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Numerical simulations of brain networks are a critical part of our efforts in understanding 
brain functions under pathological and normal conditions. For several decades, the com-
munity has developed many software packages and simulators to accelerate research in 
computational neuroscience. In this article, we select the three most popular simulators, 
as determined by the number of models in the ModelDB database, such as NEURON, 
GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In 
addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we 
study them based on one of the most important characteristics, the range of supported 
models. Our investigation reveals that brain network simulators may be biased toward 
supporting a specific set of models. However, all simulators tend to expand the sup-
ported range of models by providing a universal environment for the computational study 
of individual neurons and brain networks. Next, our investigations on the characteristics 
of computational architecture and efficiency indicate that all simulators compile the most 
computationally intensive procedures into binary code, with the aim of maximizing their 
computational performance. However, not all simulators provide the simplest method 
for module development and/or guarantee efficient binary code. Third, a study of their 
amenability for high-performance computing reveals that NEST can almost transparently 
map an existing model on a cluster or multicore computer, while NEURON requires 
code modification if the model developed for a single computer has to be mapped on a 
computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, 
which provides no support for cluster computations and limited support for multicore 
computers. Fourth, we identify the level of user support and frequency of usage for all 
simulators. Finally, we carry out an evaluation using two case studies: a large network 
with simplified neural and synaptic models and a small network with detailed models. 
These two case studies allow us to avoid any bias toward a particular software package. 
The results indicate that BRIAN provides the most concise language for both cases 
considered. Furthermore, as expected, NEST mostly favors large network models, 
while NEURON is better suited for detailed models. Overall, the case studies reinforce 
our general observation that simulators have a bias in the computational performance 
toward specific types of the brain network models.

Keywords: computational neuroscience, brain network simulators, spiking neural networks, comparative study, 
phenomenological model, conductance-based model
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1. inTrODUcTiOn

Substantial progress of experimental methods in neuroscience is 
leading to an increasing amount of experimental data becoming 
available for theoretical and computational analyses. Simulations 
of quantitative models of individual neurons and networks are 
the critical component for understanding brain function under 
normal and pathological conditions. Indeed, computational 
neuroscience plays a critical role in the study of many neuro-
logical disorders, including epilepsy (Soltesz and Staley, 2008). 
Theoretical and computational studies of brain networks are a 
critical part of both the US BRAIN initiative (Insel et al., 2013) 
and the European Human Brain Project (Markram, 2012). 
Moreover, due to their ever increasing complexity, modern 
neural models demand extensive computational power, which 
require integration with high-performance computing (HPC). 
To meet the needs of the community, researchers have developed 
and released several software packages that are suitable for HPC 
platforms and provided online access to HPC resources for these 
packages (see, for example, the Neuroscience Gateway portal, 
Sivagnanam et al., 2013).

Currently, there are many software packages for brain network 
simulations that are available as open-source computer programs 
and can be downloaded free of charge. Moreover, users have a 
wide choice of tools (software “front-ends”), which enable users 
to describe their models in a unified format, allowing them to 
switch freely from one simulator to another without redesigning 
their models. For example, researchers can develop models in 
the Python language (PyNN; Davison et al., 2009) or through a 
graphical interface (neuroConstruct; Gleeson et al., 2007). This 
has contributed to a significant growth in the development of 
universal descriptions for neurons, synapses, and connections, 
which can potentially be ported to any of the network simulators 
(see for example, NeuroML, Gleeson et al., 2010).

Although software front-ends can hide the implementation 
complexity of the underlying neuron models used in their 
network, the most common model development cycle in compu-
tational neuroscience research still involves direct development 
and simulation on a specific simulator, but not over front-ends. 
Considering all these issues, the critical features that are impor-
tant in brain simulators are

1. computational performance,
2. code complexity for describing neuron models,
3. user interface and user support, and
4. integration with parallel HPC platforms.

The authors of some of the most popular brain simulators and 
front-ends published a review in 2007 of their respective software 
packages that included a detailed comparison of the software 
(Brette et  al., 2007). However, independent evaluation of brain 
networks simulators has not been done yet.

This article seeks to carry out an independent evaluation of 
some of the popular brain networks simulators from the per-
spective of a computational neuroscience researcher and deliver 
detailed comparisons of the software based on the four critical 
features listed above. In our evaluation, we study and compare 

four software packages in detail. Three of the simulators are 
the most popular packages in use, as evidenced from the total 
number of records in Model DB (Hines et al., 2004)—NEURON 
(Carnevale and Hines, 2006), GENESIS (Bower and Beeman, 
1998), and BRIAN (Goodman and Brette, 2009). Note that in 
the original publications the authors capitalize only the first 
letter of the software name for Brian; however, we will use all 
uppercase letters in BRIAN to indicate that we are referring to 
the software’s name. We added the NEST simulator (Gewaltig and 
Diesmann, 2007) to these three, which is a flagship simulator of 
the Human Brain Project (personal communication T.A.E.-G. 
with Marc-Oliver Gewaltig). Based on the user documentation, 
a literature search, and a source code examination, we estimate 
several critical characteristics of the selected software: the range 
of models, simulation ambit; computational architecture; compu-
tational efficiency; tools for model parallelization; and usability 
and support for users. We used the Model DB website to define 
the usage frequency for each of the four software being compared 
over the last 3 years. Finally, we performed an analysis on two case 
studies using each piece of software; one for a large network with 
simple neural and synaptic models and the other for a smaller 
network with more sophisticated models. The two case studies 
were selected to represent the most extreme cases in the model-
type domain, which can be simulated on the selected software. 
The main purpose of performing two case studies is to prevent a 
bias in the comparison as these different types of models require 
different characteristics of the software package.

2. MaTerials anD MeThODs

2.1. selection of Most Popular software
To identify the three most popular software packages, we ana-
lyzed the “simulator” page at Model DB website (https://senselab.
med.yale.edu/ModelDB/FindBySimulator.cshtml). We removed 
all general-purpose languages and software such as MATLAB, 
Python, C/C++, XPP, and Mathematica, from the list. Of the 
software remaining, the three most popular simulators, viz, 
NEURON, GENESIS, and BRIAN, were thus selected for further 
analysis.

2.2. software characterization
First, we selected the model range used in simulations of Brain 
Networks in the literature (Koch and Segev, 1998; Dayan and 
Abbott, 2001; Gerstner and Kistler, 2002) as well as in recent 
reviews (Brette et  al., 2007). We also used examples from the 
Model DB website and studied the source code to identify the 
range of neural and synaptic models that can be realized using 
each software package. A literature search and browsing of docu-
mentation/tutorials was used to characterize the computational 
architecture for each software. We studied the available source 
code and literature for each package to define the potential 
computational efficiency and tools for model parallelization. An 
examination of the user documentation and software websites 
allowed us to estimate the software package usability and support 
for users. Finally, we estimated the dynamics of simulator usage 
by the community in two interdependent ways. We queried the 
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Model DB website for models implemented in each simulator 
and filtered the results to obtain the number of public records in 
Model DB over the last 3 years. We also used official NEURON 
and NEST websites to obtain the number of publications in which 
these simulators were used. Unfortunately, the GENESIS website 
does not track publications after September 2007, and the BRIAN 
website does not track publications, which use BRIAN at all. We 
obtained rough estimates of the number of publications, which 
exploit these simulators by querying the number of citations 
for (Bower and Beeman, 1998, The Book of GENESIS) and two 
key BRIAN publications (Goodman and Brette, 2008, 2009) in 
Google-Scholar. Note that we did not exclude self-citations and 
“technical” publications from citation indexes; therefore, these 
indexes may be overestimated.

We then performed two case studies using each simulator 
apart from GENESIS, to confirm our estimations. GENESIS was 
not included in the comparison because we did not find a valuable 
example of a module for the leaky integrate-and-fire model or an 
approach to organize a robust Python interface with GENESIS 
(probably due to our limited experience with this simulator).

2.2.1. Case Study 1
Classical Pyramidal InterNeuron Gamma (PING) network 
(Brunel and Wang, 2003; Atallah and Scanziani, 2009) was used 
as an example of a network with simple individual neurons. The 
network consists of 5,000 standard leaky integrate-and-fire (LIF) 
neurons randomly connected by delta synapses with constant 
axonal delay. In the network, 4,000 (80%) neurons were assigned 
as excitatory and 1,000 (20%) as inhibitory neurons. The evolu-
tion of membrane potential of each neuron in the population is 
described by a first-order differential equation with resetting:

 

dv
dt

v g t t d v v v t t
j

j r= − + − ′ − ; > : = , ′ =∑τ
δ( ) θ

 
(1)

where θ is a threshold; jt′  is the time of spike of the jth presyn-
aptic neuron, τ is a time constant of membrane potential; g is the 
synaptic weight; δ() is the Dirac’s delta function, d is the axonal 
delay, and vr is a reset membrane potential. For simplicity, in this 
case study, we set the threshold to θ = 1 mV, the reset voltage and 
time constant were set to vr = 0 mV, τ = 10 ms, correspondingly. 
The next spike for any neuron in both populations could not be 
generated during the refractory period after a previous spike. 
The refractory period was set to 5.01 ms.

In addition to 5,000 LIF neurons, the network consists of 500 
Poisson spike generators. Connection probabilities were set up 
as follows:

• inside the excitatory population, Pee = 0.005;
• from excitatory to inhibitory populations, Pei = 0.3
• inside the inhibitory population, Pii = 0.3;
• from inhibitory to excitatory population, Pie = 0.2; and
• from Poisson spike generators to excitatory neurons, Pse = 0.15.

Synaptic weights (g) and delays (d) for these connections were 
set to gee = gei = 0.009 mV, dee = dei = 0.8 ms; gii = gie = −0.05 mV, 
dii = die = 2.1 ms; and gse = 0.025 mV, dse = 0.5 ms. Each Poisson 
spike generator produced a random spike sequence with 50 Hz 

mean frequency. A connectivity pattern as well as Poisson genera-
tor spike sequences were generated once and were identical for 
this case study using all studied simulators.

The simulation was run for 1 s of model time on Linux box 
(CPU: dual-core Intel Core i5 2.70  GHz, RAM: 16  Gb, HDD: 
512 Gb) under the operating system Linux Mint 18.1 KDE edi-
tion. The network was implemented as Python scripts for each 
software. Python’s standard library function time was used to 
define the time required to build a network and time required to 
simulate 1 s of network dynamics. We measured building time as 
the difference between the time value just prior to a first call of the 
first simulator’s function and the time value when the simulator 
was ready to run the simulation. The simulation time is the differ-
ence between the time just before calling the simulation’s function 
to run the simulation and just after simulator returns back control 
to the Python script. In this study, we used BRIAN version 2.0.1, 
NEURON Release 7.4 (1370:16a7055d4a86) 2015-11-09 and 
NEST 2.12.0. NEST and NEURON were compiled locally from 
source code, and BRIAN was obtained via pip interface to PyPi. 
The scripts do not control for the numerical methods to solve 
differential equations, apart from BRIAN, which required set 
numerical methods explicitly. The script sets recommended a 
semianalytical “linear method” for BRIAN, which worked in 
default “numpy” regime (see Discussion for more details). Here, 
we specifically use the software in default mode: “off-the-shelf,” 
which is an exponential-Euler solver for NEST and NEURON. 
The scripts control the time step for the solution, which was set 
to 0.1 ms for all simulators. To estimate peak memory usage, we 
dumped the output of the top command every second and report 
the maximal memory allocation in a Figure S1 in Supplementary 
Material.

2.2.2. Case Study 2
A recently published PostinhIbitory Rebound—InterNeuron 
Gamma (PIR-ING) network (Tikidji-Hamburyan et  al., 
2015)—was used to study a network with complex models 
of individual neurons. The network consisted of 400 classical 
Hodgkin–Huxley (HH) (Hodgkin and Huxley, 1952) neurons 
with double-exponential synapses. The dynamics of each neuron 
is described by four dynamical variables for each neuron plus two 
dynamical variables for each inhibitory synapse. We also added 
one additional dynamical variable for exponential synapses to be 
able to compare BRIAN and NEURON with the standard NEST 
hh-module. The evolution of membrane potential and all other 
dynamical variables are given by standard systems of first order 
differential equations (2), where gNa, gK, and gL are the maximum 
conductance values for sodium, potassium, and leak currents; 
ENa, EK, and EL are the reversal potentials for the corresponding 
currents; gi, Ei and ge and Ee are the peak conductance and reversal 
potentials for inhibitory and excitatory synapses, respectively; c is 
the membrane capacitance; αX(v) and βX(v) are the standard HH 
rate functions for sodium activation (X is m), sodium inactivation 
(X is h), and potassium activation (X is n) (Hodgkin and Huxley, 
1952). Each neuron was sparsely connected by inhibitory syn-
apses with 40 random neurons within the population. For all con-
nections, the axonal propagation delay was set to di = 3 ms. Time 
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constants for synapses were set to τi1 = 0.99 ms and τi2 = 1 ms. 
Inhibitory synaptic conductance and reversal potential were set 
to gi = 2 nS and Ei = −75 mV, respectively. Excitatory synapses 
were not used in this case study but were added to equalize the 
total number of differential equations in the model.
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The network was implemented using Python scripts for each 
simulator. The simulation was run for 500  ms of model time 
with the same software and hardware setup as described in Case 
Study 1. A similar procedure for evaluating the building time 
and simulation time was used. As in Case Study 1, the script 
controlled only the time step, which was set to 0.05  ms for 
each simulator. In the second case study, “off-the-shelf ” default 
numerical solvers were as follows: Runge–Kutta 4/5 imple-
mented in the GNU scientific library for NEST and exponential 
Euler for ion channels and a modified implicit Crank–Nicholson 
method for voltage (Hines and Carnevale, 1997) for NEURON. 
For BRIAN, the recommended “linear solver” cannot be applied 
due to the problem complexity of the neuronal model. We tested 
the “exponential-Euler solver,” which produced a solution faster 
than NEURON and NEST. However, to keep the integration 
method accuracy closer to that of NEST and NEURON, we use 
the Runge–Kutta (rk4) solver. Therefore, note that the simulation 
time, reported in this Case Study for BRIAN, can be reduced to 
less than 3 s, if the “exponential-Euler solver” is used.

2.3. estimation of code complexity for 
Both case studies
We used source code from the main stable branch of NEURON 
and NEST to study the complexity of modules used in both 
case studies. For Case Study 1, NEURON module intfire1.mod 
and NEST module iaf_psc_delta.h iaf_psc_delta.cpp were used 
for a code complexity study. In Case Study 2, NEURON mod-
ules exp2syn.mod, expsyn.mod, hh.mod, and NEST module 
hh_psc_alpha.cpp hh_psc_alpha.h were examined. Note that 
we include Python scripts in the code complexity estimation. 
For any module used, comments, empty lines, and unnecessary 
spaces were removed. We then counted the number of lines as 

well as number of characters, which a potential user has to write 
as code if they decide to develop a similar module “from scratch.” 
It should be noted that recently developed NESTML (Plotnikov 
et al., 2016) may significantly decrease code complexity of NEST 
modules in future. For BRIAN, all mathematical expressions were 
included in a single Python script, which was used to define the 
code complexity. We used examples from the BRIAN tutorial 
and user documentation to develop the most “authentic” code 
for BRIAN.

2.3.1. Source Code Sharing
The source code of the models and required scripts will be made 
publicly available via the ModelDB website after publication of 
this article: http://senselab.med.yale.edu/ModelDB/showModel.
cshtml?model=222725.

3. resUlTs

3.1. Determining the Most Popular 
software for Brain network simulations
As the first step, we defined the three most popular software 
for brain network simulations. As described in Materials and 
Methods, we estimated each simulator’s usage by the number of 
records publicly available on the Model DB website. We excluded 
any general-purpose computer languages from consideration. 
Figure  1A shows the relationship between the total number 
of records for the top three packages: NEURON (73.7%), (p)
GENESIS (5.3%), and BRIAN (4.9%), as well as for one addi-
tional package NEST (0.9%) in Model DB. These four packages 
are characterized below. Note that we do not exclude front-end 
packages from the “others” category (15.3%), which supports our 
finding that the development of models for specific simulators is 
a dominating paradigm in the computational neuroscience field. 
A full list of simulators and number of records in Model DB is 
given in Table S1 in Supplementary Material.

3.2. general characteristics for Brain 
network simulators
We referred to the user documentation, results from a literature 
search and source code to examine the most crucial characteristics 
of the selected software: model range and limits of implementa-
tion of each simulator; computational architecture, efficiency 
and tools for model parallelization, and program usability and 
support.

3.2.1. The Range of the Model of Each Software 
Package
One of the most critical characteristics of software for simulat-
ing brain networks is the model range that defines the envelope 
for computation. Researchers use a wide range of models to 
study brain neural networks: from “dynamicless” stochastic 
models to detailed 3D morphological models with an accurate 
representation of spatial-temporal integration in dendrites, 
modeling extracellular currents around dendrites and cell body, 
and modeling of individual molecules in intracellular signal-
ing pathways. Moreover, while some of these models can be 
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FigUre 1 | Frequency of software usage. (a) Total number of public records for three top most popular simulators and NEST in the ModelBD. Full list of considered 
software in Others and number of records in the ModelBD are given in the Table S1 in Supplementary Material. (B) Number of citations for each selected software. 
For NEURON and NEST, the numbers of citations are taken from official website. For GENESIS and BRIAN, this number was obtained as a number of articles which 
cite a key publication(s) of each simulator (see main text, Materials and Methods section, for more details). (c) Number of records in the ModelDB for each selected 
software published in the last 3 years.

TaBle 1 | Neural models range.

neUrOn nesT Brian genesis 

Neuron model without dynamics M M Y M

Neuron model with simplified and discontinuous dynamics
Examples: Leaky Integrate-and-Fire (LIF), Izhikevich or Quadratic LIF; Exponent Leaky Integrate-and-Fire (eLIF)

M M Y M

Neuron model with simplified and continues dynamics
Examples: FitzHugh–Nagumo, Morris–Lecar

M M Y M

Single compartment, conductance-based model—temporal integration (point neuron)
Examples: Single-Compartment Hodgkin–Huxley model

YG M Y Y

Can conductance-based descriptions of ion channels be added to the neuron model?
Example: h-channel

YG/M m Y M

Neuron model with simplify morphology (2-compartment model)
Example: Pinsky–Rinzel model

YG M Y M

Full spatial reconstruction of individual neuron morphology cable property spatial-temporal integration 
(multicompartment model)
Example: Mainen–Sejnowski model

YG M:E Y Y

Extracellular/intracellular chemical kinetics
Example: Ca2+ dynamics

M m Y Y

Can new ion be added to existing model YG/M m Y M

Radial diffusion M M:E Y Y

Longitudinal diffusion M M:E N N

Currents in external medium
Examples: to model transcranial magnetic stimulation or deep brain stimulation

M N Y:E M:E

New model of chemical synapse M m Y M

New model of electrical synapse M m Y M

New model of learning rule m M Y M

YG can be done in GUI without programming; Y can be done in script without writing modules; N cannot be done; M can be implemented through external modules; Y:E or M:E can 
be implemented in script or through external modules but requires extensive additional knowledge outside of the presumed user ability, such as numerical methods, physics, and 
partial differential equations (in some sense Y:E ≈ M:E ≈ N); and m cannot be implemented as an independent module but may be done through code modification.
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implemented without writing any scripts by using a Graphical 
User Interface (GUI), other models need to be coded in some spe-
cific or general-purpose computer language. Although modeled 

processes have simple intuitive explanations, for example, dif-
fusion or voltage propagation in dendrites, the mathematical 
and computational implementation is not simple and requires 
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extensive knowledge of partial differential equations and numeri-
cal methods. Therefore, implementation of such models may be a 
challenge for neuroscientists.

In Table 1, we consider a range of models from dynamicless to 
a highly accurate representation of spatial-temporal integration 
and chemical diffusion–reaction. Depending upon the scale of 
neural tissue organization at which a network is studied and the 
availability of computational resources, the researcher may want 
to use simplified models of individual neurons, synapses, or net-
work structure. For example, if the main purpose of a model is to 
study network mechanisms (see Section 1, for example, or Atallah 
and Scanziani, 2009 as a real-life example), an accurate repre-
sentation of the dynamics of individual neurons may be beyond 
the scope of such research; therefore, neurons and, possibly, 
synapses can be represented by simplified or even “dynamicless” 
models. In contrast, if the study of spatial-temporal integration 
in non-linear dendrites is the research question (see Mainen 
and Sejnowski (1996) and Jarsky et  al. (2005) as outstanding 
examples), a network, in which the neuron is embedded, may be 
presented as a simplified model or totally ignored. In this case, the 
electrical properties of membrane excitability along a dendrite, 
chemical kinetics, chemical diffusion of ions inside of the neuron, 
as well as electrical currents in extracellular media must be mod-
eled with great detail. If computational resources are limited, a 
compromise between the accuracy of neurons, synapses, network 
representation, and the time required to compute an evolution of 
network dynamics needs to be found. In Case Study 2 (see Section 
3.3.2), we use an example in which the interaction between the 
dynamics of individual neurons and network dynamics is critical 
for the studied phenomenon. In similar cases, researchers may 
have to reduce both the network size and details of neuron and 
synapse representation. Indeed, single neurons may be presented 
in some cases as two- or single-compartment models but with 
representation of cross-membrane non-linear currents; see 
Mainen and Sejnowski (1996) as representative examples of such 
a reduction. However, if the accuracy of representation is critical 
for the studied phenomena (see Blue Brain and Human Brain 
Projects, Markram, 2006, 2012, as a most impressive example), 
both the non-linear spatial-temporal integration in individual 
neurons and the fully detailed networks should be modeled. 
Therefore, the ability of a simulator to utilize high-performance 
computing is critical in these cases (see Section 3.3.2 for details). 
For each software under study, we consider a generic way of 
implementing each model type in the range discussed above. The 
implementation may be achieved using GUI, writing modules, 
and modification of existing modules or cannot be achieved at 
all. We characterize each simulator separately later.

In general, all simulators can support “dynamicless” neuron 
models. For example, it is possible to use selected software for 
implementation of an artificial neural network with the percep-
trons or a simulating annealing algorithm for energy minimiza-
tion. It is very artificial to implement such a model on software 
developed for dynamic systems, i.e., representing a one-step 
energy evaluation as a time step of a dynamic system. Therefore, 
we consider this kind of model as a boundary for Brain Networks 
simulators, beyond which software for artificial intelligence is a 
better choice. In NEURON, NEST, and GENESIS, these kinds of 

models can be implemented as external modules. In BRIAN, such 
models can be implemented as iterative variables. We did not find 
any examples of realizing these for GENESIS and BRIAN, but we 
only relied on the software documentation.

Models with discontinuous dynamics are at the minimum 
complexity level for Brain Networks simulators, for example, 
classical leaky integrate-and-fire (LIF) (Koch and Segev, 1998), 
Izhikevich model (Izhikevich, 2003) or Quadratic LIF (qLIF) 
(Ermentrout, 1996), Exponential LIF (eLIF) (Brette and Gerstner, 
2005), and many others. Again, all simulators can support this 
kind of model. All simulators, except BRIAN, require the devel-
opment of an external module. We did not find any examples of 
this kind of model for GENESIS, even though documentation 
indicates that such modules may be developed.

The next class of models is characterized by continuous 
dynamics, while the biophysical nature of temporal integration 
is extremely simplified. Such models help understand the general 
dynamics of membrane potential as well as different types of neu-
ron excitability (Rinzel and Ermentrout, 1998). Classical examples 
of such models are FitzHugh–Nagumo (FH–N) (FitzHugh, 1961) 
or Morris–Lecar (M–L) (Morris and Lecar, 1981) models. Again 
all simulators can support this class of models.

The point model, also known as a single-compartment 
model, aims to model biophysical processes of membrane 
potential dynamics accurately. This includes cross-membrane 
currents, membrane capacitance, etc., but without modeling 
their spatial integration. Such models are a subclass of so-called 
“conductance-based” models. In conductance-based models, 
each cross-membrane current is represented as a non-linear con-
ductance, which is connected in series to a battery with voltage 
equal to Nernst’s reversal potential. The conductance is a complex 
dynamic model with one or more dynamic variables. Therefore, 
this class of model is very big, due to many possible combinations 
of ion channels in different neurons. The classical example of a 
single-compartment conductance-based model is the Hodgkin–
Huxley model (Hodgkin and Huxley, 1952). All simulators are 
able to support this kind of model. Note that NEURON allows 
the development of single- and multicompartment conductance-
based models in GUI and does not require any coding, including 
adding new mechanisms (modules); therefore, NEURON is 
widely used as a toolkit for educational purposes.

A researcher may want to add a new channel and update an 
existing model. Different simulators exploit different paradigms 
to achieve this. In NEURON, the user needs to develop a new 
module and set up the distribution of the new channel conduct-
ance along a neuron body. Note that module realization and 
model modification may be done through GUI, but in practice, 
researchers prefer to develop the code. In NEST, modification of 
the whole neuron model is the only option. It may be difficult 
for an inexperienced user if the model is more complicated 
than a just a few channels. For example, implementation of the 
McCormick two-compartment model of a cortical pyramidal cell 
will consist of at least 10 ion channels with 16 activation/inactiva-
tion variables, each of which has two rate functions, plus calcium 
and sodium dynamics, and synaptic dynamics, which results 
in relatively massive code. Such a code would require using a 
structural approach and having good skills in programming. 
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BRIAN exhibits the same problem as NEST, because modularity 
is not an intrinsic property of BRIAN. Finally, GENESIS can 
support any ion channel, which may be implemented as one 
of the embedded model classes without developing a specific 
module. For example, if an ion channel can be described by two 
voltage-dependent gating variables and one calcium-dependent 
variable with Boltzmann rate functions, such a channel can be 
implemented by just setting a required coefficient for the embed-
ded model. Moreover, precalculated lookup tables (see below) 
theoretically allow for defining arbitrary voltage-dependent rate 
functions in the model. However, if new channel dynamics can-
not be fit to any pre-installed models, the user has to develop an 
external module in C.

Two-compartment models can be considered as an interme-
diate model class between point neural models and a full spatial 
reconstruction of neuron morphology (see for example, Pinsky 
and Rinzel, 1994; Destexhe et al., 1996). In such models, spatial 
integration is represented by coupled point models (compart-
ments) with different ion channels in each compartment. Usually, 
one compartment represents an axon or/and soma of a neuron 
and is called the axo-somatic compartment. Another compart-
ment represents the dendrites. The strength of electrical coupling 
between the compartments and their size may be used to mimic 
different neuron morphologies (Mainen and Sejnowski, 1996). 
Indeed, all simulators can support such models. For NEURON 
and GENESIS, these kinds of models should be implemented 
through the same mechanism as multicompartment models. In 
NEST, these models are collapsed into one module with different 
synaptic inputs for each compartment. In BRIAN, the user can 
use both cable model objects or hold all required equations in 
one neuron object.

The most accurate modeling of signal processing in individual 
neurons requires reconstruction of neuron morphology as well as 
the distribution of ion channels along dendrite trees. A classical 
model for dendrites is a non-linear cable, which is described by 
a partial differential equation (Dayan and Abbott, 2001). This 
class of model is considered as a “native” model for NEURON 
and GENESIS. BRIAN can support this kind of model through 
a set of morphology objects, such as a soma, cable cylinder, and 
cable segment. An example of a fully reconstructed neuron can 
be found among the examples included with BRIAN. In NEST, 
the user may develop a module for full dendrite tree reconstruc-
tion, in theory. However, the realization of such a model requires 
an extensive knowledge in numerical methods, good skills in 
programming in C++, as well as a tremendous amount of effort. 
Although a template for the non-linear cable model recently 
appeared in the NEST development repository,1 full reconstruc-
tion of a neuron morphology using this template is still a serious 
challenge, which is unlikely to be met by a researcher with a 
Neuroscience background.

A cross-membrane electrical current may depend upon 
inner and outer ion concentrations. A classical example of 
such a dependency is a calcium-dependent potassium current, 
where conductance is a function of the intracellular calcium 

1 http://www.nest-simulator.org/py_sample/multi-compartment-neuron-example.

concentration. In simple models, calcium kinetics is usually 
defined as a first-order ordinary differential equation (ODE), 
which is easy to embed into a single- or two-compartment model. 
However, the dynamics of calcium concentration is much more 
complex than a first-order ODE in a real neuron. Calcium may 
be buffered by calmoduline and many other molecules, pumped 
into or released from mitochondria and endoplasmic reticula. 
Calcium ions can diffuse inside a neuron both radially and along 
dendrites (longitudinal diffusion). This turns a dendrite model 
into a non-linear diffusion–reaction system. NEURON and 
GENESIS can fully support the complex intracellular diffusion–
reaction system. A user can even add new ions to the system. 
GENESIS, however, cannot support longitudinal diffusion. For 
NEST, the user can develop a specific module or modify existing 
ones for the introduction of a complex model of chemical kinetics 
and diffusion. However, it is very challenging for a neuroscientist 
and, probably, could not be done in the time scale required for 
model development. In BRIAN, chemical kinetics as well as 
radial diffusion can be modeled by adding additional dynamical 
variables to an equation set, but again, an accurate realization will 
require additional knowledge in numerical methods. We did not 
find any evidence that the BRIAN section module can support 
longitudinal diffusion.

During electrical stimulation of a brain in some pathological 
cases (for example, in deep brain stimulation therapy), currents 
in extracellular media play a critical role in the stabilization of 
neuron activity. In addition, consideration of an extracellular 
solution as a “ground wire” is not a very accurate model. Therefore, 
the modeling of currents in extracellular media may improve the 
accuracy of a model and may also be critical for some applica-
tions. We found that only NEURON can model extracellular cur-
rents off-the-shelf. While this is possible in BRIAN and GENESIS 
due to the embedded geometry in the compartment module, it 
requires extensive knowledge far beyond the Neuroscience field. 
In NEST, individual neurons are considered mostly as point 
processes without geometrical representation; therefore, it seems 
very unlikely that modeling of extracellular currents is possible 
in this simulator.

Finally, the user is able to add a new model of chemical and 
electrical synapses as well as the learning rule in all the studied 
simulators. However, it should be noted that the difference 
between developing an independent module for synapses (M) 
and modification of existing modules for each neuron (m) may 
significantly increase the amount of programming work for a 
potential user. For example, if there are five models of neurons 
in a network and a new synaptic model needs to be added to 
all the neurons, in NEURON, it would be done by developing 
a module and creating a new synaptic object, while in NEST, 
the user would need to add a stereotypic code to all five mod-
ules. Note that the NEST programming architecture requires 
implementation of a synaptic model in a neuron class through a 
specific connector handle. Such an architecture prevents simple 
realization of new models for all neurons or even automatic 
addition of new models during a preprocessing compilation 
stage.

In summary, our model range study shows that brain network 
simulators may have a bias toward some specific models. For 
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example, NEST is mostly designed for modeling large networks 
with simple individual neurons, while NEURON and GENESIS 
mostly focus on the reconstruction of spatial-temporal integra-
tion in non-linear dendrites. However, all simulators tend to 
expand specific model ranges and provide a universal environ-
ment for computational study both of individual neurons and 
brain networks. At this moment, NEURON supports the widest 
range of the models.

3.2.2. Computational Architecture, Efficiency, and 
High-Performance Computing Utilization
The organization of computation is an important property of a 
brain network simulator. There are several levels of computational 
organization, which are totally or partially transparent for users. 
Such levels are not independent and constitute a “computational 
architecture” for a particular simulator. In Table 2, we consider 
three main levels of computational architecture for each studied 
software. To avoid confusion, it should be mentioned that brain 
neural networks consist of several levels of complexity: interneu-
ron connectivity, morphology of individual neurons as a basis for 
spatial-temporal integration, and processes on small membrane 
loci. Not surprisingly, the layers of computational architecture 
follow the natural structure of the biological neural networks. 
Therefore, there is a top layer of network organization, a middle 
layer of neuron description, and a bottom layer of minimum 
module computation.

As showed in Muller et al. (2015), Python plays an important 
role in modeling neural networks. All simulators tend to use 
Python as a second language for neural network descriptions. 
In NEURON, description of individual neurons and networks 
may be done either in a native “c-like” language (hoc), on pure 
Python, or in a mix of Python and hoc (Hines et  al., 2009). 
NEST also can interpret Python instead of a native “stack-
machine” language (SLI), for network description, but not for 
individual neurons (Gewaltig and Diesmann, 2007; Eppler 
et al., 2009). GENESIS can use Python as well (Cornelis et al., 
2012), although the software is strongly oriented toward the 
development of an independent native language (G-language; 
Bower and Beeman, 1998). BRIAN shows the most intensive 
use of Python not only for networks but also for whole model 
description languages (Goodman and Brette, 2009). In all 

simulators, a native script language or Python is used for the 
network definition. This top level of computational architec-
ture is processed by an interpreter, due to the assumption that 
network structure is a static part of any model. Indeed in many 
simulations, network connectivity does not change during 
simulation. This allows network structure to be assembled once 
and excludes network reconfiguration from the computation-
ally intensive simulation of dynamics and spiking activity. Note 
that a static network structure may limit the application of the 
simulators. For example, a network is not a static structure 
during pre- and postnatal development (Tikidji-Hamburyan 
et al., 2016) or in several pathological conditions, for instance 
in Alzheimer’s disease.

The minimum level of complexity in computational architec-
ture is a single computational module. A module may represent 
a whole neuron with all the differential equations for both neu-
rodynamics and synaptic dynamics. However, for simulators that 
are more oriented toward modeling spatial-temporal integration, 
a module may represent: a dendrite branch with the characteristic 
set of differential equations for modeling neurodynamics on the 
local spatial locus of the membrane, or implement a mathemati-
cal model for a single ion current, ion concentration, or intra/
extracellular ion diffusion. Therefore, a module has a different 
meaning in different simulators, which we describe in detail 
below.

The next level of complexity deals with individual neuron 
descriptions. For some simulators, this is minimal. For example, 
in NEST, individual neurons are considered as nodes and connec-
tions in a graph structure; therefore, each neuron represents an 
individual computational block or module. In NEST, each module 
is a C++ class, which the user has to develop for the introduc-
tion of any new model. For NEURON and GENESIS, individual 
neuron descriptions have an intermediate level of complexity. For 
phenomenological neural models with both continuous and dis-
continuous dynamics, such as LIF, Izhikevich model, qLIF, eLIF 
and FH–N, and M–L, users have to develop the module (low level 
in the complexity hierarchy). In NEURON, such modules should 
be developed in a specific “c-like” native computer languages, 
NMODL. The syntax of NMODL is deeply simplified, speeding 
up the learning process for new users without a computer science 
background. In GENESIS, the user has to develop the module in 
C, which may be a challenge for a neuroscientist.

In contrast, if the model of an individual neuron is a multicom-
partment model, which addresses spatial-temporal non-linear 
integration, in both NEURON and GENESIS, the user needs to 
describe the neural morphology, electrical property of the cellular 
membrane, and the chemical diffusion–reaction in an interpreted 
language (native hoc/G or Python). In this case, the morphologi-
cal structure and cable property of dendrites are parsed by the 
interpreter at the stage of model formation. The neuron structure 
and connectivity are assumed to be static during the simulation 
of neurodynamics. In BRIAN, the user does not need to develop 
an external module. Instead, the user provides the required equa-
tions for a whole neural model, if it is a phenomenological model, 
or for the membrane electrical balance as well as chemical kinet-
ics and diffusion, if it is a multicompartmental model. This should 
be done in some extension of the Python language using specific 
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language for physics equations. BRIAN and NEURON also check 
the units in the equations, which reduces the possibility of mis-
takes in a model. Indeed, BRIAN forces a user to systematically 
set all the units and does not allow simulation until all units have 
been homogenized, while NEURON only optionally checks the 
units within individual modules.

Due to high computational intensity, all simulators tend to 
compile modules into binary executable dynamical libraries. 
The NEURON routine nrnivmodl converts NMODL script 
into comprehensive, highly computationally efficient, hardware 
specific c-code and uses a system compiler to compile and to link 
a dynamical library (*.so on linux or *.dll on windows). During 
model runtime, NEURON binds this library and uses modules 
in the main cycle of a simulation. NEST uses a similar strategy, 
except that the user has to develop a module in the low-level C++ 
language. Moreover, the user may not have enough knowledge and 
experience to develop an optimal code for a given mathematical 
equation; therefore, computational efficacy may be low. The hope 
of NEST developers for high optimization during module com-
pilation may be ephemeral, due to a limited tolerance of modern 
compilers to the potential inefficiency of a novice users code. 
GENESIS offers two approaches: first if a model can be described 
by one of the built-in formal forms, the user needs only to set a 
required coefficient for the chosen model. Second, if the model 
cannot be described through the built-in equations, the user has 
to develop a new module in a low-level C language. The second 
option has the same disadvantage as the NEST approach. Finally, 
BRIAN offers several different schemes. It can convert equations 
online into a Python code with numpy mathematical routines; 
or into Cython code, which Cython converts into C-code and 
generates modules to bind to; or into low-level C++ code. In 
general, all of BRIAN’s converters may be adjusted to the specific 
hardware architecture; therefore, BRIAN can generate highly 
efficient code without additional effort from the user.

In summary, as we highlight in Table  3, all simulators use 
binary code in their efforts to use the most efficient computations. 
However, as we mentioned earlier, not all simulators provide the 
simplest way for module development or can guarantee highly 
efficient binary code at the end.

The next significant improvement in performance is attrib-
uted to a popularly used optimization scheme, wherein the 
right-hand sides of differential equations are precomputed into 
lookup tables. Such tables can contain steady-state values and 
taus for gating variables against the membrane potential, for 
example. During a simulation, the solver interpolates between 
the points taken from the lookup table instead of carrying out 
a real computation. In general, such an approach significantly 
speeds up the calculation. For example, tabulation of standard 
rate functions in the Hodgkin–Huxley model with a 0.1 mV step 
speeds up computation by at least one order of magnitude, with 
an error of less than 0.3%. Moreover, widely used tables with 
1 mV steps require only a small array of 120–160 (double preci-
sion) float-point numbers and provide results with an error of less 
than 5%. However, such lookup tables need additional memory. 
Therefore, objects in a model usually share the tables to avoid 
wasting memory. Allocation of memory, generation of tables, as 
well as sharing tables along model’s objects, is not a simple task 
for a user without a computer science background, specifically 
in C/C++. NEURON allows the user to turn on/off the lookup 
tables through two commands in the NMODL script. All details 
are totally hidden from the user. NEST does not provide any 
routines for equations, right-hand side tabulations, table sharing, 
or linear interpolations. Therefore, the implementation of such 
lookup tables is a complicated task in NEST. GENESIS directly 
encourages users to use a lookup table (Bower and Beeman, 
1998), which provides a very flexible approach. We did not find a 
way to use lookup tables in BRIAN.

Neural networks are highly heterogeneous. The ability of the 
user to specify the right amount of computation in each part of 
the model can significantly increase computational efficiency. 
All simulators except NEST allow the setting of modules for 
phenomenological neurons, channels, or synapses just when 
they are needed. The NEST architecture, which requires compil-
ing of neural and synaptic models in one object, does not allow 
a reduction of the system of equations for individual objects 
and compels users to use the full system, unless they develop 
a set of modules for all possible combinations of synaptic and 
neural models. For example, if conductance-based neurons in a 
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population receive excitatory NMDA and AMPA synapses as well 
as inhibitory GABA synapses, but not all neurons in the popula-
tion have NMDA or AMPA inputs, the user has to develop at least 
three modules of the same conductance-based model, namely, 
with NMDA + AMPA, with just NMDA, and with just AMPA 
synapses. If only some of the neurons within a population receive 
an inhibitory input, this increases the number of modules, which 
a user has to develop to 6. Of course, they may also use only one 
module with NMDA  +  AMPA  +  GABA synapses and just set 
unused conductance to zero. However, this will not reduce the 
amount of computation, due to the fact that gating variables in 
each synaptic model have to be evaluated for every step of the 
simulation.

Finally, during model development, it is critical to organize 
some sort of break point if some model variable has crossed a 
physiological limit to the values. All simulators except NEST 
allow a script code to be added to a novice user’s code to check 
for such exceptions. We did not find any way to add conditional 
break points to the main simulation cycle in NEST; therefore, the 
user has to wait until the simulation stops, even when the model 
contains a bug.

We next study how different simulators support high-
performance computations (HPC), specifically on multicore 
hardware and on clusters. First, we study how simulators support 
the most common computational tasks in model development, 
such as an embarrassingly parallel problem for the study of a 
model parameter space (Table 3, bottom part). NEURON com-
piled with MPI support, and parallel GENESIS (pGENESIS) can 
support this type of problem. Neither NEST nor BRIAN has this 
kind of mechanism. For both NEST and BRIAN, embarrassingly 
parallel problems must be organized by external procedures in 
addition to a simulator. If the embarrassingly parallel tasks are to 
be deployed to a cluster architecture, the top level procedure must 
use a corresponding environment (“clusterware”), which may be 
a challenge for neuroscientists to define.

Second, we test if a model may be distributed on a computa-
tional cluster, when neuron-to-neuron event-based communica-
tion requires cluster internode communication. All simulators 
except BRIAN support this kind of utilization of HPC resources. 
We did not find any MPI support for the BRIAN simulator, which 
strongly limits its application for large networks. Note that while 
NEST transparently maps a network on a cluster, NEURON 
requires the usage of specific mechanisms for connections, to 
enable MPI simulation (Migliore et al., 2006).

Not all communications are event-based in a real neural net-
work. For example, electrical synapses, also called gap junctions, 
require constant updates at each simulation step. Such a strong 
connectivity requires a high rate of message exchange using the 
MPI system. Both NEURON and NEST allow the use of MPI 
for gap junctions. A recent advance in gap junction simulation 
on MPI clusters (Hahne et al., 2015) improves the efficiency of 
the NEST simulator on a cluster for a network, which contains 
electrical synapses.

The next critical problem appears when a single neuron 
specification is too detailed and requires the distribution of 
computation, even though it is for a single neuron. This is a 
hard problem, due to the high connectivity of the model. Only 

NEURON allows the distribution of a single neuron model on a 
cluster (Hines et al., 2008).

Finally, we ask whether simulators can use an MPI delay to its 
advantage and map axonal delays on MPI message delays (Hines 
and Carnevale, 2008). A simulator can continually compute 
neural dynamics on the period of minimal axonal delay in a 
biological network without synchronization with other compute-
nodes within a cluster. In contrast, if the simulator can compute 
and exchange messages at the same time, this allows partial or 
total elimination of overheads related to the synchronization 
calculations on and data transfer between different nodes. Thus, 
mapping axonal delays on MPI message delays can significantly 
speed up calculations on clusters. It seems that only NEURON 
and NEST can support this useful technique. We could not evalu-
ate this property of pGENESIS due to limited the experience of 
authors with this simulator.

Modern computational paradigms are biased toward many 
core processors, Graphical Processing Units (GPU) or a Field-
Programmable Gate Array (FPGA) computation (Iyer and 
Tullsen, 2015). The standard version of NEURON supports only 
p-threads, which is not a very effective mechanism. However, 
recently, NEURON was ported on GPU and multicore. This port 
is called “CoreNEURON” due to strong limitations on the sup-
ported mechanisms and numerical solvers (Kumbhar et al., 2016). 
NEST can use OpenMP parallelization and is also partially ported 
on GPU (Kayraklioglu et  al., 2015). BRIAN offers third-party 
projects, which export existing BRIAN models as stand-alone 
executables on OpenMP or GPU. However, these exports do not 
support BRIAN/Python language fully and impose limitations on 
available functionality.

3.2.3. Program Usability and Support
As we mentioned in Section 1, several software front-ends such 
as PyNN and neuroConstruct can hide the real implementation 
from a user. Usability and user level support are even more 
important for large size models, in addition to cases when a user 
applies a specific simulator as the main environment for develop-
ment and simulations.

First, we ask if the simulator can be used in a GUI regime. 
As shown in Table  4, only NEURON has an extensive GUI 
interface. Other simulators do not have GUI or assume to use 
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external libraries for GUI, or support GUI during simulation only 
as GENESIS.

All simulators have inter-user and user-developer communi-
cation mechanisms, through online forums or e-mail lists. The 
quality of online documentations is a critical parameter for a 
user. Although all simulators tend to maintain online documen-
tation, the quality of this documentation is variable. Finally, all 
simulators have online tutorials for beginners and user guideline 
books. We did not find an independent book about the NEST 
and BRIAN simulators, but there are chapters in books that are 
available online.

To finish our comparison of simulator usage, we perform a 
study of the most popular model database, Model DB (Hines 
et al., 2004) (see Figure 1). A pool of models implemented on 
each software over the last 3 years (Figure 1C) indicates increas-
ing community interest in the BRIAN simulator as well as a slight 
decrease in interest in GENESIS and NEST. However, NEURON 
has remained the most popular software over the last 3  years 
and also on average ever, since Model DB has been in existence 
(Figure 1A). We believe that such a dramatic difference between 
the usage of NEURON and other software cannot be explained 
only by the fact that Model DB is supported by the NEURON 
founders. Indeed “Model DB—independent” assessment of sim-
ulator usage by a number of published papers, which used each 
simulator (Citation index, Figure 1B; Table S2 in Supplementary 
Material) indicates the same arrangement in software popularity: 
NEURON > GENESIS > BRIAN > NEST. This result also supports 
the authors’ personal experience based on the analysis of posters 

at Society for Neuroscience meetings over the last 5 years that 
NEURON is the most popular simulator in the Neuroscience 
field. It also reflects the number of years taken for simulator 
development: BRIAN and NEST were under development for a 
duration that is half that of NEURON and GENESIS (Table 4). It 
thus appears that NEURON is the de facto standard for carrying 
out simulations of brain networks.

3.3. case studies
We performed two case studies to compare the code complex-
ity and single-threaded performance of the studied simulators.  
We used the most extreme cases in the range of model types that 
can be simulated on the selected software. It should be noted 
that we did not write modules for NEURON and NEST but used 
developers’ code that comes as a part of the source code distribu-
tion. For BRIAN, we used examples from the BRIAN website to 
limit code complexity to that presented in the available documen-
tation (see Materials and Methods for more details). Again we 
had to exclude GENESIS from our case studies, because we could 
not find any examples or modules for the LIF model or a way to 
organize a robust Python interface with GENESIS.

3.3.1. Case Study 1: Classical Pyramidal InterNeuron 
Gamma (PING) Oscillations
In the first case study, we used a standard network of PING 
oscillations. The network is a simplified version of the (Brunel 
and Wang, 2003; Atallah and Scanziani, 2009) model. It consists 
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FigUre 3 | Case Study 2. (a) Raster diagrams of Standard PostInhibitory Rebound—InterNeuron Gamma oscillations (PIR-ING) in network of 400 Hodgkin–Huxley 
(black dots). Each dot is a spike of particular neuron within a population. Diagram was obtained from simulation on BRIAN (A1), NEURON (A2), and NEST (A3) 
software. Same analysis of performance (B) and code complexity (c) as in Figure 2.
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of 4,000 excitatory and 1,000 inhibitory LIF neurons and 500 
Poisson generators. Synaptic interactions are modeled by a simple 
instantaneous pulse, as described in Case Study 1 in the Materials 
and Methods section. This case study is favorable for simulators 
oriented toward network properties with the simplest neural and 
synaptic models.

First, all simulators produce similar network activity 
(Figure  2A), although not identical. Note we constrain all the 
model parameters and random sequences to be exactly the same. 
The model building time was the longest for NEURON (Figure 2, B1),  
which is probably because that NEURON does not support batch 
connection creation; therefore, each connection has to be created 
independently. Indeed, this NEURON feature rises from the 
fact that for multicompartment models, connections cannot be 
represented just by indexes of pre- and post-synaptic neurons but 
also by the location of synapse on dendrite tree.

NEURON had the highest simulation time (Figure 2, B2). It 
is not surprising, because the network of LIF is not a favorable 
model for NEURON. Interestingly, BRIAN showed a better per-
formance than the highly optimized low-level C++ NEST’s code.

Although neural and synaptic models are extremely simple in 
this case study, different simulators show dramatic differences in 
code complexity (Figure 2, C1,C2). In both lines of code (LOC) 
and number of characters (NOC), BRIAN uses the most concise 
language and shows best performance for this type of model. 
Indeed, the preference of NEST developers to use low-level C++ 
language leads to a very complicated code, which exceeds BRIAN 
and NEURON several times for both LOC and NOC counts. 
However, a recently introduced language for NEST modules, 

NESTML (Plotnikov et al., 2016), may significantly reduce both 
LOC and NOC in the future.

3.3.2. Case Study 2: PostInhibitory Rebound 
InterNeuron Gamma (PIR-PING) Oscillations
In the second case study, we use PIR-ING network (Tikidji-
Hamburyan et  al., 2015) with a classical single-compartment, 
conductance-based Hodgkin–Huxley model (Hodgkin and 
Huxley, 1952). The network consists of 400 neurons with no 
external activation. Only inhibitory connections are presented 
in the model. An inhibitory synaptic current is described as a 
double-exponential dynamical process, which adds two differen-
tial equations to the main neuron dynamics. Note that we add a 
single-exponential excitatory synapse to each neuron in BRIAN 
and in the NEURON version of the model. We had to add this 
almost silent synapse to equalize the number of equations, which 
each package evaluates for each neuron, as the NEST module 
has two built-in synapses and modification of this module is not 
trivial. This case study is assumed to be favorable for simulators 
oriented toward accurate spatial-temporal integration, but it is 
still possible to implement it on “network-oriented” simulators.

First, we find that simulators also do not show identical 
results (Figure 3A). The differences appear in the initial network 
oscillations and in the frequencies of network oscillations. Note 
that random initialization as well as random connectivity were 
generated once; therefore, we constrain all the model parameters 
and random sequences to be exactly the same. We do not have 
valuable explanations for this difference and leave this question 
open for further research.
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For model formation, BRIAN needs more time that any other 
simulator (Figure 3, B1). It probably indicates longer time for in-
line compilation. The building time also did not take into account 
that NEST and NEURON need time for module compilation, 
which is not part of the script. However, note that NEST and 
NEURON need compilation only once, while BRIAN needs time 
for analysis and compilation for every model run. This may be 
one of the biggest disadvantages of BRIAN for big and compli-
cated models. Surprisingly, NEURON does not show the fastest 
building time, even though it is mostly oriented to this kind of 
model. Again, the long formation time in NEURON is, probably, 
due to the absence of batch methods to create connections and 
each NetCon object has to be created independently in the script.

NEURON shows the best performance for this model type  
(Figure  3, B2). Note that off-the-shelf NEURON uses an 
exponential-Euler method to solve ion-channel gating variables 
and high-order numerical methods only for voltage. However, 
switching on different solvers does not reduce NEURON’s per-
formance significantly (not shown); therefore, we assume that 
high NEURON performance is due to using tabulated results 
for the right-hand side of differential equations for the gating 
variables. Although BRIAN’s simulation time is the longest in this 
case study, it may be significantly improved if the less accurate 
“exponential Euler” is used.

Evaluation of code complexity shows that BRIAN has the 
most compact code, while the NEST code exceeds this more than 
three times in both LOC and NOC counters, although this may 
be improved with NESTML language. Again, as we mentioned 
earlier, the implementation of low-level languages does not 
guarantee optimization.

4. DiscUssiOn anD cOnclUsiOn

4.1. Other software Packages for Brain 
network simulations
We consider here the three most popular software packages for 
brain network simulations: BRIAN, GENESIS, and NEURON  
(in alphabetic order) in addition to the NEST simulator. How ever, 
there are many other less popular packages, which target the same 
or similar fields. For example, we did not consider here general-
purpose software, such as XPP-auto (Ermentrout, 2002), the 
package for studying general dynamical systems, or MATLAB™, 
a general mathematical framework, due to an absence of specific 
routines for neural network simulation. Comparative analysis 
between these software and specialized simulators is hardly pos-
sible. The same can be said regarding models developed using 
general-purpose computer languages, such as C/C++, Fortran, 
and Python. Note that Python can be used as the language to 
describe a network structure as well as individual morphological 
detailed neurons. In this case, Python is not used as a main com-
putational kernel but forms a wrapper around computationally 
intensive parts of the software.

Note that simulators that allow the study of effects of precise 
ion-channel positions on dendrite membranes (see for exam-
ple, Cannon et  al., 2010) or effects of diffusion of individual 
molecules in cytoplasm (see for example, Hepburn et al., 2012) 

are beyond the scope of this article, due to limited application 
of this software for large brain network simulations. We did not 
consider other simulators due to a low frequency of usage or 
early stage of software development (for example, NSC, Drewes, 
2005, or NeuroCAD, Tikidji-Hamburyan and Markin, 2008). We 
also excluded from this analysis all simulators that can support 
only one neural/synaptic model or have a very limited range 
of supported models, for example, only single-compartment 
spike or rate-based models (ANNarchy—C++ code generator 
for software and hardware implementation, Vitay et  al., 2015; 
Auryn—optimized for multiscale time resolution and formal 
representation of spike-dependent plasticity, Zenke and Gerstner, 
2014; and GeNN—oriented on maximal performance on graphi-
cal processors, Yavuz et al., 2016).

4.2. Model range and selection of the 
case studies
As we stated earlier, we attempted to select the most “distal” 
model types in the model-type domain, which may be simu-
lated on selected simulators. However, it should be mentioned 
that other cases may be selected from the same domain. For 
example, one can study a single-compartment model and fully 
reconstructed neuron on BRIAN, NEURON, and GENESIS 
with the exclusion of NEST. Although in our opinion, the 
model-type range is the most critical characteristic of the 
brain network simulators, one can study the quality of HPC 
utilization and compare pGENESIS, NEURON, and NEST with 
the exclusion of BRIAN. We hope that our results will open a 
broad discussion in computational neuroscience and computer 
science communities and will trigger further independent 
wide-ranging studies of simulators in the computational neu-
roscience field.

4.3. available solvers
Although we consider here the performance of all packages “off-
the-shelf ”, at least NEURON and BRIAN offer a range of “solvers” 
for numerical integration of differential equations. For example, 
one such solver is CVODE (Hindmarsh et  al., 2005) that can 
significantly increase the speed of simulations, especially when 
the spike activity is periodical with high synchronization. Indeed, 
this ability can help the user to use the most optimal solver for 
a specific model. However, a choice of the solver may not be a 
trivial problem. Therefore, a comparative study of performance 
can depend upon the choice of solver. For example, a linear Euler 
method may be 10-fold faster than the GNU Scientific Library 
implementation of Runge–Kutta 4/5 method (Vitay et al., 2015). 
Indeed, NEURON and NEST modules were developed for specific  
models and, therefore, they are “aware” of the model type and 
change solvers accordingly (exponential Euler for LIF vs RK45 
or modified Crank–Nicholson method for conductance-based 
models). Thus, the default solver is a reasonable choice at least. 
In contrast, BRIAN’s online documentation recommends the 
use of a “linear solver” with the suggestion to try other options 
if BRIAN fails to generate code for this solver. However, when 
the recommended solver fails, the user has to choose a solver 
from the list. It seems that the “off-the-shelf ” solvers are model  
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specific and well optimized, but we leave this question outside of 
the scope of this study.

Another critical question, which we also left outside of the 
scope of this study and just briefly discuss here, is how simple is it 
to change a solver in a model. Different simulators offer different 
functionalities. In NEURON and BRIAN, the embedded solvers 
may be changed by editing one parameter in a script or in a mod-
ule. In NEST, changing the solver may not be a trivial problem, 
due to the use of low-level C++ language for module develop-
ment. For example, if the user wants to implement the CVODE 
solver, which requires that all dynamical variables must be held in 
one vector, she or he has to modify not only the module code but 
also the NEST kernel code, due to the inner object-oriented class-
based architecture. In NEURON and BRIAN, a similar problem 
appears if the user wants to use a solver, which is not embedded 
into the simulator (for example, use CVODE in BRIAN).

4.4. Brian Performance for Different 
code generation Modes
As we noted in Section 2, we used BRIAN in “default” code 
generation mode, i.e., numpy code. However, the user can switch 
to Cython or pure C-code generation to improve performance. 
Indeed, Cython can speed up computation by at least 20–30% 
in both case studies. Moreover, depending on the hardware 
and installed software, a 4- to 5-fold increase may be achieved. 
However, the first run (or run after any changes in the scripts) will 
take at least 3 times as long as any subsequent numpy code, due to 
the longer process of compilation. Therefore, in the development 
stages, numpy is the preferred code generator, while long runs of 
a well debugged model will perform better using the Cython code 
generator, with modules precompiled through a brief run.

BRIAN also can generate so-called “Standalone code,” which 
can use OpenMP threading. Standalone code may potentially 
be “much faster” than numpy/Cython code but with additional 
limitations on functionality. It seems that the OpenMP code gen-
erator is still in development and “may be not accurate” according 
to Brian2 documentation.

4.5. high-Performance computing
With the current development of computational clusters and 
multicore computers, the ability of a simulator to utilize the 
power of HPC is critical, in order to enable simulations of large 
scale networks. Moreover, it is critical to have a simple way for 
mapping existing models of brain networks on clusters or multi-
core computers. It should be noted that HPC computation is one 
of the weakest characteristics of BRIAN software. BRIAN does 
not support MPI on clusters, and stand-alone OpenMP and GPU 
versions have limited functionality. Using NEURON, users have 
to modify scripts if the model was developed without using the 
ParallelContext mechanisms, and later, it has to be mapped onto 
the cluster. This requires additional effort and may generate addi-
tional bugs. However, this approach is flexible and allows the user 
to map the neural network architecture onto cluster hardware 
with a better balance, which may be critical for both heterogene-
ous network architectures and heterogeneous clusters. It is only 
when the user wants to use multi-threading that NEURON’s 
script requires minimal changes. NEST offers the simplest way 

to map a model onto a cluster or multicore computers without 
any changes in scripts. That is definitely the strongest advantage 
of NEST.

4.6. Usability
It is important to note that front-ends, such as PyNN and neu-
roConstruct, as well as high-level structural languages, such as 
NeuroML, may help hide the code complexity at the simulator 
level. Such front-ends can help to decrease both LOC and NOC 
or totally/partially substitute code development by manipula-
tions with user-friendly GUI. However, front-ends use internal 
converters to generate final script(s) for a specific simulator based 
on model description. The development of such converters is 
more complicated for simulators with high NOC and LOC (see 
Figures 2C and 3C), than for concise languages. Therefore, our 
analysis of code complexity can be considered not only as an 
estimation of the amount of effort required for model develop-
ment but also as a potential barrier for developing a converter. 
Although the code conciseness does not guarantee readability or 
comprehension, a better analysis is not possible due to differences 
in languages for the modules used by the simulators.

While the authors acknowledge that the number of lines 
of code may not be fully accurate in capturing the software 
development effort, it remains a valuable quantitative metric for 
comparing codes developed in high-level languages and software 
frameworks. Notably, DARPA’s High Productivity Computing 
Systems (HPCS) program that ran during the first decade of 
the 21st century used the Source Lines of Code (SLOC) metric, 
which is the same (Dongarra et  al., 2008). SLOC was used in 
comparing the productivity of different parallel computing 
languages. Furthermore, Lind and Vairavan (1989) carried out 
an experimental investigation of software metrics and concluded 
that conceptually simple measures such as LOC exhibit a high level 
of correlation to the development effort, equaling or surpassing 
other software metrics. In our study, we augment the LOC metric 
with another simple metric used by Lind and Vairavan (1989), the 
number of characters (NOC), as we did in a prior study in parallel 
computing (Cantonnet et al., 2004).

4.7. summary
Here, we considered the most popular software packages for brain 
network simulations: BRIAN, GENESIS, NEST, and NEURON. 
All simulators tend to support a large range of models of neurons 
and synapses. However, the performance of these simulators is 
different, and the complexity of codes required for model descrip-
tion is diverse. Not all simulators can be used on computational 
clusters, but all of them may be used on multicore computers with 
some limitations.

aUThOr nOTes

The authors have more than 10 years of experience in spiking 
neural network simulations as well as a history of developing 
brain network simulators, NeuroCAD (Tikidji-Hamburyan 
and Markin, 2008). We routinely use NEURON, BRIAN, XPP, 
and NEST. However, we should admit that we have limited 
experience in using GENESIS and pGENESIS. Our evaluation 

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


15

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

of (p)GENESIS is mostly based upon the documentation and 
available examples.

aUThOr cOnTriBUTiOns

RT-H, ZB, and TE-G designed the research; RT-H conducted the 
research; RT-H, VN, and TE-G discussed the results; RT-H and 
VN wrote the manuscript.

acKnOWleDgMenTs

The authors gratefully acknowledge the assistance of Dr. Rachel 
Atkinson in editing the manuscript. The authors also deeply 

appreciate comments of both anonymous reviewers, which 
allowed to significantly improving the quality of the publication.

FUnDing

Zeki Bozkus is funded by Scientific and Technological Research 
Council of Turkey (TUBITAK; 114E046).

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/
full#supplementary-material.

reFerences

Atallah, B. V., and Scanziani, M. (2009). Instantaneous modulation of gamma 
oscillation frequency by balancing excitation with inhibition. Neuron 62, 
566–577. doi:10.1016/j.neuron.2009.04.027 

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic 
Neural Models with the GEneral NEural SImulation System, 2nd Edn.  
New York: Springer-Verlag.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model 
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642. 
doi:10.1152/jn.00686.2005 

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. 
(2007). Simulation of networks of spiking neurons: a review of tools and strate-
gies. J. Comput. Neurosci. 23, 349–398. doi:10.1007/s10827-007-0038-6 

Brunel, N., and Wang, X.-J. (2003). What determines the frequency of fast 
network oscillations with irregular neural discharges? I. Synaptic dynamics 
and excitation-inhibition balance. J. Neurophysiol. 90, 415–430. doi:10.1152/
jn.01095.2002 

Cannon, R. C., O’Donnell, C., and Nolan, M. F. (2010). Stochastic ion channel 
gating in dendritic neurons: morphology dependence and probabilistic synap-
tic activation of dendritic spikes. PLoS Comput. Biol. 6:e1000886. doi:10.1371/
journal.pcbi.1000886 

Cantonnet, F., Yao, Y., Zahran, M., and El-Ghazawi, T. (2004). “Productivity anal-
ysis of the UPC language,” in Proceedings of the 18th International Parallel and 
Distributed Processing Symposium, 2004 (Santa Fe, NM: IEEE), 254.

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge: 
University Press.

Cornelis, H., Rodriguez, A. L., Coop, A. D., and Bower, J. M. (2012). Python as 
a federation tool for genesis 3.0. PLoS ONE 7:e29018. doi:10.1371/journal.
pone.0029018 

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. 
(2009). PyNN: a common interface for neuronal network simulators. Front. 
Neuroinformatics 2:11. doi:10.3389/neuro.11.011.2008 

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT 
Press, 806.

Destexhe, A., Bal, T., McCormick, D. A., and Sejnowski, T. J. (1996). Ionic mecha-
nisms underlying synchronized oscillations and propagating waves in a model 
of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070. 

Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., et al. (2008). 
“Darpa’s {HPCS} program: history, models, tools, languages,” in Advances 
in COMPUTERS, High Performance Computing, Volume 72 of Advances in 
Computers (London: Elsevier, Academic Press), 1–100.

Drewes, R. (2005). Modeling the brain with NCS and Brainlab. Linux J. 2005  
(134), 2. 

Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009). 
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinformatics 
2:12. doi:10.3389/neuro.11.012.2008 

Ermentrout, B. (1996). Type i membranes, phase resetting curves, and synchrony. 
Neural Comput. 8, 979–1001. doi:10.1162/neco.1996.8.5.979 

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A 
Guide to XPPAUT for Researchers and Students. Philadelphia, PA: SIAM.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of 
nerve membrane. Biophys. J. 1, 445. doi:10.1016/S0006-3495(61)86902-6 

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, 
Populations, Plasticity. Cambridge: Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool). 
Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430 

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, 
M., et al. (2010). NeuroML: a language for describing data driven models of 
neurons and networks with a high degree of biological detail. PLoS Comput. 
Biol. 6:e1000815. doi:10.1371/journal.pcbi.1000815 

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool for 
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:10.1016/j.
neuron.2007.03.025 

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks 
in python. Front. Neuroinform. 2:5. doi:10.3389/neuro.11.005.2008 

Goodman, D., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3:26. 
doi:10.3389/neuro.01.026.2009 

Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., et al. (2015). 
A unified framework for spiking and gap-junction interactions in distributed 
neuronal network simulations. Front. Neuroinformatics 9:22. doi:10.3389/
fninf.2015.00022 

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). Steps: efficient simu-
lation of stochastic reaction–diffusion models in realistic morphologies. BMC 
Syst. Biol. 6:36. doi:10.1186/1752-0509-6-36 

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,  
et  al. (2005). Sundials: suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Trans. Math. Softw. 31, 363–396. doi:10.1145/1089014. 
1089020 

Hines, M., Davison, A., and Muller, E. (2009). Neuron and python. Front. 
Neuroinformatics 3:1. doi:10.3389/neuro.11.001.2009 

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment. 
Neural Comput. 9, 1179–1209. doi:10.1162/neco.1997.9.6.1179 

Hines, M. L., and Carnevale, N. T. (2008). Translating network models to par-
allel hardware in neuron. J. Neurosci. Methods 169, 425–455. doi:10.1016/j.
jneumeth.2007.09.010 

Hines, M. L., Eichner, H., and Schürmann, F. (2008). Neuron splitting in 
compute-bound parallel network simulations enables runtime scaling with 
twice as many processors. J. Comput. Neurosci. 25, 203–210. doi:10.1007/
s10827-007-0073-3 

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. 
(2004). Modeldb: a database to support computational neuroscience. J. Comput. 
Neurosci. 17, 7–11. doi:10.1023/B:JCNS.0000023869.22017.2e 

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane 
current and its application to conduction and excitation in nerve. J. Physiol. 117, 
500. doi:10.1113/jphysiol.1952.sp004764 

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The NIH BRAIN initiative. 
Science 340, 687–688. doi:10.1126/science.1239276 

Iyer, R., and Tullsen, D. (2015). Heterogeneous computing [guest editors’ introduc-
tion]. IEEE Micro 35, 4–5. doi:10.1109/MM.2015.82

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural. 
Netw. 14, 1569–1572. doi:10.1109/TNN.2003.820440 

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/full#supplementary-material
https://doi.org/10.1016/j.neuron.2009.04.027
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s10827-007-
0038-6
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1371/journal.pcbi.1000886
https://doi.org/10.1371/journal.pcbi.1000886
https://doi.org/10.1371/journal.pone.0029018
https://doi.org/10.1371/journal.pone.0029018
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1145/1089014.
1089020
https://doi.org/10.1145/1089014.
1089020
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1126/science.1239276
https://doi.org/10.1109/MM.2015.82
https://doi.org/10.1109/TNN.2003.820440


16

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

Jarsky, T., Roxin, A., Kath, W. L., and Spruston, N. (2005). Conditional 
dendritic spike propagation following distal synaptic activation of hippo-
campal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676. doi:10.1038/ 
nn1599 

Kayraklioglu, E., El-Ghazawi, T., and Bozkus, Z. (2015). “Accelerating brain simulations 
on graphical processing units,” in 2015 IEEE International Conference on Computer 
and Information Technology; Ubiquitous Computing and Communications; 
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and 
Computing (CIT/IUCC/DASC/PICOM) (Liverpool: IEEE), 556–560.

Koch, C., and Segev, I. (eds.) (1998). Methods in Neuronal Modeling – 2nd Edition: 
From Ions to Networks (Computational Neuroscience). Cambridge, MA: MIT press.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al. 
(2016). Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations. 
Cham: Springer International Publishing, 363–380.

Lind, R. K., and Vairavan, K. (1989). An experimental investigation of software 
metrics and their relationship to software development effort. IEEE Trans. 
Softw. Eng. 15, 649–653. doi:10.1109/32.24715 

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure 
on firing pattern in model neocortical neurons. Nature 382, 363–366. 
doi:10.1038/382363a0 

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160. 
doi:10.1038/nrn1848 

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55. doi:10.1038/
scientificamerican0612-50 

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006). 
Parallel network simulations with neuron. J. Comput. Neurosci. 21, 119. 
doi:10.1007/s10827-006-7949-5 

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle 
fiber. Biophys. J. 35, 193. doi:10.1016/S0006-3495(81)84782-0 

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and  
Davison, A. P. (2015). Python in neuroscience. Front. Neuroinformatics 9:11. 
doi:10.3389/fninf.2015.00011 

Pinsky, P. F., and Rinzel, J. (1994). Intrinsic and network rhythmogenesis in 
a reduced traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–60. 
doi:10.1007/BF00962717 

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B. 
(2016). “Nestml: a modeling language for spiking neurons,” in Modellierung 
2016 Conference, Volume 254 of LNI, Karlsruhe, 93–108.

Rinzel, J., and Ermentrout, G. B. (1998). Analysis of neural excitability and oscilla-
tions. Methods Neuronal Model. 2, 251–291. 

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., 
Martone, M. E., et al. (2013). “Introducing the neuroscience gateway,” in IWSG, 
Volume 993 of CEUR Workshop Proceedings. Zurich, Switzerland. Available at: 
http://CEUR-WS.org

Soltesz, I., and Staley, K. (2008). Computational Neuroscience in Epilepsy. London: 
Academic Press, Elseiver.

Tikidji-Hamburyan, R. A., El-Ghazawi, T. A., and Triplett, J. W. (2016). Novel 
models of visual topographic map alignment in the superior colliculus. PLoS 
Comput. Biol. 12:e1005315. doi:10.1371/journal.pcbi.1005315 

Tikidji-Hamburyan, R. A., and Markin, S. N. (2008). Neurocad – the modular 
simulation environment for effective biologically plausible neuromodeling. 
BMC Neurosci. 9:91. doi:10.1186/1471-2202-9-S1-P91 

Tikidji-Hamburyan, R. A., Martínez, J. J., White, J. A., and Canavier, C. 
C. (2015). Resonant interneurons can increase robustness of gamma 
oscilla tions. J. Neurosci. 35, 15682–15695. doi:10.1523/JNEUROSCI.2601- 
15.2015 

Vitay, J., Dinkelbach, H. Ü, and Hamker, F. H. (2015). Annarchy: a code generation 
approach to neural simulations on parallel hardware. Front. Neuroinformatics 
9:19. doi:10.3389/fninf.2015.00019 

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code generation framework 
for accelerated brain simulations. Sci. Rep. 6, 18854. doi:10.1038/srep18854 

Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking 
neural networks using general-purpose computers. Front. Neuroinformatics 
8:76. doi:10.3389/fninf.2014.00076 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Tikidji-Hamburyan, Narayana, Bozkus and El-Ghazawi. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://doi.org/10.1038/
nn1599
https://doi.org/10.1038/
nn1599
https://doi.org/10.1109/32.24715
https://doi.org/10.1038/382363a0
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1016/S0006-3495(81)84782-0
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.1007/BF00962717
http://CEUR-WS.org
https://doi.org/10.1371/journal.pcbi.1005315
https://doi.org/10.1186/1471-2202-9-S1-P91
https://doi.org/10.1523/JNEUROSCI.2601-15.2015
https://doi.org/10.1523/JNEUROSCI.2601-15.2015
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2014.00076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Software for Brain Network Simulations: A Comparative Study
	1. Introduction
	2. Materials and Methods
	2.1. Selection of Most Popular Software
	2.2. Software Characterization
	2.2.1. Case Study 1
	2.2.2. Case Study 2

	2.3. Estimation of Code Complexity for Both Case Studies
	2.3.1. Source Code Sharing


	3. Results
	3.1. Determining the Most Popular Software for Brain Network Simulations
	3.2. General Characteristics for Brain Network Simulators
	3.2.1. The Range of the Model of Each Software Package
	3.2.2. Computational Architecture, Efficiency, and High-Performance Computing Utilization
	3.2.3. Program Usability and Support

	3.3. Case Studies
	3.3.1. Case Study 1: Classical Pyramidal InterNeuron Gamma (PING) Oscillations
	3.3.2. Case Study 2: PostInhibitory Rebound InterNeuron Gamma (PIR-PING) Oscillations


	4. Discussion and Conclusion
	4.1. Other Software Packages for Brain Network Simulations
	4.2. Model Range and Selection of the Case Studies
	4.3. Available Solvers
	4.4. BRIAN Performance for Different Code Generation Modes
	4.5. High-Performance Computing
	4.6. Usability
	4.7. Summary

	Author Notes
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References


