
July 2017 | Volume 11 | Article 461

Original research
published: 20 July 2017

doi: 10.3389/fninf.2017.00046

Frontiers in Neuroinformatics | www.frontiersin.org

Edited by:
Andrew P. Davison,

Centre national de la recherche
scientifique (CNRS), France

Reviewed by:
Nicholas T. Carnevale,

Yale School of Medicine,
United States

Marcel Stimberg,
Institut de la Vision, Université Pierre

et Marie Curie, France

*Correspondence:
Ruben A. Tikidji-Hamburyan

rath@gwu.edu

Received: 09 March 2017
Accepted: 26 June 2017
Published: 20 July 2017

Citation:
Tikidji-Hamburyan RA, Narayana V,

Bozkus Z and El-Ghazawi TA (2017)
Software for Brain Network

Simulations: A Comparative Study.
Front. Neuroinform. 11:46.

doi: 10.3389/fninf.2017.00046

software for Brain network
simulations: a comparative study
Ruben A. Tikidji-Hamburyan1*, Vikram Narayana1, Zeki Bozkus2 and Tarek A. El-Ghazawi1

1 School of Engineering and Applied Science, George Washington University, Washington, DC, United States,
2 Computer Engineering Department, Kadir Has University, Istanbul, Turkey

Numerical simulations of brain networks are a critical part of our efforts in understanding
brain functions under pathological and normal conditions. For several decades, the com-
munity has developed many software packages and simulators to accelerate research in
computational neuroscience. In this article, we select the three most popular simulators,
as determined by the number of models in the ModelDB database, such as NEURON,
GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In
addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we
study them based on one of the most important characteristics, the range of supported
models. Our investigation reveals that brain network simulators may be biased toward
supporting a specific set of models. However, all simulators tend to expand the sup-
ported range of models by providing a universal environment for the computational study
of individual neurons and brain networks. Next, our investigations on the characteristics
of computational architecture and efficiency indicate that all simulators compile the most
computationally intensive procedures into binary code, with the aim of maximizing their
computational performance. However, not all simulators provide the simplest method
for module development and/or guarantee efficient binary code. Third, a study of their
amenability for high-performance computing reveals that NEST can almost transparently
map an existing model on a cluster or multicore computer, while NEURON requires
code modification if the model developed for a single computer has to be mapped on a
computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN,
which provides no support for cluster computations and limited support for multicore
computers. Fourth, we identify the level of user support and frequency of usage for all
simulators. Finally, we carry out an evaluation using two case studies: a large network
with simplified neural and synaptic models and a small network with detailed models.
These two case studies allow us to avoid any bias toward a particular software package.
The results indicate that BRIAN provides the most concise language for both cases
considered. Furthermore, as expected, NEST mostly favors large network models,
while NEURON is better suited for detailed models. Overall, the case studies reinforce
our general observation that simulators have a bias in the computational performance
toward specific types of the brain network models.

Keywords: computational neuroscience, brain network simulators, spiking neural networks, comparative study,
phenomenological model, conductance-based model

http://www.frontiersin.org/Neuroinformatics/
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00046&domain=pdf&date_stamp=2017-07-20
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00046
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:rath@gwu.edu
https://doi.org/10.3389/fninf.2017.00046
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00046/abstract
http://www.frontiersin.org/Journal/10.3389/fninf.2017.00046/abstract
http://loop.frontiersin.org/people/422145
http://loop.frontiersin.org/people/422588
http://loop.frontiersin.org/people/457452

2

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

1. inTrODUcTiOn

Substantial progress of experimental methods in neuroscience is
leading to an increasing amount of experimental data becoming
available for theoretical and computational analyses. Simulations
of quantitative models of individual neurons and networks are
the critical component for understanding brain function under
normal and pathological conditions. Indeed, computational
neuroscience plays a critical role in the study of many neuro-
logical disorders, including epilepsy (Soltesz and Staley, 2008).
Theoretical and computational studies of brain networks are a
critical part of both the US BRAIN initiative (Insel et al., 2013)
and the European Human Brain Project (Markram, 2012).
Moreover, due to their ever increasing complexity, modern
neural models demand extensive computational power, which
require integration with high-performance computing (HPC).
To meet the needs of the community, researchers have developed
and released several software packages that are suitable for HPC
platforms and provided online access to HPC resources for these
packages (see, for example, the Neuroscience Gateway portal,
Sivagnanam et al., 2013).

Currently, there are many software packages for brain network
simulations that are available as open-source computer programs
and can be downloaded free of charge. Moreover, users have a
wide choice of tools (software “front-ends”), which enable users
to describe their models in a unified format, allowing them to
switch freely from one simulator to another without redesigning
their models. For example, researchers can develop models in
the Python language (PyNN; Davison et al., 2009) or through a
graphical interface (neuroConstruct; Gleeson et al., 2007). This
has contributed to a significant growth in the development of
universal descriptions for neurons, synapses, and connections,
which can potentially be ported to any of the network simulators
(see for example, NeuroML, Gleeson et al., 2010).

Although software front-ends can hide the implementation
complexity of the underlying neuron models used in their
network, the most common model development cycle in compu-
tational neuroscience research still involves direct development
and simulation on a specific simulator, but not over front-ends.
Considering all these issues, the critical features that are impor-
tant in brain simulators are

1. computational performance,
2. code complexity for describing neuron models,
3. user interface and user support, and
4. integration with parallel HPC platforms.

The authors of some of the most popular brain simulators and
front-ends published a review in 2007 of their respective software
packages that included a detailed comparison of the software
(Brette et al., 2007). However, independent evaluation of brain
networks simulators has not been done yet.

This article seeks to carry out an independent evaluation of
some of the popular brain networks simulators from the per-
spective of a computational neuroscience researcher and deliver
detailed comparisons of the software based on the four critical
features listed above. In our evaluation, we study and compare

four software packages in detail. Three of the simulators are
the most popular packages in use, as evidenced from the total
number of records in Model DB (Hines et al., 2004)—NEURON
(Carnevale and Hines, 2006), GENESIS (Bower and Beeman,
1998), and BRIAN (Goodman and Brette, 2009). Note that in
the original publications the authors capitalize only the first
letter of the software name for Brian; however, we will use all
uppercase letters in BRIAN to indicate that we are referring to
the software’s name. We added the NEST simulator (Gewaltig and
Diesmann, 2007) to these three, which is a flagship simulator of
the Human Brain Project (personal communication T.A.E.-G.
with Marc-Oliver Gewaltig). Based on the user documentation,
a literature search, and a source code examination, we estimate
several critical characteristics of the selected software: the range
of models, simulation ambit; computational architecture; compu-
tational efficiency; tools for model parallelization; and usability
and support for users. We used the Model DB website to define
the usage frequency for each of the four software being compared
over the last 3 years. Finally, we performed an analysis on two case
studies using each piece of software; one for a large network with
simple neural and synaptic models and the other for a smaller
network with more sophisticated models. The two case studies
were selected to represent the most extreme cases in the model-
type domain, which can be simulated on the selected software.
The main purpose of performing two case studies is to prevent a
bias in the comparison as these different types of models require
different characteristics of the software package.

2. MaTerials anD MeThODs

2.1. selection of Most Popular software
To identify the three most popular software packages, we ana-
lyzed the “simulator” page at Model DB website (https://senselab.
med.yale.edu/ModelDB/FindBySimulator.cshtml). We removed
all general-purpose languages and software such as MATLAB,
Python, C/C++, XPP, and Mathematica, from the list. Of the
software remaining, the three most popular simulators, viz,
NEURON, GENESIS, and BRIAN, were thus selected for further
analysis.

2.2. software characterization
First, we selected the model range used in simulations of Brain
Networks in the literature (Koch and Segev, 1998; Dayan and
Abbott, 2001; Gerstner and Kistler, 2002) as well as in recent
reviews (Brette et al., 2007). We also used examples from the
Model DB website and studied the source code to identify the
range of neural and synaptic models that can be realized using
each software package. A literature search and browsing of docu-
mentation/tutorials was used to characterize the computational
architecture for each software. We studied the available source
code and literature for each package to define the potential
computational efficiency and tools for model parallelization. An
examination of the user documentation and software websites
allowed us to estimate the software package usability and support
for users. Finally, we estimated the dynamics of simulator usage
by the community in two interdependent ways. We queried the

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://senselab.med.yale.edu/ModelDB/FindBySimulator.cshtml
https://senselab.med.yale.edu/ModelDB/FindBySimulator.cshtml

3

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

Model DB website for models implemented in each simulator
and filtered the results to obtain the number of public records in
Model DB over the last 3 years. We also used official NEURON
and NEST websites to obtain the number of publications in which
these simulators were used. Unfortunately, the GENESIS website
does not track publications after September 2007, and the BRIAN
website does not track publications, which use BRIAN at all. We
obtained rough estimates of the number of publications, which
exploit these simulators by querying the number of citations
for (Bower and Beeman, 1998, The Book of GENESIS) and two
key BRIAN publications (Goodman and Brette, 2008, 2009) in
Google-Scholar. Note that we did not exclude self-citations and
“technical” publications from citation indexes; therefore, these
indexes may be overestimated.

We then performed two case studies using each simulator
apart from GENESIS, to confirm our estimations. GENESIS was
not included in the comparison because we did not find a valuable
example of a module for the leaky integrate-and-fire model or an
approach to organize a robust Python interface with GENESIS
(probably due to our limited experience with this simulator).

2.2.1. Case Study 1
Classical Pyramidal InterNeuron Gamma (PING) network
(Brunel and Wang, 2003; Atallah and Scanziani, 2009) was used
as an example of a network with simple individual neurons. The
network consists of 5,000 standard leaky integrate-and-fire (LIF)
neurons randomly connected by delta synapses with constant
axonal delay. In the network, 4,000 (80%) neurons were assigned
as excitatory and 1,000 (20%) as inhibitory neurons. The evolu-
tion of membrane potential of each neuron in the population is
described by a first-order differential equation with resetting:

dv
dt

v g t t d v v v t t
j

j r= − + − ′ − ; > : = , ′ =∑τ
δ() θ

(1)

where θ is a threshold; jt′ is the time of spike of the jth presyn-
aptic neuron, τ is a time constant of membrane potential; g is the
synaptic weight; δ() is the Dirac’s delta function, d is the axonal
delay, and vr is a reset membrane potential. For simplicity, in this
case study, we set the threshold to θ = 1 mV, the reset voltage and
time constant were set to vr = 0 mV, τ = 10 ms, correspondingly.
The next spike for any neuron in both populations could not be
generated during the refractory period after a previous spike.
The refractory period was set to 5.01 ms.

In addition to 5,000 LIF neurons, the network consists of 500
Poisson spike generators. Connection probabilities were set up
as follows:

• inside the excitatory population, Pee = 0.005;
• from excitatory to inhibitory populations, Pei = 0.3
• inside the inhibitory population, Pii = 0.3;
• from inhibitory to excitatory population, Pie = 0.2; and
• from Poisson spike generators to excitatory neurons, Pse = 0.15.

Synaptic weights (g) and delays (d) for these connections were
set to gee = gei = 0.009 mV, dee = dei = 0.8 ms; gii = gie = −0.05 mV,
dii = die = 2.1 ms; and gse = 0.025 mV, dse = 0.5 ms. Each Poisson
spike generator produced a random spike sequence with 50 Hz

mean frequency. A connectivity pattern as well as Poisson genera-
tor spike sequences were generated once and were identical for
this case study using all studied simulators.

The simulation was run for 1 s of model time on Linux box
(CPU: dual-core Intel Core i5 2.70 GHz, RAM: 16 Gb, HDD:
512 Gb) under the operating system Linux Mint 18.1 KDE edi-
tion. The network was implemented as Python scripts for each
software. Python’s standard library function time was used to
define the time required to build a network and time required to
simulate 1 s of network dynamics. We measured building time as
the difference between the time value just prior to a first call of the
first simulator’s function and the time value when the simulator
was ready to run the simulation. The simulation time is the differ-
ence between the time just before calling the simulation’s function
to run the simulation and just after simulator returns back control
to the Python script. In this study, we used BRIAN version 2.0.1,
NEURON Release 7.4 (1370:16a7055d4a86) 2015-11-09 and
NEST 2.12.0. NEST and NEURON were compiled locally from
source code, and BRIAN was obtained via pip interface to PyPi.
The scripts do not control for the numerical methods to solve
differential equations, apart from BRIAN, which required set
numerical methods explicitly. The script sets recommended a
semianalytical “linear method” for BRIAN, which worked in
default “numpy” regime (see Discussion for more details). Here,
we specifically use the software in default mode: “off-the-shelf,”
which is an exponential-Euler solver for NEST and NEURON.
The scripts control the time step for the solution, which was set
to 0.1 ms for all simulators. To estimate peak memory usage, we
dumped the output of the top command every second and report
the maximal memory allocation in a Figure S1 in Supplementary
Material.

2.2.2. Case Study 2
A recently published PostinhIbitory Rebound—InterNeuron
Gamma (PIR-ING) network (Tikidji-Hamburyan et al.,
2015)—was used to study a network with complex models
of individual neurons. The network consisted of 400 classical
Hodgkin–Huxley (HH) (Hodgkin and Huxley, 1952) neurons
with double-exponential synapses. The dynamics of each neuron
is described by four dynamical variables for each neuron plus two
dynamical variables for each inhibitory synapse. We also added
one additional dynamical variable for exponential synapses to be
able to compare BRIAN and NEURON with the standard NEST
hh-module. The evolution of membrane potential and all other
dynamical variables are given by standard systems of first order
differential equations (2), where gNa, gK, and gL are the maximum
conductance values for sodium, potassium, and leak currents;
ENa, EK, and EL are the reversal potentials for the corresponding
currents; gi, Ei and ge and Ee are the peak conductance and reversal
potentials for inhibitory and excitatory synapses, respectively; c is
the membrane capacitance; αX(v) and βX(v) are the standard HH
rate functions for sodium activation (X is m), sodium inactivation
(X is h), and potassium activation (X is n) (Hodgkin and Huxley,
1952). Each neuron was sparsely connected by inhibitory syn-
apses with 40 random neurons within the population. For all con-
nections, the axonal propagation delay was set to di = 3 ms. Time

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

4

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

constants for synapses were set to τi1 = 0.99 ms and τi2 = 1 ms.
Inhibitory synaptic conductance and reversal potential were set
to gi = 2 nS and Ei = −75 mV, respectively. Excitatory synapses
were not used in this case study but were added to equalize the
total number of differential equations in the model.

dv
dt

g m h E v g n E v

g E v I g k b a E

Na Na K K

L L i i i i i

= − + −

+ − + + − −

3 4() ()

() ()(vv

g a E v c
dm
dt

v m v m

dh
dt

v h

e e e

m m

h h

)

()

()() ()

()()

+ − /

= − −

= − −

α β

α β

1

1 (()

()() ()

()

v h

dn
dt

v n v n

da
dt

a g t t d

db

n n

i i

i j
i ij i

= − −

= − + − ′ −∑

α β

τ
δ

1

1

ii i

i j
i ij i

e e

e j
e ej e

dt
b g t t d

da
dt

a g t t d

= − + − ′ −

= − + − ′ −

∑

∑

τ
δ

τ
δ

2

()

()

(2)

The network was implemented using Python scripts for each
simulator. The simulation was run for 500 ms of model time
with the same software and hardware setup as described in Case
Study 1. A similar procedure for evaluating the building time
and simulation time was used. As in Case Study 1, the script
controlled only the time step, which was set to 0.05 ms for
each simulator. In the second case study, “off-the-shelf ” default
numerical solvers were as follows: Runge–Kutta 4/5 imple-
mented in the GNU scientific library for NEST and exponential
Euler for ion channels and a modified implicit Crank–Nicholson
method for voltage (Hines and Carnevale, 1997) for NEURON.
For BRIAN, the recommended “linear solver” cannot be applied
due to the problem complexity of the neuronal model. We tested
the “exponential-Euler solver,” which produced a solution faster
than NEURON and NEST. However, to keep the integration
method accuracy closer to that of NEST and NEURON, we use
the Runge–Kutta (rk4) solver. Therefore, note that the simulation
time, reported in this Case Study for BRIAN, can be reduced to
less than 3 s, if the “exponential-Euler solver” is used.

2.3. estimation of code complexity for
Both case studies
We used source code from the main stable branch of NEURON
and NEST to study the complexity of modules used in both
case studies. For Case Study 1, NEURON module intfire1.mod
and NEST module iaf_psc_delta.h iaf_psc_delta.cpp were used
for a code complexity study. In Case Study 2, NEURON mod-
ules exp2syn.mod, expsyn.mod, hh.mod, and NEST module
hh_psc_alpha.cpp hh_psc_alpha.h were examined. Note that
we include Python scripts in the code complexity estimation.
For any module used, comments, empty lines, and unnecessary
spaces were removed. We then counted the number of lines as

well as number of characters, which a potential user has to write
as code if they decide to develop a similar module “from scratch.”
It should be noted that recently developed NESTML (Plotnikov
et al., 2016) may significantly decrease code complexity of NEST
modules in future. For BRIAN, all mathematical expressions were
included in a single Python script, which was used to define the
code complexity. We used examples from the BRIAN tutorial
and user documentation to develop the most “authentic” code
for BRIAN.

2.3.1. Source Code Sharing
The source code of the models and required scripts will be made
publicly available via the ModelDB website after publication of
this article: http://senselab.med.yale.edu/ModelDB/showModel.
cshtml?model=222725.

3. resUlTs

3.1. Determining the Most Popular
software for Brain network simulations
As the first step, we defined the three most popular software
for brain network simulations. As described in Materials and
Methods, we estimated each simulator’s usage by the number of
records publicly available on the Model DB website. We excluded
any general-purpose computer languages from consideration.
Figure 1A shows the relationship between the total number
of records for the top three packages: NEURON (73.7%), (p)
GENESIS (5.3%), and BRIAN (4.9%), as well as for one addi-
tional package NEST (0.9%) in Model DB. These four packages
are characterized below. Note that we do not exclude front-end
packages from the “others” category (15.3%), which supports our
finding that the development of models for specific simulators is
a dominating paradigm in the computational neuroscience field.
A full list of simulators and number of records in Model DB is
given in Table S1 in Supplementary Material.

3.2. general characteristics for Brain
network simulators
We referred to the user documentation, results from a literature
search and source code to examine the most crucial characteristics
of the selected software: model range and limits of implementa-
tion of each simulator; computational architecture, efficiency
and tools for model parallelization, and program usability and
support.

3.2.1. The Range of the Model of Each Software
Package
One of the most critical characteristics of software for simulat-
ing brain networks is the model range that defines the envelope
for computation. Researchers use a wide range of models to
study brain neural networks: from “dynamicless” stochastic
models to detailed 3D morphological models with an accurate
representation of spatial-temporal integration in dendrites,
modeling extracellular currents around dendrites and cell body,
and modeling of individual molecules in intracellular signal-
ing pathways. Moreover, while some of these models can be

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=222725
http://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=222725

FigUre 1 | Frequency of software usage. (a) Total number of public records for three top most popular simulators and NEST in the ModelBD. Full list of considered
software in Others and number of records in the ModelBD are given in the Table S1 in Supplementary Material. (B) Number of citations for each selected software.
For NEURON and NEST, the numbers of citations are taken from official website. For GENESIS and BRIAN, this number was obtained as a number of articles which
cite a key publication(s) of each simulator (see main text, Materials and Methods section, for more details). (c) Number of records in the ModelDB for each selected
software published in the last 3 years.

TaBle 1 | Neural models range.

neUrOn nesT Brian genesis

Neuron model without dynamics M M Y M

Neuron model with simplified and discontinuous dynamics
Examples: Leaky Integrate-and-Fire (LIF), Izhikevich or Quadratic LIF; Exponent Leaky Integrate-and-Fire (eLIF)

M M Y M

Neuron model with simplified and continues dynamics
Examples: FitzHugh–Nagumo, Morris–Lecar

M M Y M

Single compartment, conductance-based model—temporal integration (point neuron)
Examples: Single-Compartment Hodgkin–Huxley model

YG M Y Y

Can conductance-based descriptions of ion channels be added to the neuron model?
Example: h-channel

YG/M m Y M

Neuron model with simplify morphology (2-compartment model)
Example: Pinsky–Rinzel model

YG M Y M

Full spatial reconstruction of individual neuron morphology cable property spatial-temporal integration
(multicompartment model)
Example: Mainen–Sejnowski model

YG M:E Y Y

Extracellular/intracellular chemical kinetics
Example: Ca2+ dynamics

M m Y Y

Can new ion be added to existing model YG/M m Y M

Radial diffusion M M:E Y Y

Longitudinal diffusion M M:E N N

Currents in external medium
Examples: to model transcranial magnetic stimulation or deep brain stimulation

M N Y:E M:E

New model of chemical synapse M m Y M

New model of electrical synapse M m Y M

New model of learning rule m M Y M

YG can be done in GUI without programming; Y can be done in script without writing modules; N cannot be done; M can be implemented through external modules; Y:E or M:E can
be implemented in script or through external modules but requires extensive additional knowledge outside of the presumed user ability, such as numerical methods, physics, and
partial differential equations (in some sense Y:E ≈ M:E ≈ N); and m cannot be implemented as an independent module but may be done through code modification.

5

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

implemented without writing any scripts by using a Graphical
User Interface (GUI), other models need to be coded in some spe-
cific or general-purpose computer language. Although modeled

processes have simple intuitive explanations, for example, dif-
fusion or voltage propagation in dendrites, the mathematical
and computational implementation is not simple and requires

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

6

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

extensive knowledge of partial differential equations and numeri-
cal methods. Therefore, implementation of such models may be a
challenge for neuroscientists.

In Table 1, we consider a range of models from dynamicless to
a highly accurate representation of spatial-temporal integration
and chemical diffusion–reaction. Depending upon the scale of
neural tissue organization at which a network is studied and the
availability of computational resources, the researcher may want
to use simplified models of individual neurons, synapses, or net-
work structure. For example, if the main purpose of a model is to
study network mechanisms (see Section 1, for example, or Atallah
and Scanziani, 2009 as a real-life example), an accurate repre-
sentation of the dynamics of individual neurons may be beyond
the scope of such research; therefore, neurons and, possibly,
synapses can be represented by simplified or even “dynamicless”
models. In contrast, if the study of spatial-temporal integration
in non-linear dendrites is the research question (see Mainen
and Sejnowski (1996) and Jarsky et al. (2005) as outstanding
examples), a network, in which the neuron is embedded, may be
presented as a simplified model or totally ignored. In this case, the
electrical properties of membrane excitability along a dendrite,
chemical kinetics, chemical diffusion of ions inside of the neuron,
as well as electrical currents in extracellular media must be mod-
eled with great detail. If computational resources are limited, a
compromise between the accuracy of neurons, synapses, network
representation, and the time required to compute an evolution of
network dynamics needs to be found. In Case Study 2 (see Section
3.3.2), we use an example in which the interaction between the
dynamics of individual neurons and network dynamics is critical
for the studied phenomenon. In similar cases, researchers may
have to reduce both the network size and details of neuron and
synapse representation. Indeed, single neurons may be presented
in some cases as two- or single-compartment models but with
representation of cross-membrane non-linear currents; see
Mainen and Sejnowski (1996) as representative examples of such
a reduction. However, if the accuracy of representation is critical
for the studied phenomena (see Blue Brain and Human Brain
Projects, Markram, 2006, 2012, as a most impressive example),
both the non-linear spatial-temporal integration in individual
neurons and the fully detailed networks should be modeled.
Therefore, the ability of a simulator to utilize high-performance
computing is critical in these cases (see Section 3.3.2 for details).
For each software under study, we consider a generic way of
implementing each model type in the range discussed above. The
implementation may be achieved using GUI, writing modules,
and modification of existing modules or cannot be achieved at
all. We characterize each simulator separately later.

In general, all simulators can support “dynamicless” neuron
models. For example, it is possible to use selected software for
implementation of an artificial neural network with the percep-
trons or a simulating annealing algorithm for energy minimiza-
tion. It is very artificial to implement such a model on software
developed for dynamic systems, i.e., representing a one-step
energy evaluation as a time step of a dynamic system. Therefore,
we consider this kind of model as a boundary for Brain Networks
simulators, beyond which software for artificial intelligence is a
better choice. In NEURON, NEST, and GENESIS, these kinds of

models can be implemented as external modules. In BRIAN, such
models can be implemented as iterative variables. We did not find
any examples of realizing these for GENESIS and BRIAN, but we
only relied on the software documentation.

Models with discontinuous dynamics are at the minimum
complexity level for Brain Networks simulators, for example,
classical leaky integrate-and-fire (LIF) (Koch and Segev, 1998),
Izhikevich model (Izhikevich, 2003) or Quadratic LIF (qLIF)
(Ermentrout, 1996), Exponential LIF (eLIF) (Brette and Gerstner,
2005), and many others. Again, all simulators can support this
kind of model. All simulators, except BRIAN, require the devel-
opment of an external module. We did not find any examples of
this kind of model for GENESIS, even though documentation
indicates that such modules may be developed.

The next class of models is characterized by continuous
dynamics, while the biophysical nature of temporal integration
is extremely simplified. Such models help understand the general
dynamics of membrane potential as well as different types of neu-
ron excitability (Rinzel and Ermentrout, 1998). Classical examples
of such models are FitzHugh–Nagumo (FH–N) (FitzHugh, 1961)
or Morris–Lecar (M–L) (Morris and Lecar, 1981) models. Again
all simulators can support this class of models.

The point model, also known as a single-compartment
model, aims to model biophysical processes of membrane
potential dynamics accurately. This includes cross-membrane
currents, membrane capacitance, etc., but without modeling
their spatial integration. Such models are a subclass of so-called
“conductance-based” models. In conductance-based models,
each cross-membrane current is represented as a non-linear con-
ductance, which is connected in series to a battery with voltage
equal to Nernst’s reversal potential. The conductance is a complex
dynamic model with one or more dynamic variables. Therefore,
this class of model is very big, due to many possible combinations
of ion channels in different neurons. The classical example of a
single-compartment conductance-based model is the Hodgkin–
Huxley model (Hodgkin and Huxley, 1952). All simulators are
able to support this kind of model. Note that NEURON allows
the development of single- and multicompartment conductance-
based models in GUI and does not require any coding, including
adding new mechanisms (modules); therefore, NEURON is
widely used as a toolkit for educational purposes.

A researcher may want to add a new channel and update an
existing model. Different simulators exploit different paradigms
to achieve this. In NEURON, the user needs to develop a new
module and set up the distribution of the new channel conduct-
ance along a neuron body. Note that module realization and
model modification may be done through GUI, but in practice,
researchers prefer to develop the code. In NEST, modification of
the whole neuron model is the only option. It may be difficult
for an inexperienced user if the model is more complicated
than a just a few channels. For example, implementation of the
McCormick two-compartment model of a cortical pyramidal cell
will consist of at least 10 ion channels with 16 activation/inactiva-
tion variables, each of which has two rate functions, plus calcium
and sodium dynamics, and synaptic dynamics, which results
in relatively massive code. Such a code would require using a
structural approach and having good skills in programming.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

7

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

BRIAN exhibits the same problem as NEST, because modularity
is not an intrinsic property of BRIAN. Finally, GENESIS can
support any ion channel, which may be implemented as one
of the embedded model classes without developing a specific
module. For example, if an ion channel can be described by two
voltage-dependent gating variables and one calcium-dependent
variable with Boltzmann rate functions, such a channel can be
implemented by just setting a required coefficient for the embed-
ded model. Moreover, precalculated lookup tables (see below)
theoretically allow for defining arbitrary voltage-dependent rate
functions in the model. However, if new channel dynamics can-
not be fit to any pre-installed models, the user has to develop an
external module in C.

Two-compartment models can be considered as an interme-
diate model class between point neural models and a full spatial
reconstruction of neuron morphology (see for example, Pinsky
and Rinzel, 1994; Destexhe et al., 1996). In such models, spatial
integration is represented by coupled point models (compart-
ments) with different ion channels in each compartment. Usually,
one compartment represents an axon or/and soma of a neuron
and is called the axo-somatic compartment. Another compart-
ment represents the dendrites. The strength of electrical coupling
between the compartments and their size may be used to mimic
different neuron morphologies (Mainen and Sejnowski, 1996).
Indeed, all simulators can support such models. For NEURON
and GENESIS, these kinds of models should be implemented
through the same mechanism as multicompartment models. In
NEST, these models are collapsed into one module with different
synaptic inputs for each compartment. In BRIAN, the user can
use both cable model objects or hold all required equations in
one neuron object.

The most accurate modeling of signal processing in individual
neurons requires reconstruction of neuron morphology as well as
the distribution of ion channels along dendrite trees. A classical
model for dendrites is a non-linear cable, which is described by
a partial differential equation (Dayan and Abbott, 2001). This
class of model is considered as a “native” model for NEURON
and GENESIS. BRIAN can support this kind of model through
a set of morphology objects, such as a soma, cable cylinder, and
cable segment. An example of a fully reconstructed neuron can
be found among the examples included with BRIAN. In NEST,
the user may develop a module for full dendrite tree reconstruc-
tion, in theory. However, the realization of such a model requires
an extensive knowledge in numerical methods, good skills in
programming in C++, as well as a tremendous amount of effort.
Although a template for the non-linear cable model recently
appeared in the NEST development repository,1 full reconstruc-
tion of a neuron morphology using this template is still a serious
challenge, which is unlikely to be met by a researcher with a
Neuroscience background.

A cross-membrane electrical current may depend upon
inner and outer ion concentrations. A classical example of
such a dependency is a calcium-dependent potassium current,
where conductance is a function of the intracellular calcium

1 http://www.nest-simulator.org/py_sample/multi-compartment-neuron-example.

concentration. In simple models, calcium kinetics is usually
defined as a first-order ordinary differential equation (ODE),
which is easy to embed into a single- or two-compartment model.
However, the dynamics of calcium concentration is much more
complex than a first-order ODE in a real neuron. Calcium may
be buffered by calmoduline and many other molecules, pumped
into or released from mitochondria and endoplasmic reticula.
Calcium ions can diffuse inside a neuron both radially and along
dendrites (longitudinal diffusion). This turns a dendrite model
into a non-linear diffusion–reaction system. NEURON and
GENESIS can fully support the complex intracellular diffusion–
reaction system. A user can even add new ions to the system.
GENESIS, however, cannot support longitudinal diffusion. For
NEST, the user can develop a specific module or modify existing
ones for the introduction of a complex model of chemical kinetics
and diffusion. However, it is very challenging for a neuroscientist
and, probably, could not be done in the time scale required for
model development. In BRIAN, chemical kinetics as well as
radial diffusion can be modeled by adding additional dynamical
variables to an equation set, but again, an accurate realization will
require additional knowledge in numerical methods. We did not
find any evidence that the BRIAN section module can support
longitudinal diffusion.

During electrical stimulation of a brain in some pathological
cases (for example, in deep brain stimulation therapy), currents
in extracellular media play a critical role in the stabilization of
neuron activity. In addition, consideration of an extracellular
solution as a “ground wire” is not a very accurate model. Therefore,
the modeling of currents in extracellular media may improve the
accuracy of a model and may also be critical for some applica-
tions. We found that only NEURON can model extracellular cur-
rents off-the-shelf. While this is possible in BRIAN and GENESIS
due to the embedded geometry in the compartment module, it
requires extensive knowledge far beyond the Neuroscience field.
In NEST, individual neurons are considered mostly as point
processes without geometrical representation; therefore, it seems
very unlikely that modeling of extracellular currents is possible
in this simulator.

Finally, the user is able to add a new model of chemical and
electrical synapses as well as the learning rule in all the studied
simulators. However, it should be noted that the difference
between developing an independent module for synapses (M)
and modification of existing modules for each neuron (m) may
significantly increase the amount of programming work for a
potential user. For example, if there are five models of neurons
in a network and a new synaptic model needs to be added to
all the neurons, in NEURON, it would be done by developing
a module and creating a new synaptic object, while in NEST,
the user would need to add a stereotypic code to all five mod-
ules. Note that the NEST programming architecture requires
implementation of a synaptic model in a neuron class through a
specific connector handle. Such an architecture prevents simple
realization of new models for all neurons or even automatic
addition of new models during a preprocessing compilation
stage.

In summary, our model range study shows that brain network
simulators may have a bias toward some specific models. For

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.nest-simulator.org/py_sample/multi-compartment-neuron-example

TaBle 2 | Computational architecture.

neUrOn nesT Brian genesis

Language
for network
description

SLI:
NL(HOC) or Py

SLI:
NL(SLI) or Py

SLI: Python SLI:
NL(G) or Py

Language
for neuron
description

SLI:
NL(HOC) or Py

Compiler: C++ SLI in Py SLI: NL
Compiler: C

Compiler:
NL(NMODL)

Languages
for modules

Compiler:
NL(NMODL)

Compiler: C++ Compiler
NL In-line
compilation

Compiler: C

SLI, script language interpreter; NL, native, software specific language; Py, Python.
Note that NEST native script language is also called SLI. To avoid confusion, we mark
the names of native languages as NL (Language name).

8

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

example, NEST is mostly designed for modeling large networks
with simple individual neurons, while NEURON and GENESIS
mostly focus on the reconstruction of spatial-temporal integra-
tion in non-linear dendrites. However, all simulators tend to
expand specific model ranges and provide a universal environ-
ment for computational study both of individual neurons and
brain networks. At this moment, NEURON supports the widest
range of the models.

3.2.2. Computational Architecture, Efficiency, and
High-Performance Computing Utilization
The organization of computation is an important property of a
brain network simulator. There are several levels of computational
organization, which are totally or partially transparent for users.
Such levels are not independent and constitute a “computational
architecture” for a particular simulator. In Table 2, we consider
three main levels of computational architecture for each studied
software. To avoid confusion, it should be mentioned that brain
neural networks consist of several levels of complexity: interneu-
ron connectivity, morphology of individual neurons as a basis for
spatial-temporal integration, and processes on small membrane
loci. Not surprisingly, the layers of computational architecture
follow the natural structure of the biological neural networks.
Therefore, there is a top layer of network organization, a middle
layer of neuron description, and a bottom layer of minimum
module computation.

As showed in Muller et al. (2015), Python plays an important
role in modeling neural networks. All simulators tend to use
Python as a second language for neural network descriptions.
In NEURON, description of individual neurons and networks
may be done either in a native “c-like” language (hoc), on pure
Python, or in a mix of Python and hoc (Hines et al., 2009).
NEST also can interpret Python instead of a native “stack-
machine” language (SLI), for network description, but not for
individual neurons (Gewaltig and Diesmann, 2007; Eppler
et al., 2009). GENESIS can use Python as well (Cornelis et al.,
2012), although the software is strongly oriented toward the
development of an independent native language (G-language;
Bower and Beeman, 1998). BRIAN shows the most intensive
use of Python not only for networks but also for whole model
description languages (Goodman and Brette, 2009). In all

simulators, a native script language or Python is used for the
network definition. This top level of computational architec-
ture is processed by an interpreter, due to the assumption that
network structure is a static part of any model. Indeed in many
simulations, network connectivity does not change during
simulation. This allows network structure to be assembled once
and excludes network reconfiguration from the computation-
ally intensive simulation of dynamics and spiking activity. Note
that a static network structure may limit the application of the
simulators. For example, a network is not a static structure
during pre- and postnatal development (Tikidji-Hamburyan
et al., 2016) or in several pathological conditions, for instance
in Alzheimer’s disease.

The minimum level of complexity in computational architec-
ture is a single computational module. A module may represent
a whole neuron with all the differential equations for both neu-
rodynamics and synaptic dynamics. However, for simulators that
are more oriented toward modeling spatial-temporal integration,
a module may represent: a dendrite branch with the characteristic
set of differential equations for modeling neurodynamics on the
local spatial locus of the membrane, or implement a mathemati-
cal model for a single ion current, ion concentration, or intra/
extracellular ion diffusion. Therefore, a module has a different
meaning in different simulators, which we describe in detail
below.

The next level of complexity deals with individual neuron
descriptions. For some simulators, this is minimal. For example,
in NEST, individual neurons are considered as nodes and connec-
tions in a graph structure; therefore, each neuron represents an
individual computational block or module. In NEST, each module
is a C++ class, which the user has to develop for the introduc-
tion of any new model. For NEURON and GENESIS, individual
neuron descriptions have an intermediate level of complexity. For
phenomenological neural models with both continuous and dis-
continuous dynamics, such as LIF, Izhikevich model, qLIF, eLIF
and FH–N, and M–L, users have to develop the module (low level
in the complexity hierarchy). In NEURON, such modules should
be developed in a specific “c-like” native computer languages,
NMODL. The syntax of NMODL is deeply simplified, speeding
up the learning process for new users without a computer science
background. In GENESIS, the user has to develop the module in
C, which may be a challenge for a neuroscientist.

In contrast, if the model of an individual neuron is a multicom-
partment model, which addresses spatial-temporal non-linear
integration, in both NEURON and GENESIS, the user needs to
describe the neural morphology, electrical property of the cellular
membrane, and the chemical diffusion–reaction in an interpreted
language (native hoc/G or Python). In this case, the morphologi-
cal structure and cable property of dendrites are parsed by the
interpreter at the stage of model formation. The neuron structure
and connectivity are assumed to be static during the simulation
of neurodynamics. In BRIAN, the user does not need to develop
an external module. Instead, the user provides the required equa-
tions for a whole neural model, if it is a phenomenological model,
or for the membrane electrical balance as well as chemical kinet-
ics and diffusion, if it is a multicompartmental model. This should
be done in some extension of the Python language using specific

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

TaBle 3 | Computational efficiency and parallelization.

neUrOn nesT Brian genesis

Are code compiled into high optimized dynamical library, to achieve maximum of computational
performance on given hardware?

Y Y Y Y

Does simulator/module language provide routines for tabulating right-side of differential equations
and speed up computations?

Y N N Y

Does the architecture allow to separate models for synapses, neuron, and learning rules to
optimize amount of computations?

Y N Y Y

Can user add high-level scripts into the main simulation cycle (for debugging purpose as an example)? Y N Y Y

“Embarrassingly” parallel computations, example: Parameters fitting Y N N Y

Truly distributed computations through MPI for neuron-to-neuron communication Y Y N Y

Truly distributed computations through MPI for gap junctions Y Y N N

Distributed computations for complex multicompartment neuron on several clusters nodes through MPI Y N N ?

Use the advantage of biological delays to hide slow node-to-node MPI communications in event-based simulations Y Y N ?

Multithread parallel computation for parallelization on single node/computer Y Y Y ?
p-threads OpenMP OpenMP or

GPU (limited)

9

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

language for physics equations. BRIAN and NEURON also check
the units in the equations, which reduces the possibility of mis-
takes in a model. Indeed, BRIAN forces a user to systematically
set all the units and does not allow simulation until all units have
been homogenized, while NEURON only optionally checks the
units within individual modules.

Due to high computational intensity, all simulators tend to
compile modules into binary executable dynamical libraries.
The NEURON routine nrnivmodl converts NMODL script
into comprehensive, highly computationally efficient, hardware
specific c-code and uses a system compiler to compile and to link
a dynamical library (*.so on linux or *.dll on windows). During
model runtime, NEURON binds this library and uses modules
in the main cycle of a simulation. NEST uses a similar strategy,
except that the user has to develop a module in the low-level C++
language. Moreover, the user may not have enough knowledge and
experience to develop an optimal code for a given mathematical
equation; therefore, computational efficacy may be low. The hope
of NEST developers for high optimization during module com-
pilation may be ephemeral, due to a limited tolerance of modern
compilers to the potential inefficiency of a novice users code.
GENESIS offers two approaches: first if a model can be described
by one of the built-in formal forms, the user needs only to set a
required coefficient for the chosen model. Second, if the model
cannot be described through the built-in equations, the user has
to develop a new module in a low-level C language. The second
option has the same disadvantage as the NEST approach. Finally,
BRIAN offers several different schemes. It can convert equations
online into a Python code with numpy mathematical routines;
or into Cython code, which Cython converts into C-code and
generates modules to bind to; or into low-level C++ code. In
general, all of BRIAN’s converters may be adjusted to the specific
hardware architecture; therefore, BRIAN can generate highly
efficient code without additional effort from the user.

In summary, as we highlight in Table 3, all simulators use
binary code in their efforts to use the most efficient computations.
However, as we mentioned earlier, not all simulators provide the
simplest way for module development or can guarantee highly
efficient binary code at the end.

The next significant improvement in performance is attrib-
uted to a popularly used optimization scheme, wherein the
right-hand sides of differential equations are precomputed into
lookup tables. Such tables can contain steady-state values and
taus for gating variables against the membrane potential, for
example. During a simulation, the solver interpolates between
the points taken from the lookup table instead of carrying out
a real computation. In general, such an approach significantly
speeds up the calculation. For example, tabulation of standard
rate functions in the Hodgkin–Huxley model with a 0.1 mV step
speeds up computation by at least one order of magnitude, with
an error of less than 0.3%. Moreover, widely used tables with
1 mV steps require only a small array of 120–160 (double preci-
sion) float-point numbers and provide results with an error of less
than 5%. However, such lookup tables need additional memory.
Therefore, objects in a model usually share the tables to avoid
wasting memory. Allocation of memory, generation of tables, as
well as sharing tables along model’s objects, is not a simple task
for a user without a computer science background, specifically
in C/C++. NEURON allows the user to turn on/off the lookup
tables through two commands in the NMODL script. All details
are totally hidden from the user. NEST does not provide any
routines for equations, right-hand side tabulations, table sharing,
or linear interpolations. Therefore, the implementation of such
lookup tables is a complicated task in NEST. GENESIS directly
encourages users to use a lookup table (Bower and Beeman,
1998), which provides a very flexible approach. We did not find a
way to use lookup tables in BRIAN.

Neural networks are highly heterogeneous. The ability of the
user to specify the right amount of computation in each part of
the model can significantly increase computational efficiency.
All simulators except NEST allow the setting of modules for
phenomenological neurons, channels, or synapses just when
they are needed. The NEST architecture, which requires compil-
ing of neural and synaptic models in one object, does not allow
a reduction of the system of equations for individual objects
and compels users to use the full system, unless they develop
a set of modules for all possible combinations of synaptic and
neural models. For example, if conductance-based neurons in a

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

TaBle 4 | Usability and support.

neUrOn nesT Brian genesis

GUI support (What
can be done in GUI?)

C M T R P P N R P

Inter-users/
users-developers
communication

Online Forum Mail-list Mail-list
Google-group

Mail-list

Online documentation More than 200
pages, including

known bugs

Sparse Detailed Detailed

Online tutorial Y Y Y Y
Book Y N N Y
Years of development >20 10 9 >20

C, create a single neuron template, M, create a module and fit parameters to an
experimental data, T, create a network, R, run a simulation, P, plot graphs. Y, Yes, N, No.

10

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

population receive excitatory NMDA and AMPA synapses as well
as inhibitory GABA synapses, but not all neurons in the popula-
tion have NMDA or AMPA inputs, the user has to develop at least
three modules of the same conductance-based model, namely,
with NMDA + AMPA, with just NMDA, and with just AMPA
synapses. If only some of the neurons within a population receive
an inhibitory input, this increases the number of modules, which
a user has to develop to 6. Of course, they may also use only one
module with NMDA + AMPA + GABA synapses and just set
unused conductance to zero. However, this will not reduce the
amount of computation, due to the fact that gating variables in
each synaptic model have to be evaluated for every step of the
simulation.

Finally, during model development, it is critical to organize
some sort of break point if some model variable has crossed a
physiological limit to the values. All simulators except NEST
allow a script code to be added to a novice user’s code to check
for such exceptions. We did not find any way to add conditional
break points to the main simulation cycle in NEST; therefore, the
user has to wait until the simulation stops, even when the model
contains a bug.

We next study how different simulators support high-
performance computations (HPC), specifically on multicore
hardware and on clusters. First, we study how simulators support
the most common computational tasks in model development,
such as an embarrassingly parallel problem for the study of a
model parameter space (Table 3, bottom part). NEURON com-
piled with MPI support, and parallel GENESIS (pGENESIS) can
support this type of problem. Neither NEST nor BRIAN has this
kind of mechanism. For both NEST and BRIAN, embarrassingly
parallel problems must be organized by external procedures in
addition to a simulator. If the embarrassingly parallel tasks are to
be deployed to a cluster architecture, the top level procedure must
use a corresponding environment (“clusterware”), which may be
a challenge for neuroscientists to define.

Second, we test if a model may be distributed on a computa-
tional cluster, when neuron-to-neuron event-based communica-
tion requires cluster internode communication. All simulators
except BRIAN support this kind of utilization of HPC resources.
We did not find any MPI support for the BRIAN simulator, which
strongly limits its application for large networks. Note that while
NEST transparently maps a network on a cluster, NEURON
requires the usage of specific mechanisms for connections, to
enable MPI simulation (Migliore et al., 2006).

Not all communications are event-based in a real neural net-
work. For example, electrical synapses, also called gap junctions,
require constant updates at each simulation step. Such a strong
connectivity requires a high rate of message exchange using the
MPI system. Both NEURON and NEST allow the use of MPI
for gap junctions. A recent advance in gap junction simulation
on MPI clusters (Hahne et al., 2015) improves the efficiency of
the NEST simulator on a cluster for a network, which contains
electrical synapses.

The next critical problem appears when a single neuron
specification is too detailed and requires the distribution of
computation, even though it is for a single neuron. This is a
hard problem, due to the high connectivity of the model. Only

NEURON allows the distribution of a single neuron model on a
cluster (Hines et al., 2008).

Finally, we ask whether simulators can use an MPI delay to its
advantage and map axonal delays on MPI message delays (Hines
and Carnevale, 2008). A simulator can continually compute
neural dynamics on the period of minimal axonal delay in a
biological network without synchronization with other compute-
nodes within a cluster. In contrast, if the simulator can compute
and exchange messages at the same time, this allows partial or
total elimination of overheads related to the synchronization
calculations on and data transfer between different nodes. Thus,
mapping axonal delays on MPI message delays can significantly
speed up calculations on clusters. It seems that only NEURON
and NEST can support this useful technique. We could not evalu-
ate this property of pGENESIS due to limited the experience of
authors with this simulator.

Modern computational paradigms are biased toward many
core processors, Graphical Processing Units (GPU) or a Field-
Programmable Gate Array (FPGA) computation (Iyer and
Tullsen, 2015). The standard version of NEURON supports only
p-threads, which is not a very effective mechanism. However,
recently, NEURON was ported on GPU and multicore. This port
is called “CoreNEURON” due to strong limitations on the sup-
ported mechanisms and numerical solvers (Kumbhar et al., 2016).
NEST can use OpenMP parallelization and is also partially ported
on GPU (Kayraklioglu et al., 2015). BRIAN offers third-party
projects, which export existing BRIAN models as stand-alone
executables on OpenMP or GPU. However, these exports do not
support BRIAN/Python language fully and impose limitations on
available functionality.

3.2.3. Program Usability and Support
As we mentioned in Section 1, several software front-ends such
as PyNN and neuroConstruct can hide the real implementation
from a user. Usability and user level support are even more
important for large size models, in addition to cases when a user
applies a specific simulator as the main environment for develop-
ment and simulations.

First, we ask if the simulator can be used in a GUI regime.
As shown in Table 4, only NEURON has an extensive GUI
interface. Other simulators do not have GUI or assume to use

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FigUre 2 | Case Study 1. (a) Raster diagrams of Standard Pyramidal—InterNeuron Gamma oscillations (PING) in network of 4,000 excitatory (black dots) and
1,000 inhibitory (red dots) leaky integrate-and-fire neurons and 500 Poisson spike generators (blue dots). Each dot is a spike of particular neuron within a
population. First, 200 ms of 1 s run is shown. Diagrams were obtained from simulation on BRIAN (A1), NEURON (A2), and NEST (A3) software. (B) Evaluation of
performance for studied software. B1 is a time required to build model, and B2 is a time required to simulate 1 s of model time. (c) Analysis of code complexity:
number of lines (C1) and number of characters (C2) in modules and Python code for each software.

11

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

external libraries for GUI, or support GUI during simulation only
as GENESIS.

All simulators have inter-user and user-developer communi-
cation mechanisms, through online forums or e-mail lists. The
quality of online documentations is a critical parameter for a
user. Although all simulators tend to maintain online documen-
tation, the quality of this documentation is variable. Finally, all
simulators have online tutorials for beginners and user guideline
books. We did not find an independent book about the NEST
and BRIAN simulators, but there are chapters in books that are
available online.

To finish our comparison of simulator usage, we perform a
study of the most popular model database, Model DB (Hines
et al., 2004) (see Figure 1). A pool of models implemented on
each software over the last 3 years (Figure 1C) indicates increas-
ing community interest in the BRIAN simulator as well as a slight
decrease in interest in GENESIS and NEST. However, NEURON
has remained the most popular software over the last 3 years
and also on average ever, since Model DB has been in existence
(Figure 1A). We believe that such a dramatic difference between
the usage of NEURON and other software cannot be explained
only by the fact that Model DB is supported by the NEURON
founders. Indeed “Model DB—independent” assessment of sim-
ulator usage by a number of published papers, which used each
simulator (Citation index, Figure 1B; Table S2 in Supplementary
Material) indicates the same arrangement in software popularity:
NEURON > GENESIS > BRIAN > NEST. This result also supports
the authors’ personal experience based on the analysis of posters

at Society for Neuroscience meetings over the last 5 years that
NEURON is the most popular simulator in the Neuroscience
field. It also reflects the number of years taken for simulator
development: BRIAN and NEST were under development for a
duration that is half that of NEURON and GENESIS (Table 4). It
thus appears that NEURON is the de facto standard for carrying
out simulations of brain networks.

3.3. case studies
We performed two case studies to compare the code complex-
ity and single-threaded performance of the studied simulators.
We used the most extreme cases in the range of model types that
can be simulated on the selected software. It should be noted
that we did not write modules for NEURON and NEST but used
developers’ code that comes as a part of the source code distribu-
tion. For BRIAN, we used examples from the BRIAN website to
limit code complexity to that presented in the available documen-
tation (see Materials and Methods for more details). Again we
had to exclude GENESIS from our case studies, because we could
not find any examples or modules for the LIF model or a way to
organize a robust Python interface with GENESIS.

3.3.1. Case Study 1: Classical Pyramidal InterNeuron
Gamma (PING) Oscillations
In the first case study, we used a standard network of PING
oscillations. The network is a simplified version of the (Brunel
and Wang, 2003; Atallah and Scanziani, 2009) model. It consists

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

FigUre 3 | Case Study 2. (a) Raster diagrams of Standard PostInhibitory Rebound—InterNeuron Gamma oscillations (PIR-ING) in network of 400 Hodgkin–Huxley
(black dots). Each dot is a spike of particular neuron within a population. Diagram was obtained from simulation on BRIAN (A1), NEURON (A2), and NEST (A3)
software. Same analysis of performance (B) and code complexity (c) as in Figure 2.

12

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

of 4,000 excitatory and 1,000 inhibitory LIF neurons and 500
Poisson generators. Synaptic interactions are modeled by a simple
instantaneous pulse, as described in Case Study 1 in the Materials
and Methods section. This case study is favorable for simulators
oriented toward network properties with the simplest neural and
synaptic models.

First, all simulators produce similar network activity
(Figure 2A), although not identical. Note we constrain all the
model parameters and random sequences to be exactly the same.
The model building time was the longest for NEURON (Figure 2, B1),
which is probably because that NEURON does not support batch
connection creation; therefore, each connection has to be created
independently. Indeed, this NEURON feature rises from the
fact that for multicompartment models, connections cannot be
represented just by indexes of pre- and post-synaptic neurons but
also by the location of synapse on dendrite tree.

NEURON had the highest simulation time (Figure 2, B2). It
is not surprising, because the network of LIF is not a favorable
model for NEURON. Interestingly, BRIAN showed a better per-
formance than the highly optimized low-level C++ NEST’s code.

Although neural and synaptic models are extremely simple in
this case study, different simulators show dramatic differences in
code complexity (Figure 2, C1,C2). In both lines of code (LOC)
and number of characters (NOC), BRIAN uses the most concise
language and shows best performance for this type of model.
Indeed, the preference of NEST developers to use low-level C++
language leads to a very complicated code, which exceeds BRIAN
and NEURON several times for both LOC and NOC counts.
However, a recently introduced language for NEST modules,

NESTML (Plotnikov et al., 2016), may significantly reduce both
LOC and NOC in the future.

3.3.2. Case Study 2: PostInhibitory Rebound
InterNeuron Gamma (PIR-PING) Oscillations
In the second case study, we use PIR-ING network (Tikidji-
Hamburyan et al., 2015) with a classical single-compartment,
conductance-based Hodgkin–Huxley model (Hodgkin and
Huxley, 1952). The network consists of 400 neurons with no
external activation. Only inhibitory connections are presented
in the model. An inhibitory synaptic current is described as a
double-exponential dynamical process, which adds two differen-
tial equations to the main neuron dynamics. Note that we add a
single-exponential excitatory synapse to each neuron in BRIAN
and in the NEURON version of the model. We had to add this
almost silent synapse to equalize the number of equations, which
each package evaluates for each neuron, as the NEST module
has two built-in synapses and modification of this module is not
trivial. This case study is assumed to be favorable for simulators
oriented toward accurate spatial-temporal integration, but it is
still possible to implement it on “network-oriented” simulators.

First, we find that simulators also do not show identical
results (Figure 3A). The differences appear in the initial network
oscillations and in the frequencies of network oscillations. Note
that random initialization as well as random connectivity were
generated once; therefore, we constrain all the model parameters
and random sequences to be exactly the same. We do not have
valuable explanations for this difference and leave this question
open for further research.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

13

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

For model formation, BRIAN needs more time that any other
simulator (Figure 3, B1). It probably indicates longer time for in-
line compilation. The building time also did not take into account
that NEST and NEURON need time for module compilation,
which is not part of the script. However, note that NEST and
NEURON need compilation only once, while BRIAN needs time
for analysis and compilation for every model run. This may be
one of the biggest disadvantages of BRIAN for big and compli-
cated models. Surprisingly, NEURON does not show the fastest
building time, even though it is mostly oriented to this kind of
model. Again, the long formation time in NEURON is, probably,
due to the absence of batch methods to create connections and
each NetCon object has to be created independently in the script.

NEURON shows the best performance for this model type
(Figure 3, B2). Note that off-the-shelf NEURON uses an
exponential-Euler method to solve ion-channel gating variables
and high-order numerical methods only for voltage. However,
switching on different solvers does not reduce NEURON’s per-
formance significantly (not shown); therefore, we assume that
high NEURON performance is due to using tabulated results
for the right-hand side of differential equations for the gating
variables. Although BRIAN’s simulation time is the longest in this
case study, it may be significantly improved if the less accurate
“exponential Euler” is used.

Evaluation of code complexity shows that BRIAN has the
most compact code, while the NEST code exceeds this more than
three times in both LOC and NOC counters, although this may
be improved with NESTML language. Again, as we mentioned
earlier, the implementation of low-level languages does not
guarantee optimization.

4. DiscUssiOn anD cOnclUsiOn

4.1. Other software Packages for Brain
network simulations
We consider here the three most popular software packages for
brain network simulations: BRIAN, GENESIS, and NEURON
(in alphabetic order) in addition to the NEST simulator. How ever,
there are many other less popular packages, which target the same
or similar fields. For example, we did not consider here general-
purpose software, such as XPP-auto (Ermentrout, 2002), the
package for studying general dynamical systems, or MATLAB™,
a general mathematical framework, due to an absence of specific
routines for neural network simulation. Comparative analysis
between these software and specialized simulators is hardly pos-
sible. The same can be said regarding models developed using
general-purpose computer languages, such as C/C++, Fortran,
and Python. Note that Python can be used as the language to
describe a network structure as well as individual morphological
detailed neurons. In this case, Python is not used as a main com-
putational kernel but forms a wrapper around computationally
intensive parts of the software.

Note that simulators that allow the study of effects of precise
ion-channel positions on dendrite membranes (see for exam-
ple, Cannon et al., 2010) or effects of diffusion of individual
molecules in cytoplasm (see for example, Hepburn et al., 2012)

are beyond the scope of this article, due to limited application
of this software for large brain network simulations. We did not
consider other simulators due to a low frequency of usage or
early stage of software development (for example, NSC, Drewes,
2005, or NeuroCAD, Tikidji-Hamburyan and Markin, 2008). We
also excluded from this analysis all simulators that can support
only one neural/synaptic model or have a very limited range
of supported models, for example, only single-compartment
spike or rate-based models (ANNarchy—C++ code generator
for software and hardware implementation, Vitay et al., 2015;
Auryn—optimized for multiscale time resolution and formal
representation of spike-dependent plasticity, Zenke and Gerstner,
2014; and GeNN—oriented on maximal performance on graphi-
cal processors, Yavuz et al., 2016).

4.2. Model range and selection of the
case studies
As we stated earlier, we attempted to select the most “distal”
model types in the model-type domain, which may be simu-
lated on selected simulators. However, it should be mentioned
that other cases may be selected from the same domain. For
example, one can study a single-compartment model and fully
reconstructed neuron on BRIAN, NEURON, and GENESIS
with the exclusion of NEST. Although in our opinion, the
model-type range is the most critical characteristic of the
brain network simulators, one can study the quality of HPC
utilization and compare pGENESIS, NEURON, and NEST with
the exclusion of BRIAN. We hope that our results will open a
broad discussion in computational neuroscience and computer
science communities and will trigger further independent
wide-ranging studies of simulators in the computational neu-
roscience field.

4.3. available solvers
Although we consider here the performance of all packages “off-
the-shelf ”, at least NEURON and BRIAN offer a range of “solvers”
for numerical integration of differential equations. For example,
one such solver is CVODE (Hindmarsh et al., 2005) that can
significantly increase the speed of simulations, especially when
the spike activity is periodical with high synchronization. Indeed,
this ability can help the user to use the most optimal solver for
a specific model. However, a choice of the solver may not be a
trivial problem. Therefore, a comparative study of performance
can depend upon the choice of solver. For example, a linear Euler
method may be 10-fold faster than the GNU Scientific Library
implementation of Runge–Kutta 4/5 method (Vitay et al., 2015).
Indeed, NEURON and NEST modules were developed for specific
models and, therefore, they are “aware” of the model type and
change solvers accordingly (exponential Euler for LIF vs RK45
or modified Crank–Nicholson method for conductance-based
models). Thus, the default solver is a reasonable choice at least.
In contrast, BRIAN’s online documentation recommends the
use of a “linear solver” with the suggestion to try other options
if BRIAN fails to generate code for this solver. However, when
the recommended solver fails, the user has to choose a solver
from the list. It seems that the “off-the-shelf ” solvers are model

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

14

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

specific and well optimized, but we leave this question outside of
the scope of this study.

Another critical question, which we also left outside of the
scope of this study and just briefly discuss here, is how simple is it
to change a solver in a model. Different simulators offer different
functionalities. In NEURON and BRIAN, the embedded solvers
may be changed by editing one parameter in a script or in a mod-
ule. In NEST, changing the solver may not be a trivial problem,
due to the use of low-level C++ language for module develop-
ment. For example, if the user wants to implement the CVODE
solver, which requires that all dynamical variables must be held in
one vector, she or he has to modify not only the module code but
also the NEST kernel code, due to the inner object-oriented class-
based architecture. In NEURON and BRIAN, a similar problem
appears if the user wants to use a solver, which is not embedded
into the simulator (for example, use CVODE in BRIAN).

4.4. Brian Performance for Different
code generation Modes
As we noted in Section 2, we used BRIAN in “default” code
generation mode, i.e., numpy code. However, the user can switch
to Cython or pure C-code generation to improve performance.
Indeed, Cython can speed up computation by at least 20–30%
in both case studies. Moreover, depending on the hardware
and installed software, a 4- to 5-fold increase may be achieved.
However, the first run (or run after any changes in the scripts) will
take at least 3 times as long as any subsequent numpy code, due to
the longer process of compilation. Therefore, in the development
stages, numpy is the preferred code generator, while long runs of
a well debugged model will perform better using the Cython code
generator, with modules precompiled through a brief run.

BRIAN also can generate so-called “Standalone code,” which
can use OpenMP threading. Standalone code may potentially
be “much faster” than numpy/Cython code but with additional
limitations on functionality. It seems that the OpenMP code gen-
erator is still in development and “may be not accurate” according
to Brian2 documentation.

4.5. high-Performance computing
With the current development of computational clusters and
multicore computers, the ability of a simulator to utilize the
power of HPC is critical, in order to enable simulations of large
scale networks. Moreover, it is critical to have a simple way for
mapping existing models of brain networks on clusters or multi-
core computers. It should be noted that HPC computation is one
of the weakest characteristics of BRIAN software. BRIAN does
not support MPI on clusters, and stand-alone OpenMP and GPU
versions have limited functionality. Using NEURON, users have
to modify scripts if the model was developed without using the
ParallelContext mechanisms, and later, it has to be mapped onto
the cluster. This requires additional effort and may generate addi-
tional bugs. However, this approach is flexible and allows the user
to map the neural network architecture onto cluster hardware
with a better balance, which may be critical for both heterogene-
ous network architectures and heterogeneous clusters. It is only
when the user wants to use multi-threading that NEURON’s
script requires minimal changes. NEST offers the simplest way

to map a model onto a cluster or multicore computers without
any changes in scripts. That is definitely the strongest advantage
of NEST.

4.6. Usability
It is important to note that front-ends, such as PyNN and neu-
roConstruct, as well as high-level structural languages, such as
NeuroML, may help hide the code complexity at the simulator
level. Such front-ends can help to decrease both LOC and NOC
or totally/partially substitute code development by manipula-
tions with user-friendly GUI. However, front-ends use internal
converters to generate final script(s) for a specific simulator based
on model description. The development of such converters is
more complicated for simulators with high NOC and LOC (see
Figures 2C and 3C), than for concise languages. Therefore, our
analysis of code complexity can be considered not only as an
estimation of the amount of effort required for model develop-
ment but also as a potential barrier for developing a converter.
Although the code conciseness does not guarantee readability or
comprehension, a better analysis is not possible due to differences
in languages for the modules used by the simulators.

While the authors acknowledge that the number of lines
of code may not be fully accurate in capturing the software
development effort, it remains a valuable quantitative metric for
comparing codes developed in high-level languages and software
frameworks. Notably, DARPA’s High Productivity Computing
Systems (HPCS) program that ran during the first decade of
the 21st century used the Source Lines of Code (SLOC) metric,
which is the same (Dongarra et al., 2008). SLOC was used in
comparing the productivity of different parallel computing
languages. Furthermore, Lind and Vairavan (1989) carried out
an experimental investigation of software metrics and concluded
that conceptually simple measures such as LOC exhibit a high level
of correlation to the development effort, equaling or surpassing
other software metrics. In our study, we augment the LOC metric
with another simple metric used by Lind and Vairavan (1989), the
number of characters (NOC), as we did in a prior study in parallel
computing (Cantonnet et al., 2004).

4.7. summary
Here, we considered the most popular software packages for brain
network simulations: BRIAN, GENESIS, NEST, and NEURON.
All simulators tend to support a large range of models of neurons
and synapses. However, the performance of these simulators is
different, and the complexity of codes required for model descrip-
tion is diverse. Not all simulators can be used on computational
clusters, but all of them may be used on multicore computers with
some limitations.

aUThOr nOTes

The authors have more than 10 years of experience in spiking
neural network simulations as well as a history of developing
brain network simulators, NeuroCAD (Tikidji-Hamburyan
and Markin, 2008). We routinely use NEURON, BRIAN, XPP,
and NEST. However, we should admit that we have limited
experience in using GENESIS and pGENESIS. Our evaluation

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

15

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

of (p)GENESIS is mostly based upon the documentation and
available examples.

aUThOr cOnTriBUTiOns

RT-H, ZB, and TE-G designed the research; RT-H conducted the
research; RT-H, VN, and TE-G discussed the results; RT-H and
VN wrote the manuscript.

acKnOWleDgMenTs

The authors gratefully acknowledge the assistance of Dr. Rachel
Atkinson in editing the manuscript. The authors also deeply

appreciate comments of both anonymous reviewers, which
allowed to significantly improving the quality of the publication.

FUnDing

Zeki Bozkus is funded by Scientific and Technological Research
Council of Turkey (TUBITAK; 114E046).

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/
full#supplementary-material.

reFerences

Atallah, B. V., and Scanziani, M. (2009). Instantaneous modulation of gamma
oscillation frequency by balancing excitation with inhibition. Neuron 62,
566–577. doi:10.1016/j.neuron.2009.04.027

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System, 2nd Edn.
New York: Springer-Verlag.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi:10.1152/jn.00686.2005

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and strate-
gies. J. Comput. Neurosci. 23, 349–398. doi:10.1007/s10827-007-0038-6

Brunel, N., and Wang, X.-J. (2003). What determines the frequency of fast
network oscillations with irregular neural discharges? I. Synaptic dynamics
and excitation-inhibition balance. J. Neurophysiol. 90, 415–430. doi:10.1152/
jn.01095.2002

Cannon, R. C., O’Donnell, C., and Nolan, M. F. (2010). Stochastic ion channel
gating in dendritic neurons: morphology dependence and probabilistic synap-
tic activation of dendritic spikes. PLoS Comput. Biol. 6:e1000886. doi:10.1371/
journal.pcbi.1000886

Cantonnet, F., Yao, Y., Zahran, M., and El-Ghazawi, T. (2004). “Productivity anal-
ysis of the UPC language,” in Proceedings of the 18th International Parallel and
Distributed Processing Symposium, 2004 (Santa Fe, NM: IEEE), 254.

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
University Press.

Cornelis, H., Rodriguez, A. L., Coop, A. D., and Bower, J. M. (2012). Python as
a federation tool for genesis 3.0. PLoS ONE 7:e29018. doi:10.1371/journal.
pone.0029018

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinformatics 2:11. doi:10.3389/neuro.11.011.2008

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT
Press, 806.

Destexhe, A., Bal, T., McCormick, D. A., and Sejnowski, T. J. (1996). Ionic mecha-
nisms underlying synchronized oscillations and propagating waves in a model
of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070.

Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., et al. (2008).
“Darpa’s {HPCS} program: history, models, tools, languages,” in Advances
in COMPUTERS, High Performance Computing, Volume 72 of Advances in
Computers (London: Elsevier, Academic Press), 1–100.

Drewes, R. (2005). Modeling the brain with NCS and Brainlab. Linux J. 2005
(134), 2.

Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinformatics
2:12. doi:10.3389/neuro.11.012.2008

Ermentrout, B. (1996). Type i membranes, phase resetting curves, and synchrony.
Neural Comput. 8, 979–1001. doi:10.1162/neco.1996.8.5.979

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A
Guide to XPPAUT for Researchers and Students. Philadelphia, PA: SIAM.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophys. J. 1, 445. doi:10.1016/S0006-3495(61)86902-6

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge: Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).
Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput.
Biol. 6:e1000815. doi:10.1371/journal.pcbi.1000815

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:10.1016/j.
neuron.2007.03.025

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in python. Front. Neuroinform. 2:5. doi:10.3389/neuro.11.005.2008

Goodman, D., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3:26.
doi:10.3389/neuro.01.026.2009

Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., et al. (2015).
A unified framework for spiking and gap-junction interactions in distributed
neuronal network simulations. Front. Neuroinformatics 9:22. doi:10.3389/
fninf.2015.00022

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). Steps: efficient simu-
lation of stochastic reaction–diffusion models in realistic morphologies. BMC
Syst. Biol. 6:36. doi:10.1186/1752-0509-6-36

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
et al. (2005). Sundials: suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Trans. Math. Softw. 31, 363–396. doi:10.1145/1089014.
1089020

Hines, M., Davison, A., and Muller, E. (2009). Neuron and python. Front.
Neuroinformatics 3:1. doi:10.3389/neuro.11.001.2009

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.
Neural Comput. 9, 1179–1209. doi:10.1162/neco.1997.9.6.1179

Hines, M. L., and Carnevale, N. T. (2008). Translating network models to par-
allel hardware in neuron. J. Neurosci. Methods 169, 425–455. doi:10.1016/j.
jneumeth.2007.09.010

Hines, M. L., Eichner, H., and Schürmann, F. (2008). Neuron splitting in
compute-bound parallel network simulations enables runtime scaling with
twice as many processors. J. Comput. Neurosci. 25, 203–210. doi:10.1007/
s10827-007-0073-3

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M.
(2004). Modeldb: a database to support computational neuroscience. J. Comput.
Neurosci. 17, 7–11. doi:10.1023/B:JCNS.0000023869.22017.2e

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500. doi:10.1113/jphysiol.1952.sp004764

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The NIH BRAIN initiative.
Science 340, 687–688. doi:10.1126/science.1239276

Iyer, R., and Tullsen, D. (2015). Heterogeneous computing [guest editors’ introduc-
tion]. IEEE Micro 35, 4–5. doi:10.1109/MM.2015.82

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural.
Netw. 14, 1569–1572. doi:10.1109/TNN.2003.820440

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fninf.2017.00046/full#supplementary-material
https://doi.org/10.1016/j.neuron.2009.04.027
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s10827-007-
0038-6
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1371/journal.pcbi.1000886
https://doi.org/10.1371/journal.pcbi.1000886
https://doi.org/10.1371/journal.pone.0029018
https://doi.org/10.1371/journal.pone.0029018
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1145/1089014.
1089020
https://doi.org/10.1145/1089014.
1089020
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1126/science.1239276
https://doi.org/10.1109/MM.2015.82
https://doi.org/10.1109/TNN.2003.820440

16

Tikidji-Hamburyan et al. Brain Networks Simulators

Frontiers in Neuroinformatics | www.frontiersin.org July 2017 | Volume 11 | Article 46

Jarsky, T., Roxin, A., Kath, W. L., and Spruston, N. (2005). Conditional
dendritic spike propagation following distal synaptic activation of hippo-
campal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676. doi:10.1038/
nn1599

Kayraklioglu, E., El-Ghazawi, T., and Bozkus, Z. (2015). “Accelerating brain simulations
on graphical processing units,” in 2015 IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing (CIT/IUCC/DASC/PICOM) (Liverpool: IEEE), 556–560.

Koch, C., and Segev, I. (eds.) (1998). Methods in Neuronal Modeling – 2nd Edition:
From Ions to Networks (Computational Neuroscience). Cambridge, MA: MIT press.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.
(2016). Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations.
Cham: Springer International Publishing, 363–380.

Lind, R. K., and Vairavan, K. (1989). An experimental investigation of software
metrics and their relationship to software development effort. IEEE Trans.
Softw. Eng. 15, 649–653. doi:10.1109/32.24715

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature 382, 363–366.
doi:10.1038/382363a0

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160.
doi:10.1038/nrn1848

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55. doi:10.1038/
scientificamerican0612-50

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with neuron. J. Comput. Neurosci. 21, 119.
doi:10.1007/s10827-006-7949-5

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle
fiber. Biophys. J. 35, 193. doi:10.1016/S0006-3495(81)84782-0

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and
Davison, A. P. (2015). Python in neuroscience. Front. Neuroinformatics 9:11.
doi:10.3389/fninf.2015.00011

Pinsky, P. F., and Rinzel, J. (1994). Intrinsic and network rhythmogenesis in
a reduced traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–60.
doi:10.1007/BF00962717

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B.
(2016). “Nestml: a modeling language for spiking neurons,” in Modellierung
2016 Conference, Volume 254 of LNI, Karlsruhe, 93–108.

Rinzel, J., and Ermentrout, G. B. (1998). Analysis of neural excitability and oscilla-
tions. Methods Neuronal Model. 2, 251–291.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A.,
Martone, M. E., et al. (2013). “Introducing the neuroscience gateway,” in IWSG,
Volume 993 of CEUR Workshop Proceedings. Zurich, Switzerland. Available at:
http://CEUR-WS.org

Soltesz, I., and Staley, K. (2008). Computational Neuroscience in Epilepsy. London:
Academic Press, Elseiver.

Tikidji-Hamburyan, R. A., El-Ghazawi, T. A., and Triplett, J. W. (2016). Novel
models of visual topographic map alignment in the superior colliculus. PLoS
Comput. Biol. 12:e1005315. doi:10.1371/journal.pcbi.1005315

Tikidji-Hamburyan, R. A., and Markin, S. N. (2008). Neurocad – the modular
simulation environment for effective biologically plausible neuromodeling.
BMC Neurosci. 9:91. doi:10.1186/1471-2202-9-S1-P91

Tikidji-Hamburyan, R. A., Martínez, J. J., White, J. A., and Canavier, C.
C. (2015). Resonant interneurons can increase robustness of gamma
oscilla tions. J. Neurosci. 35, 15682–15695. doi:10.1523/JNEUROSCI.2601-
15.2015

Vitay, J., Dinkelbach, H. Ü, and Hamker, F. H. (2015). Annarchy: a code generation
approach to neural simulations on parallel hardware. Front. Neuroinformatics
9:19. doi:10.3389/fninf.2015.00019

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 18854. doi:10.1038/srep18854

Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking
neural networks using general-purpose computers. Front. Neuroinformatics
8:76. doi:10.3389/fninf.2014.00076

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Tikidji-Hamburyan, Narayana, Bozkus and El-Ghazawi. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://doi.org/10.1038/
nn1599
https://doi.org/10.1038/
nn1599
https://doi.org/10.1109/32.24715
https://doi.org/10.1038/382363a0
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1016/S0006-3495(81)84782-0
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.1007/BF00962717
http://CEUR-WS.org
https://doi.org/10.1371/journal.pcbi.1005315
https://doi.org/10.1186/1471-2202-9-S1-P91
https://doi.org/10.1523/JNEUROSCI.2601-15.2015
https://doi.org/10.1523/JNEUROSCI.2601-15.2015
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2014.00076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Software for Brain Network Simulations: A Comparative Study
	1. Introduction
	2. Materials and Methods
	2.1. Selection of Most Popular Software
	2.2. Software Characterization
	2.2.1. Case Study 1
	2.2.2. Case Study 2

	2.3. Estimation of Code Complexity for Both Case Studies
	2.3.1. Source Code Sharing

	3. Results
	3.1. Determining the Most Popular Software for Brain Network Simulations
	3.2. General Characteristics for Brain Network Simulators
	3.2.1. The Range of the Model of Each Software Package
	3.2.2. Computational Architecture, Efficiency, and High-Performance Computing Utilization
	3.2.3. Program Usability and Support

	3.3. Case Studies
	3.3.1. Case Study 1: Classical Pyramidal InterNeuron Gamma (PING) Oscillations
	3.3.2. Case Study 2: PostInhibitory Rebound InterNeuron Gamma (PIR-PING) Oscillations

	4. Discussion and Conclusion
	4.1. Other Software Packages for Brain Network Simulations
	4.2. Model Range and Selection of the Case Studies
	4.3. Available Solvers
	4.4. BRIAN Performance for Different Code Generation Modes
	4.5. High-Performance Computing
	4.6. Usability
	4.7. Summary

	Author Notes
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References

