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Certain differences between brain networks of healthy and epilectic subjects have

been reported even during the interictal activity, in which no epileptic seizures occur.

Here, magnetoencephalography (MEG) data recorded in the resting state is used to

discriminate between healthy subjects and patients with either idiopathic generalized

epilepsy or frontal focal epilepsy. Signal features extracted from interictal periods without

any epileptiform activity are used to train a machine learning algorithm to draw a

diagnosis. This is potentially relevant to patients without frequent or easily detectable

spikes. To analyze the data, we use an up-to-datemachine learning algorithm and explore

the benefits of including different features obtained from the MEG data as inputs to the

algorithm. We find that the relative power spectral density of the MEG time-series is

sufficient to distinguish between healthy and epileptic subjects with a high prediction

accuracy. We also find that a combination of features such as the phase-locked value

and the relative power spectral density allow to discriminate generalized and focal

epilepsy, when these features are calculated over a filtered version of the signals in

certain frequency bands. Machine learning algorithms are currently being applied to the

analysis and classification of brain signals. It is, however, less evident to identify the proper

features of these signals that are prone to be used in such machine learning algorithms.

Here, we evaluate the influence of the input feature selection on a clinical scenario

to distinguish between healthy and epileptic subjects. Our results indicate that such

distinction is possible with a high accuracy (86%), allowing the discrimination between

idiopathic generalized and frontal focal epilepsy types.

Keywords: epilepsy, magnetoencephalography, randomized neural networks, automated classification

1. INTRODUCTION

Epilepsy is defined as a neurological disorder associated with seemingly random occurrences of
recurrent seizures. It is related to a decrease in quality of life, with mortality rates 2–3 times
higher for epileptic patients than for the general population (Bell et al., 2001). Epilepsy affects
approximately 1% of world’s population, one third of which are resistant to pharmacological
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treatment (Pitkänen et al., 2016). Although, not in all cases, most
of these patients could benefit from a variety of surgical options
instead.

There are different types of epilepsy (ILAE, 1989). In many
cases, epileptic seizures originate in a single brain area, called
the focus, which acts as the trigger of the abnormal brain
functioning. In this case, we talk about focal epilepsy. In other
cases, however, the brain activity of the patients look typically
normal, without any apparent structural brain abnormality.
This type of epilepsy, which is believed to have a strong
underlying genetic basis, is known as idiopathic generalized
epilepsy.

A crucial step to improve the quality of life of epileptic
patients is an early diagnosis so they can receive the appropriate
treatments as fast as possible. Efforts to ascertain newly diagnosed
cases of epilepsy are particularly challenging. Clinical diagnosis
can be a complex process, as no specific biologic markers
exist and seizures are associated with a wide range of disease
conditions. Clinically, epilepsy is normally studied with a series
of tests, which include neuroimaging and neurophysiological
recordings. In the latter case, scalp EEG is often the preferred
choice, because, despite its relatively poor spatial resolution,
it allows, e.g., for the localization of the epileptic focus non-
invasively. Yet in the case of pharmacologically intractable
epilepsy, intracranial EEG recordings (electrocorticograms,
ECoG) are necessary for a more precise localization (and even,
functional characterization) of the focus. For the evaluation of
epilepsy, meta-analysis studies have found wide variability in
incidence estimates and in the quality of results, depending on
the classifications one uses for epilepsy and epileptic seizures
(Kotsopoulos et al., 2002).

The development of computer aided techniques to detect
epilepsy can help to improve the health care and quality of life
of epileptic patients. Several machine learning techniques have
been applied to enhance the epileptic detection. For instance, in
Holden et al. (2005), an algorithm based on conditional logistic
regression examining combinations of diagnosis, diagnostic
procedures, and medication classified 90% of the epileptic cases.
Machine learning algorithms have also been used to distinguish
between interictal or preictal segments to forecast epileptic
seizures (Park et al., 2011; Brinkmann et al., 2016; Myers et al.,
2016) or to estimate the seizure onset times (Chan et al., 2008).
Most of these algorithms use information from the EEG such
as the power spectra, correlation between EEG sensors, signal
variance, and/or phase synchronization in order to achieve
high prediction accuracy (Chan et al., 2008; Park et al., 2011;
Brinkmann et al., 2016; Myers et al., 2016).

In this work, we have developed a machine learning algorithm
that classifies interictal brain activity segments recorded with
magnetoencephalography (MEG) belonging to either epileptic
patients (frontal focal and idiopathic generalized) or healthy
subjects. To that end, we compute a reduced subset of features
from the interictal brain activity (closed eyes) recorded with
MEG that provide a comprehensive description of the brain
activity. These features are obtained from either the computation
of two bivariate indices of phase synchronization at the
sensor level or a more traditional power spectral analysis of

the MEG data, in which all eptileptiform activity has been
removed.

Recently, MEG has shown to be a very useful tool to assess
epileptic activity (Almubarak et al., 2014; Englot et al., 2015;
Niso et al., 2015; Chen et al., 2016; Hillebrand et al., 2016;
Murakami et al., 2016; Nissen et al., 2016). Interestingly, MEG
can be used as a capable surrogate for EEG/ECoG to identify the
location of the focus from epileptiform discharges, with higher
sensitivity than EEG (Hunold et al., 2016) and even comparably
to the ECoG while being much less invasive (Almubarak et al.,
2014; Murakami et al., 2016). Equally important is the fact that
MEG also allows studying the differences in interictal brain
activity without epileptiform discharges on epileptic patients as
compared with healthy subjects (Englot et al., 2015; Niso et al.,
2015). Specifically, the application of functional connectivity
methods to resting state MEG data has disclosed the existence of
distinctive functional connectivity patterns in the epileptic brain
(see e.g., Englot et al., 2015, 2016; Niso et al., 2015 and references
therein). These results pave the way to use resting state interictal
MEG data as a biomarker for epilepsy.

To carry out the analysis, we apply a conceptually simple
machine learning algorithm based on random mappings, known
as extreme learning machine (ELM) (Schmidt et al., 1992; Pao
et al., 1994; Huang et al., 2006). ELM relies on a feedforward
neural network with a single hidden layer, whose connection
weights are initialized with random values and only the output
weights are optimized. The conceptual simplicity of ELM
makes hardware implementations of this algorithm possible in
electronics (Decherchi et al., 2012; Frances-Villora et al., 2016)
and optics (Ortín et al., 2015). Here, we use the algorithm
to classify the subjects into healthy or epileptic (idiopathic
generalized epilepsy or frontal focal epilepsy) and explore the
benefits of using different features obtained from the MEG data
as inputs to the algorithm.

In contrast to previous studies, we here focus on the
identification of epileptic biomarkers in resting-state interictal
brain activity. We seek to elucidate whether epileptic brains
behave differently than normal ones even in the absence of
seizures or any other epileptiform activity. Our study is not only
interesting from a methodological point of view but potentially
also from a clinical perspective, since there are patients who have
no obvious or frequent spikes. This may lead to an incorrect
diagnosis as having non-epileptic events when in fact they do
have epilepsy. In these cases, an algorithm such as the one
presented here could suggest the need for a closer examination
and possible new diagnosis.

2. MATERIALS AND METHODS

For the classification of healthy and epileptic subjects, we
follow a systematic approach in successive steps. First, we
acquire the MEG recordings of all subjects. The information
of the participants in this clinical study is detailed in Section
2.1. Second, we pre-process the MEG recordings to extract
several temporal segments of high signal quality for each
subject. Third, we calculate four different features for each
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MEG segment, namely the total and the relative power spectral
densities, the phase-locked value and the phase-lag index.
Using these features, we first classify the segments using
the ELM algorithm. Subsequently, we classify the subjects
according to the majority class of each subject segments’.
The complete procedure is schematically summarized in
Figure 1 and each step of the process is detailed in Sections
2.2–2.6.

2.1. Participants
For the current clinical study, we analyzed 42 subjects: 14 patients
(9 male) suffering from frontal focal epilepsy, 14 patients (5 male)
suffering from idiopathic generalized epilepsy (they all meet the
criteria Juvenile Myoclonic Epilepsy or presumed genetic, as the
new terminology stands; ILAE, 1989), and 14 (7 males) healthy
subjects. The demographics of the subjects is summarized in
Table 1.

All patients were classified independently by two
neurologists. For the diagnosis and classification of seizures and
epileptic syndromes, the clinical and electroencephalographic
classifications of the ILAE were applied (ILAE, 1989). Patients
were seen consecutively during the period between May 2009
and December 2011 in the outpatient clinic of neurology at the
University General Hospital of Ciudad Real, with an average
evolution track of 10 years, and were free from epileptic crisis
during the last 6 months prior to the recording. They were all
free from mental retardation, connate anoxia history, history
of head trauma or meningitis in early childhood. Each clinical
history gathered epidemiological data (sex, age of onset of the
first seizure, personal history, pregnancy, and delivery), clinical
data (type of seizures and neurological findings), and treatments
used. These data were combined with additional examinations
[EEG, neuroimaging studies, magnetic resonance imaging
(MRI) of 1.5 or 3 Tesla following the protocol for epilepsy
that includes 3D-T1 isotropic voxel sequences of 1 and 2 mm
axial and coronal slices with T2, FLAIR, and T2∗ sequences],
to establish if the etiology was idiopathic, symptomatic, or
cryptogenic. The entire cohort of patients was also evaluated

using a comprehensive neuropsychological test battery. The
patients took a range of medications with different mechanisms
of action. In this study, patients were chosen in such a way
that the medication was similar and controlled between both
epilepsy groups (Niso et al., 2015). All data were analyzed
anonymously and ethical approval was granted by the Local
Ethics Committee of the Teaching General Hospital of Ciudad
Real.

2.2. MEG Recordings and Data
Pre-processing
For all subjects, we recorded brain activity during resting
state with MEG at the Center for Biomedical Technology,
CTB, Madrid. MEG recordings were obtained using a 306-
channel whole head Elekta Neuromag MEG system (Elekta
Oy, Helsinki, Finland), comprising 102 magnetometers and
204 planar gradiometers in a helmet-shaped array covering the
entire scalp, while subjects were seated inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany).
Eye movements were monitored by simultaneously recording
the electrooculogram with three Ag/Cl electrodes, two above
and below the right eye and one at the right earlobe (ground
reference). Four head position indicator (HPI) coils, whose data
were used to correct head movement during the session, were
placed on the scalp, appropriately spaced in the region covered by
the MEG helmet. The locations of the nasion, two pre-auricular
points, and the 4 HPI coils were digitized prior to each MEG
study using a 3D-digitizer (FASTRACK; Polhemus, Colchester,

TABLE 1 | Demographics of the subjects that volunteered to the current clinical

study.

Focal epilepsy Generalized epilepsy Healthy

Number of subjects 14 14 14

Average age and

standard deviation

36 ± 16 years 28 ± 7 years 20 ± 4 years

FIGURE 1 | Schematic representation of the procedure followed for the automated detection of generalized and focal epilepsy on the resting state interictal MEG.
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VT) to define the subject-specific Cartesian head coordinate
system. One hundred to two hundred additional anatomical
points were digitized on the head surface to provide a more
accurate shape of the subject’s head.

MEG data were acquired (sampling rate of 1 kHz, on-line
band-pass filter ranging from 0.10 to 330 Hz) during a single
session of resting state (Niso et al., 2015). For each session,
we analyzed data obtained during 10 min with eyes closed.
These data were free from blinking artifacts and interictal
epileptiform discharges. External noise was removed, as recently
suggested in MEG literature (Gross et al., 2013), by using the
temporal extension of Signal-Space Separation (tSSS) (Taulu
et al., 2005) implemented with the MaxFilter software (version
2.0 ElektaNeuromag; sliding window of 10 s, subspace correlation
limit of 0.98; Hillebrand et al., 2013), and configured with
an inner expansion order of 8. We also applied movement
compensation to our data, to correct for subject’s headmovement
during the recording. Spikes and spike-wave complexes were
observed in the data but were removed from the analysis since
our aim is to classify subjects during the absence of epileptiform
activity. This is a key aspect of our study since it is not always easy
to record epileptiform activity during short periods of recording
times. Following this procedure, and within the 10 min with eyes
closed, we selected the 40 most stationary segments of 5 s length
for each patient by using the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test for stationarity (Kipiński et al., 2011).

For each temporal segment, we consider the information
of the 102 magnetometers in the MEG system, i.e., each
segment of 5 s contains information of 102 different
channels.

2.3. Feature Extraction
We compute four different features for each segment, namely
the total and relative power spectral densities (PSD), the
phase-locking value and the phase-lag index, described below.
These features are calculated for every segment and sensor
(magnetometer) of each subject. All thesemeasures are calculated
for a range of frequencies of interest in the interval (4–40) Hz,
in steps of 2 Hz. As a result, the computation of each feature
leads to a matrix of dimensions 102 x 18 (sensors x frequency
intervals), which is used as input to the machine learning
algorithm discussed in Section 2.4 for further classification of the
MEG segments and subjects.

We compute total and relative PSD of the MEG data (40
segments for each patient) for the range of frequencies of interest.
Relative PSD refers to the total PSD on each sensor on a certain
frequency band divided by the total PSD on that sensor. In
Figure 2, we show an example of the relative PSD for one MEG
segment of a given subject. This image contains the spectra of the
102 sensors (y-axis) in 18 frequency intervals of 2 Hz (x-axis).

We analyze synchronization and functional brain connectivity
from the MEG data by computing two bivariate phase
synchronization measures: the phase-locking value (PLV)
(Lachaux et al., 1999; Mormann , 2000) and the phase-lag index
(PLI) (Stam et al., 2007). The use of PLV and PLI as features
is motivated by the fact that epilepsy has been historically
seen as a functional brain disorder associated with excessive

FIGURE 2 | Relative PSD for a single MEG segment of a given subject in this

study.

synchronization of large neuronal populations (Jiruska et al.,
2013). Increasing evidence shows that epileptiform phenomena,
particularly seizures, follow a characteristic dynamical evolution
of synchronization. Desynchronization is often observed
preceding seizures while high levels of synchronization are
observed toward the end of seizures. For computations, we
use the HERMES toolbox (Niso et al., 2013) (freely available at
http://hermes.ctb.upm.es/). Amplitude-based measures such as
mutual information or measures of generalized synchronization
are less suitable to analyze synchronization regimes in which the
amplitudes remain only weakly correlated. Instead, PLV is able
to detect weak synchronization regimes, where the phases of the
oscillatory component are coupled but the amplitude may not be
(Rosenblum et al., 1996; Hramov et al., 2005). In turn, PLI is a
measure of asymmetry for the distribution of phase differences
between two signals (Stam et al., 2007). PLV is sensitive to
both zero and non-zero lag synchronization, while PLI is only
sensitive to the latter one. Zero lag synchronization is usually
regarded as the result of the same neural source being picked up
by two different sensors. In addition, zero lag synchronization
can be achieved if two neural sources are indirectly connected
through a third one, acting as a dynamical relay (Vicente et al.,
2008), which would be overlooked should we only focus on
PLI. Therefore, we include both PLV and PLI as features in our
study so that we can elucidate whether information from only
direct connections (PLI) is enough for a good discrimination
or, instead, including information on both direct and zero lag
functional connectivity is best for this purpose.

We compute the PLV and PLI on bands centered in the
frequencies ranging from 4 to 40 Hz with a resolution of 2 Hz,
which represents a reasonable trade-off between two mutually
opposed requirements. First, the frequency intervals should be
narrow enough to allow for proper phase reconstruction (Thiel
et al., 2006). Second, selecting extremely narrow intervals would
require a very high-order filter, which may distort part of the data
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segments due to border effects. It is common practice to apply
a threshold of significance to the values of PLV and PLI (Kim
et al., 2013). Here, we keep the 40% (50%) most significant values
of PLV (PLI) and zero the rest, keeping a fixed proportion of
the highest links. However, we have checked that the results do
not change qualitatively by choosing other thresholding levels.
We use the average PLV and PLI as estimators of the functional
connectivity at each sensor location, within the frequency bands
mentioned above. PLV and PLI are computed for each pair of
sensors, such that the PLVi,j (PLIi,j) is the PLV (PLI) between
sensors i and j. The corresponding average PLV (PLI) of sensor i
is then the average of the PLVi,j (PLIi,j) sum over all j, with i 6= j.
In Figure 3, we show the computed average PLV for a singleMEG
segment of a given subject. Similarly to the procedure described
for the total and relative PSD, the results of the PLV or the PLI
are passed in matrix format of dimensions 102 x 18 (sensors x
frequency intervals) as input to the machine learning algorithm
for the classification of the MEG segments and subjects.

2.4. Classification Algorithm (ELM)
Here, we use randomized neural networks as the classification
algorithm. In particular, we employ ELMs, which are supervised
machine learning models based on a random mapping of the
inputs into the high dimensional space of the neural network.
ELMs aim at learning the conditional expected value of a
m-dimensional output y(n) as a function of a d-dimensional
input x(n), based on a number of examples n = 1, ..., N. The
particularity of this approach is the use of an intermediate hidden
layer with D neurons, where inputs are randomly mapped into
a nonlinear form, yielding a new, transformed D-dimensional
r(n) space. The elements of the hidden layer are often denoted

as neurons since these approaches were initially developed in the
framework of neural networks.

The ELM model can be written in the following general form
(Huang et al., 2006; Ortín et al., 2015):

r(n) = F(ηWinx(n)), (1)

o(n) = Woutr(n), (2)

where r(n) and o(n) are the states of the hidden layer neurons
and the predicted output values, respectively. Win is the d × D
random input weight matrix that maps the input (dimension
d) onto the hidden layer (dimension D), F is the hidden layer
nonlinear activation function, and η is an input scaling factor.
We use F(z) = sin2(z + φ), where z is the mapped
input signal, as the nonlinear activation function. For this
activation function, the operating point and hence the degree of
nonlinearity can be adapted by varying the phase φ. Machine
learning models with this nonlinear function can be easily
implemented in optoelectronic hardware, allowing for ultra-fast
processing speeds (Larger et al., 2012; Soriano et al., 2015a).

Learning from data is efficiently achieved through the random
mapping technique, since the only weights trained in this
approach are those corresponding to the output connections,
Wout . Wout are usually computed by minimizing the squared
error between the real y(n) and the predicted o(n) output values.
In our case, we have used a simple linear regression (Huang et al.,
2006). The input data x(n) are first multiplied by Win and then
normalized to zero mean and unity standard deviation. In our
study, the input data correspond to the flattened matrices of the
computed features. Thus, the input features for each segment
typically have a dimension d = 1, 836 (102 x 18).

FIGURE 3 | Average PLV per sensor for a single MEG segment of a healthy subject.
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The values of Win are continuous, drawn from a uniform
distribution over the interval [1,−1]. Since they are randomly
chosen, the performance of a single realization of the algorithm
might depend on the particular values of these random input
weights. To avoid this uncertainty, we use an ensemble classifier
that produces statistically robust results. This ensemble classifier
is a combination of the results from a pool of independent
realizations of Win. Here, we use ensemble classifiers that
combine the results of 100 different realizations using a simple
majority rule.

One of the main advantages of this classification algorithm
based on random mappings is that the parameters of the
algorithm can be easily retrained if new data is incorporated,
either from new subjects or more measurements from the same
subjects. This property is particularly suited for applications
where data is acquired sequentially, e.g., new subjects being
incorporated to the study.

2.5. Performance Evaluation
The performance of the classifiers is measured in terms of four
quantities defined as the number of true positives (TP), the
number of true negatives (TN), the number of false negatives
(FN), and the number of false positives (FP). These quantities are
often displayed as a confusion matrix, following a table layout. As
shown in Table 2, the columns of the confusion matrix represent
the instances in a predicted class while the rows represent the
instances in a true class.

From the confusion matrix, it is easy to compute the total
proportion of correct predictions (accuracy), the percentage of
positives that are correctly identified as having the condition
(sensitivity), and the percentage of healthy subjects that are
correctly identified as not having the condition (specificity),
defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

Sensitivity =
TP

TP + FN
, (4)

Specificity =
TN

FP + TN
. (5)

At the subject level, the results are presented in the form
of the confusion matrix. At the segment level, we make
use of the receiver operating characteristic (ROC) curves to
present the results. In statistics, the ROC curve is used as
a graphical tool to illustrate the performance of a binary

TABLE 2 | Confusion matrix for a binary classifier.

Prediction

Control Pathological

True condition Control TN FP

Pathological FN TP

TN, FP, FN, and TP stand for true negatives, false positives, false negatives, and true

positives, respectively.

classifier as its discrimination threshold is varied. The ROC
curve is created by plotting the probability of detection
(sensitivity) against the probability of false alarm (1-specificity)
at various threshold settings. Thus, each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a given
discrimination threshold. Performance is measured by the area
under the ROC curve. This area under the curve (AUC)measures
the ability of the classifier to correctly identify those subjects
with and without the epileptic condition. An area of 1 represents
a perfect classifier, while an area of 0.5 represents the same
classification as in a random guess.

2.6. Algorithm Training and Parameter
Optimization
For the training and test of the ELM classifiers, we follow a
leave-one-out cross-validation procedure. This procedure is a
standard way to evaluate the performance of machine learning
algorithms, especially when the number of subjects is small as
in our case. Leave-one-out cross-validation involves using one
subject as the test set for the classifier trained using the remaining
subjects. In our case, we have 14 subjects for each condition
(healthy, focal, generalized) that we divide in 14-folds. In this
manner, one subject of each condition is tested in every fold
and all subjects are tested exactly once after the leave-one-out
cross-validation. In this way, we do not overestimate the accuracy
of the algorithm using intra-patient information to classify the
segments. The subject-wise approach, in contrast to a segment-
wise one, estimates better the accuracy of the algorithm (Saeb
et al., 2016).

The ELM classification algorithm is first trained to classify
MEG segments using as input one or more of the features
defined in Section 2.3. After the training and for each fold, the
algorithm assigns a condition to each segment of the test subject.
It then decides on the condition of the test subject by using a
majority rule over the results for the segments of this test subject.
This process is repeated for each of the 14 test folds and the
final accuracy of the classifier is obtained by averaging over the
individual fold accuracies. We note that the training and test
sets for each fold contain records from non-overlapping subjects
since our goal is to build a classifier that can generalize to identify
epilepsy traits rather than the subject itself.

The parameters of the ELM algorithm are optimized for the
identification of epileptic and healthy segments. Since the current
study is performed on a total of 42 subjects, with 40 temporal
segments each, this amounts to 1,680 (42 x 40) examples. This
reduced amount of training examples limits the number of
neurons that can be used in the hidden layer of the ELM, which
must bemuch smaller than the number of examples. In this work,
we present results for a hidden layer withD = 350 neurons since
we have checked that it gives a consistent performance.

The other parameters of the ELM algorithm described in
Section 2.4 that need to be tuned are the input scaling η and
the phase φ. To do so, we test the accuracy of a binary classifier
to identify the condition of epilepsy in the MEG segments as
a function of the algorithm parameters. Figure 4 illustrates the
results for a η and φ parameter scan. From the figure, it is clear
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that the parameter values η = 0.1 and φ = 2.1 offer a good
classification accuracy and will be kept fixed throughout the rest
of the manuscript.

3. RESULTS

In this section, we evaluate the feasibility to distinguish between
healthy and epileptic subjects from MEG resting activity. Our
final goal is to find a procedure to identify the three different
conditions in our test group, namely healthy, generalized, and
focal. To this end, we design a two-stage procedure to identify
the three different conditions. This two-stage classification
procedure is illustrated in Figure 5, with an ELM classifier in each
stage that decides over two conditions (binary classifier). First, we
train the system to automatically distinguish between healthy and

FIGURE 4 | Performance evaluation (AUC) for the classification of healthy and

epileptic subjects as a function of the parameters η (input scaling) and φ

(phase) of the ELM algorithm. The chosen parameter values are indicated by a

dashed rectangular box.

epileptic subjects, without specifying the type of epilepsy. Second,
we train another ELM classifier to detect generalized and focal
traits within the whole group of epileptic subjects. Finally, we test
the two-stage classifier designed to identify the three conditions
(healthy, generalized, and focal). For all cases, we always report
the error in the testing phase.

For each binary classifier in Figure 5, we evaluate the
classification performance for the total and relative PSD, and
the two phase synchronization measures described in Section
2.3 (i.e., PLV and PLI). The results for each binary classifier are
reported in Sections 3.1 and 3.2, respectively, while the final
results for the two-stage classification are reported in Section 3.3.

3.1. Classification between Healthy and
Epileptic Subjects
Here, we present the results for the first stage of the automated
classifier, trained to distinguish between MEG segments of
healthy and epileptic subjects (without specifying the type of
epilepsy). We train an ELM independently for each feature to
determine the best discriminant feature between healthy and
epileptic subjects, each time taking only one of the calculated
features as input. Figure 6 shows the ROC curves obtained for the
identification of the MEG segments of epileptic subjects for each
feature.We find that the best results are obtained whenwe use the
relative PSD as input to the ELM classifier. In turn, the total PSD
also performs better than the phase synchronization measures.
Finally, PLV is superior to PLI, which yields classification values
close to chance.

The ROC curves of Figure 6 illustrate the algorithm
performance for the classification of segments. It is, however,
also interesting to discuss the results in terms of subjects. To
this end, we check the condition (healthy or epileptic) of the
corresponding segments of each subject and assign a condition to
the subject following a majority rule vote over his/her segments
(see Section 2.6 for details). We do it only for the relative PSD,
as it gives the best results at the level of segments. The test
performance of the classifier at the subject level is summarized

FIGURE 5 | Schematic representation of the information flow to evaluate the condition of a test subject with two sequential binary classifiers.
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in the confusion matrix shown in Table 3. This confusion matrix
has an accuracy of 0.9, a specificity of 0.86, and a sensitivity of
0.93. These results show that it is possible to identify epileptic
subjects from interictal MEG resting activity with high accuracy
using an ELM classifier. In the test phase of the cross-validation
procedure, the ELM classification algorithm is able to properly
classify 38 out of the 42 subjects. The nonlinear transformation
carried out by the ELM is essential to obtain these results, as
performing linear regression over the original input features,
without applying the ELM algorithm (results not shown), yields
classification accuracies close to chance.

3.2. Within-Group Classification of the
Epileptic Subjects
We now evaluate which features obtained from the MEG time-
series are able to best distinguish between generalized and focal
traits. To this end, we train a classifier with only the epileptic
subjects. We find that the relative PSD again outperforms the
other features for the identification of the epilepsy type, while the
PLV is the synchronization measure with the best performance.
The overall classification accuracy is, however, low even for the
relative PSD. In order to try improving the classification of
epilepsy types, we evaluate the performance of the ELM classifier
when we restrict the frequency content of the features to specific
frequency bands (Niso et al., 2015). In particular, we focus on
the theta (4–8 Hz), alpha (8–14 Hz), beta 1 (14–20 Hz), beta 2
(20–28 Hz), and low gamma (28–40 Hz) bands. We find that
the relative PSD, using only the beta 1 frequency band, helps
best to distinguish between generalized and focal epilepsy. This
means that the ELM algorithm classifies better the types of
epilepsy if the features are restricted to frequency bands before
automated classification. We then search if there are pair-wise
combinations of (frequency restricted) features that can further

FIGURE 6 | ROC curves for the detection of the presence of epilepsy

condition for the relative and total PSD, PLV, and PLI. The diagonal dashed line

indicates results equal to chance.

improve the classification. The best classification performance, as
measured by the AUC (Table 4), is obtained by using a suitable
pair-wise combination of the relative PSD (beta 1) and PLV
(beta 2) of the frequency restricted features. The choice of pair-
wise combinations is motivated by the hypothesis that these
two different features contain complementary information of
the underlying data. Indeed, PSD reflects the local activation of
each sensor data, whereas the average PLV reflects the statistical
relationship between the MEG activity in this sensor and that
in the rest of the sensors. Namely, the former is an estimation
of local activity, whereas the latter estimates changes in global
connectivity.

For the combination yielding the highest AUC inTable 4 (beta
1 band of the relative PSD and beta 2 band of the PLV), the
corresponding ROC curve for the MEG segments is presented
in Figure 7. In addition to the ROC curve for the optimum
combination of input features, we present the ROC curves for
these input features considered individually. By comparing these
ROC curves, it is apparent that the AUC of this combination is
higher than the AUC for the beta 1 band of the relative PSD,
alone.

Similarly to the procedure described in Section 3.1, the test
results at the subject level for the classifier trained to identify
the type of epilepsy are presented in Table 5. These results
correspond to the optimal combination detected above of the
beta 1 relative PSD and beta 2 PLV. The accuracy of this binary
classifier is 0.93 (specificity of 0.86 and sensitivity of 1). We find
that, in the test phase, the classifier is able to properly identify the
type of epilepsy for 26 out of the 28 epileptic subjects studied.

TABLE 3 | Test confusion matrix of the first stage classifier that is trained to

identify healthy vs. epileptic subjects, taking the relative PSD as input to the binary

classifier.

Prediction Total

Healthy Epilepsy

True condition Healthy 12 2 14

Epilepsy 2 26 28

Total 14 28 42

These results are obtained using the threshold with a probability of detection of 0.8 at the

level of segments in the ROC curve presented in Figure 6.

TABLE 4 | Test results for the AUC of the classifiers trained to identify generalized

vs. focal epilepsy based on pair-wise combinations of the relative PSD (Rel) and

the PLV, restricted to given frequency bands.

Theta Alpha Beta 1 Beta 2 Gamma

(Rel) (Rel) (Rel) (Rel) (Rel)

Theta (PLV) 0.5037 0.4955 0.6844 0.6212 0.6860

Alpha (PLV) 0.4417 0.4734 0.6730 0.6191 0.7058

Beta 1 (PLV) 0.4378 0.5433 0.6670 0.5722 0.5531

Beta 2 (PLV) 0.5380 0.5975 0.7440 0.6565 0.6328

Gamma (PLV) 0.5680 0.6246 0.7033 0.5764 0.5407

The largest AUC value is highlighted in bold.

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2017 | Volume 11 | Article 43

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Soriano et al. Detection of Epilepsy in Resting-State MEG

FIGURE 7 | ROC curves for the detection of the epilepsy type for the relative

PSD restricted to the beta 1 band, the PLV restricted to the beta 2 band, and

the combination of both. The diagonal dashed line indicates results equal to

chance.

TABLE 5 | Test confusion matrix of the ELM classifier trained to identify

generalized vs. focal epilepsy.

Prediction Total

Generalized Focal

True condition Generalized 12 2 14

Focal 0 14 14

Total 12 16 28

The ELM inputs are the beta 1 band of the relative PSD and the beta 2 band of the PLV.

These results are obtained using the threshold that gives a probability of detection of 0.6

at the level of segments in the ROC curve presented in Figure 7.

3.3. Full Classification of Subjects
As reported in previous sections, it is possible to distinguish
between epileptic and healthy subjects (stage 1) and epileptic
subjects with general or focal epilepsy (stage 2) with high
accuracy. In this section, we report the test results for the
two-stage classification procedure illustrated in Figure 5. This
procedure allows identification of the three different conditions
(healthy, generalized, and focal). The complete classification
procedure contains two binary ELM classifiers. Thus, each test
subject is first classified as healthy or epileptic. In the latter, a
second classifier further discriminates the type of epilepsy.

We present the confusion matrix for the full classifier in
Table 6. As input features, we choose the relative PSD for the first
stage and the combination of beta 1 relative PSD and beta 2 PLV
for the second stage. In the test phase of the final classifier, 36 out
of the 42 subjects are properly classified. The accuracy of the full
classifier for the three conditions is 0.86, with a sensitivity of 0.88,
and a specificity of 0.86.

TABLE 6 | Test confusion matrix of the final two-stage classification algorithm.

Prediction Total

Healthy Generalized Focal

Truth Healthy 12 0 2 14

Generalized 1 11 2 14

Focal 1 0 13 14

Total 14 11 17 42

4. DISCUSSION

From the neuroscientific point of view, the prediction of epileptic
activity from interictal signals is a challenging task. Here, we
compute several features from interictal resting state MEG
activity and evaluate if they can be used for the identification
of epilepsy. Our analysis suggests that a simple feature such
as the relative PSD outperforms the other features considered
here in the correct identification between epileptic and healthy
subjects. This is not completely surprising since the MEG
technique seems to produce distinct signals in healthy and
epileptic subjects even during interictal resting state without
any epileptic discharges (Englot et al., 2015; Niso et al., 2015).
In our case, the power distribution in the whole frequency
spectrum (relative PSD), rather than the total power or the phase
synchronization indicators (PLV and PLI), gives the best results
to distinguish these two groups automatically and with high
classification accuracy. Importantly, from the practical point of
view, the relative PSD is computationally less expensive and faster
to calculate than both the PLV and PLI.

The discrimination between the two different types of epilepsy
considered here turned out to be a more challenging task. Indeed,
neither local (PSD) nor global activation patterns (PLV) alone
are able to accurately distinguish between idiopathic generalized
epilepsy and frontal focal epilepsy. Rather, for this purpose it
is necessary to combine both types of features, restricted to
certain bands, to achieve a better-than-chance performance. In
this case, the best results are obtained by combining the relative
PSD restricted to the beta 1 band and the PLV restricted to
the beta 2 band. This result can be interpreted as a proof of
concept of the importance of the feature selection process. In
this case, the frequency ranges over which the PLV and the
relative PSD are restricted to may be specific to the population
that we have investigated here. The limitations of the dataset
we used precludes the possibility to validate this hypothesis
on a larger population, including different pathologies. PSD
and PLV characterize in principle different aspects of brain
activity, thereby providing complementary information about
local activation and global connectivity that can be suitably
combined for classification. When the analyzed groups are
different in terms of activity, one of the features may be enough
for the classification task. If they are similar, however, it is
necessary to combine both types of features. We note that
there might be prospective physiological mechanisms behind the
improvements on the identification of the epilepsy types when
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using combined measures. Typically, the discrimination between
generalized and focal epilepsy in single patients is performed
by analyzing spikes and seizures of long EEG recordings (Duffy
et al., 1994). Here, we offer a complementary approach that can
perform such discrimination even in the absence of spikes and
seizures.

It is also interesting to note that the PLI systematically
failed to produce accurate classifications between healthy and
epileptic groups, even more so between the two epileptic ones.
The main difference between PLV and PLI is that the former
measures phase synchronization with and without time lag. Zero
lag coupling may be physiologically meaningful (Vicente et al.,
2008) or it could be the result of the linear mixing, in two
different sensors, of the activity of common underlying neural
sources (Stam et al., 2007). In contrast to the PLV, the PLI
is not sensitive to zero lag coupling and detects only phase
lagged connectivities. While this feature makes the results from
the PLI easier to interpret, recent results on MEG resting state
data (Colclough et al., 2016; Garcés et al., 2016) clearly suggest
that it is at the expense of sacrificing reliability. Although, the
results from the two aforementioned studies were obtained at the
source level, whereas our results are obtained at the sensor level,
the main conclusion still remains: both variability within group
and between sessions for the same subject for many functional
connectivity measures are much higher if one removes zero lag
coupling. From our results, it is clear that such variability hinders
the use of PLI in the present framework as a reliable biomarker
to distinguish among the three groups of subjects considered.
This limitation could be overcome by using more sophisticated
methods to detect phase-lag synchronization (Vinck et al., 2011).
It is also worth noting that a recent work combining anatomical
and functional (EEG) information for modeling (Finger et al.,
2016) found that a considerable amount of functionally relevant
synchrony takes place with near zero or zero-phase lag. This is
in line with our findings, and suggest that they may not be a
methodological issue but rather a fundamental property of the
neurophysiological activity.

In summary, we have demonstrated that an automated
classification algorithm is able to identify healthy and epileptic
subjects from brain activitymeasuredwithMEG in a resting state.
The identification of the type of epilepsy within subjects with
idiopathic generalized epilepsy or frontal focal epilepsy was also
successfully achieved. This is clinically relevant since these two
epilepsy groups show similar semiology.

5. OUTLOOK

In this manuscript, we identified a combination of features
that allows the automated classification of idiopathic generalized
epilepsy and frontal focal epilepsy. We do not exclude the
possibility that other features could contribute to improve even
further such classification and future work will be carried out
in this direction. In particular, after the results obtained by
combining PSD and PLV from different frequency bands, it
would be interesting to study the possible role of cross-frequency

coupling in this framework, in line with very recent studies in
resting state MEG (Florin et al., 2015; Tewarie et al., 2016). In
addition, motivated by the classification improvements using the
majority rule, we expect that studies with longer monitoring
periods and an increased number of subjects would yield an even
better generalization performance of the algorithm.

It is worth noting that the algorithm discussed in Section 2.4
can be implemented in electronic and optoelectronic hardware
(Decherchi et al., 2012; Ortín et al., 2015; Soriano et al., 2015b).
Even though this manuscript has focused on the analysis of MEG
time-series, which are measured by high-cost devices, similar
principles can be applied to the analysis of EEG time-series.
Therefore, one could think of combining both the measurement
of the brain activity and the machine learning algorithm in a
single low-cost hardware device. Such a device could allow, for
e.g., real-time seizure detection, a problem in which machine
learning algorithms based on random mappings have already
been validated (Buteneers et al., 2013).

Machine learning algorithms are becoming ubiquitous in the
analysis of biomedical data. Attempts to achieve a convergence
between machine learning concepts and neuroscience are
currently an active topic of research (Marblestone et al., 2016;
Xia et al., in press). Here, we contributed to this research field by
identifying distinctive features of epileptic and healthy subjects.
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