junction rendered in shading mode (left image) and wireframe mode (right image). Bottom images:
close view of soma–neurite junction for neuron meshes with homogeneous level of detail (left image) and adaptive level of detail based on the camera distance
(right image).

FIGURe 14 | Neuronal scenes used to evaluate the proposed method. Left image: a simple scene with just one neuron. Middle image: a scene with 10 different
neurons showing one that has been selected. Right image: a more complex scene with one hundred neurons.

11

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

constant and independent of the final refinement level, making
the method more scalable for high neuron counts and highly
refined meshes.

In terms of frame rates, the direct rendering of pre-refined
meshes is only faster than the methods proposed here when no
refinement is applied, that is, when working at the first level of
detail. For the rest of the cases, whenever a refinement pattern is
applied (either homogeneously or adaptively), the frame rate is
always higher using hardware tessellation than reading the same
geometry directly from the graphic card memory. This is because
of the high latency of the graphic card memory compared with
the intense arithmetic power derived from its massive multi-core
architecture.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FIGURe 15 | Memory consumption for the 30 neurons scene at 6 different levels of refinement (top left image). Changes in the level of refinement are represented
by the dots in the graphics. Both our homogeneous and our adaptive refinement approaches (in red), even including the extra data necessary to apply the
refinement, require less memory than storing the pre-refined mesh in the graphic card (in blue). Performance in FPS for the scenes with a single neuron (top right
image), ten neurons (bottom left image), and one hundred neurons (bottom right image). Changes in the level of refinement are represented by dots.

12

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

Moreover, reading the geometry directly from the graphic card
memory has a higher penalization in consecutive subdivision
levels when compared with the hardware tessellation approach,
where the adaptive refinement scales much better in successive
refinement levels than the other two methods. For example,
in the scene with 100 neurons, from levels of detail of 1 to 6,
where the complexity of the geometry becomes 36 times higher,
the adaptive refinement has an FPS penalization of only 1.9
times, whereas the homogeneous refinement achieves an FPS
penalization of 4.7 times, and the pre-refined meshes obtain a
penalization 90 times higher.

Finally, the adaptive refinement approach is not only 2.4 times
faster than the homogeneous refinement but also 12.5 times
faster than using pre-refined meshes stored in the graphic card
memory for the four proposed scenes. From these figures, it is
possible to state that the proposed method, using an adaptive
refinement approach, scales much better than the other methods
assessed, and our method therefore facilitates the interactive
exploration of dense, complex neuronal scenes.

6. CoNCLUsIoN ANd FUtURe WoRK

The analysis of neuronal systems will benefit from the develop-
ment of new computational tools that facilitates the exploration
of the data gathered by neuroscience laboratories. Visualizing
the anatomy of complex sets of neurons can be of great

interest, not only for their analysis from a morphological point
of view but also as an underlying process for the exploration
of electrophysiological simulations or connectivity in neuron
net works. Continuous improvements in computing power are
leading to changes in the way simulations are carried out in
computational neuroscience. In recent years, this has resulted in
ever increasingly complex simulations using full neuron anatomy
models, instead of the point-neuron models that have tradition-
ally been used for large-scale simulations. In a parallel trend, the
improvements in microscopes and laboratory techniques are
allowing neuroscience laboratories to gather larger and larger sets
of neurons, at increasing levels of resolution.

This paper presents a domain-specific set of techniques for
the generation and visualization of neuronal scenes, lowering
the computational costs derived from the high complexity of
neuronal data, while still providing a good approximation
of the real anatomy of the cells. In addition, the techniques
presented here allow for the reconstruction of models from
previously acquired neurons stored in repositories such as
NeuroMorpho.

The direct use of morphological tracings as the input descrip-
tion for the developed techniques bridges a gap between neu-
roscience and computer graphics. In addition, morpho logical
tracings give a compact description of neuron geometry that can
be further deployed in standard polygonal meshes suitable for
use in the field of computer graphics or in detailed-geometry

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

13

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

simulations. In this regard, the generated meshes have some
desirable properties such as being closed and 2D-manifold.

The proposed multiresolution visualization relies on the
initial generation of a coarse mesh that approximates the neural
membrane. This coarse mesh can be easily refined later on, either
homogeneously or according to any criteria such as distance to
camera.

Regarding the first stage (coarse mesh generation), the novel
method applied for the reconstruction of the 3D geometry of
the soma from the incomplete descriptions provided by the
morphological tracings achieves promising results. Most of the
existing tools do not deal with the generation of the 3D shape
of the soma; the FEM deformation model improves the results
obtained in Neuronize (Brito et al., 2013), by making it easier to
parameterize and by generating a smoother membrane surface.
The final neuronal model presents seamless connections between
the soma and the neurites, and smooth trajectories even in fork
joints.

The second stage (refinement and render) takes advantage of
the coarse mesh properties that allow an easy correspondence
between the mesh vertices and the tracing points of the morpho-
logical description. Using this approach, some additional and
easy-to-compute information can guide the positioning of the
vertices in the Tessellation Evaluation Shader.

The performance of our approach, compared with the render-
ing of pre-generated meshes, is clearly better both in terms of ren-
dering times and memory requirements. It should be pointed out
that in our current implementation the generation of the coarse
mesh is performed in the CPU, while refinement is achieved in
the graphic card. The designed techniques are suitable to be fully
implemented in the GPU (both the generation of the coarse mesh
and its refinement), thereby avoiding the need to transfer meshes
from CPU to GPU and reducing the computational time of this
initial coarse mesh.

The work presented here may be extended in different ways.
The implementation of the whole process in the GPU is the most
straightforward. The generation of the soma shape can also be
improved by using the 2D contour (when available) either to
guide the deformation process or as a final step that makes it
possible to fit the generated 3D shape into this extracted 2D
contour.

Dendritic membrane could also be improved by adding
spines, which could be refined during visualization, following a

similar approach to the one presented in this work. Regarding the
refinement process, it is not difficult to incorporate criteria other
than the distance to the camera, to achieve adaptively refined
meshes.

The generated meshes are appropriate for visualization pur-
poses; however, they also have some desirable properties (like
being closed and manifold) that could make them suitable for
simulation, for example, by mapping the electrophysiological
properties to the cells membrane.

Finally, the presented techniques have been designed to work
with neuronal data, but they could also be useful in other fields
where there are filiform structures or biological elements with
incomplete descriptions of some of their parts.

AUthoR CoNtRIBUtIoNs

JG-C, JB, SM, SB, and LP designed the techniques. JG-C and JB
implemented the demos. All the authors participated in writing
the paper.

ACKNoWLedGMeNts

The authors thank the Blue Brain Project for providing the data
used during the development of the tool proposed in this study.

FUNdING

The research leading to these results has received funding from
the European Union’s Horizon 2020 Research and Innovation
Program under grant agreement no. 720270 (HBP SGA1) and
the Spanish Ministry of Economy and Competitiveness under
grants C080020-09 (Cajal Blue Brain Project, Spanish partner of
the Blue Brain Project initiative from EPFL) and TIN2014-57481
(NAVAN).

sUPPLeMeNtARY MAteRIAL

The Supplementary Material for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fninf.2017.00038/
full#supplementary-material.

VIdeo s1 | NeuroTessMesh: an overview.

ReFeReNCes

Aguiar, P., Sousa, M., and Szucs, P. (2013). Versatile morphometric analysis and
visualization of the three-dimensional structure of neurons. Neuroinformatics
11, 393–403. doi:10.1007/s12021-013-9188-z

Bitplane. (2016). Imaris 3D and 4D Real-time Interactive Data Visualization.
Available at: www.bitplane.com/imaris/imaris

Boschiroli, M., Fünfzig, C., Romani, L., and Albrecht, G. (2011). Technical section:
a comparison of local parametric C0 Bézier interpolants for triangular meshes.
Comput. Graph. 35, 20–34. doi:10.1016/j.cag.2010.09.011

Boubekeur, T., and Alexa, M. (2008). Phong tessellation. ACM Trans. Graph. 27,
141. doi:10.1145/1409060.1409094

Boubekeur, T., and Schlick, C. (2005). “Generic mesh refinement on gpu,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS’05 (New York, NY: ACM), 99–104.

Brito, J. P., Mata, S., Bayona, S., Pastor, L., Benavides-Piccione, R., and
DeFelipe, J. (2013). Neuronize: a tool for building realistic neuronal cell mor-
phologies. Front. Neuroanat. 7:10. doi:10.3389/fnana.2013.00015

Catmull, E., and Clark, J. (1978). Recursively generated B-spline surfaces on
arbitrary topological meshes. Comput. Aided Des. 10, 350–355. doi:10.1016/
0010-4485(78)90110-0

Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Commun. ACM 19, 547–554. doi:10.1145/360349.360354

De Floriani, L., Magillo, P., and Puppo, E. (1998). “Efficient implementation of
multi-triangulations,” in Proceedings of the conference on Visualization ‘98
(VIS ‘98) (Los Alamitos, CA: IEEE Computer Society Press), 43–50.

Eberhard, J., Wanner, A., and Wittum, G. (2006). Neugen: a tool for the
generation of realistic morphology of cortical neurons and neural net-
works in 3D. Neurocomputing 70, 327–342. doi:10.1016/j.neucom.2006.
01.028

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://journal.frontiersin.org/article/10.3389/fninf.2017.00038/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fninf.2017.00038/full#supplementary-material
https://doi.org/10.1007/s12021-013-9188-z
http://www.bitplane.com/imaris/imaris
https://doi.org/10.1016/j.cag.2010.09.011
https://doi.org/10.1145/1409060.1409094
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.1016/
0010-4485(78)90110-0
https://doi.org/10.1016/
0010-4485(78)90110-0
https://doi.org/10.1145/360349.360354
https://doi.org/10.1016/j.neucom.2006.
01.028
https://doi.org/10.1016/j.neucom.2006.
01.028

14

Garcia-Cantero et al. NeuroTessMesh

Frontiers in Neuroinformatics | www.frontiersin.org June 2017 | Volume 11 | Article 38

Erleben, K., Sporring, J., Henriksen, K., and Dohlman, K. (2005). Physics-Based
Animation (Graphics Series). Rockland, MA: Charles River Media, Inc.

Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide, 5th Edn. San
Francisco, CA: Morgan Kaufmann Publishers Inc.

George Mason University. (2017). Neuromorpho.org. Available at: www.neuromor-
pho.org

Glaser, J. R., and Glaser, E. M. (1990). Neuron imaging with neurolucida – a
PC-based system for image combining microscopy. Comput. Med. Imaging
Graph. 14, 307–317. doi:10.1016/0895-6111(90)90105-K

Gleeson, P., Steuber, V., and Silver, R. A. (2007). Neuroconstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:10.1016/j.
neuron.2007.03.025

Guthe, M., Balázs, A., and Klein, R. (2005). GPU-based trimming and tessel-
lation of nurbs and T-spline surfaces. ACM Trans. Graph. 24, 1016–1023.
doi:10.1145/1073204.1073305

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1993). “Mesh
optimization,” in Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH’93 (New York, NY: ACM),
19–26.

Jorgenson, L. A., Newsome, W. T., Anderson, D. J., Bargmann, C. I., Brown, E. N.,
Deisseroth, K., et al. (2015). The brain initiative: developing technology to
catalyse neuroscience discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370,
20140164. doi:10.1098/rstb.2014.0164

Kim, M., and Peters, J. (2005). “Realtime loop subdivision on the GPU,” in ACM
SIGGRAPH 2005 Posters (SIGGRAPH ‘05), ed J. Buhler (New York, NY: ACM),
Article 123.

Lasserre, S., Hernando, J., Hill, S., Schuermann, F., De Miguel Anasagasti, P.,
Jaoudé, G. A., et al. (2012). A neuron membrane mesh representation for visu-
alization of electrophysiological simulations. IEEE Trans. Vis. Comput. Graph.
18, 214–227. doi:10.1109/TVCG.2011.55

Lorenz, H., and Döllner, J. (2008). “Dynamic mesh refinement on gpu using
geometry shaders,” in WSCG’2008: The 16-th international Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision
in Cooperation with Eurographics (Plzen: Václav Skala-UNION Agency),
97–104.

Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. (2002). Level of
Detail for 3D Graphics. New York, NY: Elsevier Science Inc.

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., et al.
(2011). Introducing the human brain project. Proc. Comput. Sci. 7, 39–42.
doi:10.1016/j.procs.2011.12.015

Nießner, M., Keinert, B., Fisher, M., Stamminger, M., Loop, C., and Schfer, H.
(2016). Real-time rendering techniques with hardware tessellation. Comput.
Graph. Forum 35, 113–137. doi:10.1111/cgf.12714

Oaks, A. W., Zamarbide, M., Tambunan, D. E., Santini, E., Di Costanzo, S.,
Pond, H. L., et al. (2016). Cc2d1a loss of function disrupts functional and mor-
phological development in forebrain neurons leading to cognitive and social
deficits. Cereb. Cortex 27, 1670–1685. doi:10.1093/cercor/bhw009

Parekh, R., and Ascoli, G. (2013). Neuronal morphology goes digital: a research
hub for cellular and system neuroscience. Neuron 77, 1017–1038. doi:10.1016/
j.neuron.2013.03.008

Peng, H., Long, F., and Myers, G. (2011). Automatic 3D neuron tracing using
all-path pruning. Bioinformatics 27, i239–i247. doi:10.1093/bioinformatics/
btr237

Phong, B. T. (1975). Illumination for computer generated pictures. Commun. ACM
18, 311–317. doi:10.1145/360825.360839

Rockafellar, R. T., and Wets, R. J. (1998). Variational Analysis. Heidelberg, Berlin,
NY: Springer Verlag.

Schnetter, E., Hawley, S. H., and Hawke, I. (2004). Evolutions in 3D numerical
relativity using fixed mesh refinement. Classical Quantum Gravity 21, 1465.
doi:10.1088/0264-9381/21/6/014

Schwarz, M., and Stamminger, M. (2009). Fast GPU-based adaptive tessel-
lation with CUDA. Comput. Graph. Forum 28, 365–374. doi:10.1111/j.
1467-8659.2009.01376.x

Shiue, L.-J., Jones, I., and Peters, J. (2005). A realtime GPU subdivision kernel.
ACM Trans. Graph. 24, 1010–1015. doi:10.1145/1073204.1073304

Shreiner, D., Sellers, G., Kessenich, J. M., and Licea-Kane, B. M. (2013). OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version 4.3, 8th
Edn. Michigan: Addison-Wesley Professional.

Shröder, P., Zorin, D., DeRose, T., Forsey, D., Kobbelt, L., Lounsbery, M., et al.
(1998). “Subdivision for modeling and animation,” in ACM SIGGRAPH Course
Notes, Vol. 12. Orlando, FL. Available at: http://www.mrl.nyu.edu/publications/
subdiv-course1999/sig99notes.pdf

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1. doi:10.1371/journal.
pcbi.0010042

Vlachos, A., Peters, J., Boyd, C., and Mitchell, J. L. (2001). “Curved PN triangles,”
in Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D’01 (New
York, NY: ACM), 159–166.

Wilson, M. A., Bhalla, U. S., Uhley, J. D., and Bower, J. M. (1988). “Genesis: a
system for simulating neural networks,” in Proceedings of the 1st International
Conference on Neural Information Processing Systems, NIPS’88 (Cambridge,
MA: MIT Press), 485–492.

Xie, J., Zhao, T., Lee, T., Myers, E., and Peng, H. (2010). Automatic Neuron Tracing
in Volumetric Microscopy Images with Anisotropic Path Searching. Berlin,
Heidelberg: Springer, 472–479.

Zipfel, W. R., Williams, R. M., and Webb, W. W. (2003). Nonlinear magic:
multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377.
doi:10.1038/nbt899

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Garcia-Cantero, Brito, Mata, Bayona and Pastor. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://Neuromorpho.org
http://www.neuromorpho.org
http://www.neuromorpho.org
https://doi.org/10.1016/0895-6111(90)90105-K
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1145/1073204.1073305
https://doi.org/10.1098/rstb.2014.0164
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.1111/cgf.12714
https://doi.org/10.1093/cercor/bhw009
https://doi.org/10.1016/j.neuron.2013.03.008
https://doi.org/10.1016/j.neuron.2013.03.008
https://doi.org/10.1093/bioinformatics/btr237
https://doi.org/10.1093/bioinformatics/btr237
https://doi.org/10.1145/360825.360839
https://doi.org/10.1088/0264-9381/21/6/014
https://doi.org/10.1111/j.
1467-8659.2009.01376.x
https://doi.org/10.1111/j.
1467-8659.2009.01376.x
https://doi.org/10.1145/1073204.1073304
http://www.mrl.nyu.edu/publications/subdiv-course1999/sig99notes.pdf
http://www.mrl.nyu.edu/publications/subdiv-course1999/sig99notes.pdf
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1038/nbt899
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement
	1. Introduction
	2. Background
	3. State of the ART
	4. Methods
	4.1. Generation Module
	4.2. Refinement and Render Module

	5. Results
	5.1. Soma Reconstruction
	5.2. Neurite Reconstruction
	5.3. Performance Analysis

	6. Conclusion and Future Work
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References

