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Computation of headmodel and sourcemodel from the subject’s MRI scan is an essential

step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals.

In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and

sourcemodel) is often approximated from an available standard MRI template or pool

of MRI scans considering the subject’s digitized head surface. In the present study, we

approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel)

using an available pool of MRI scans with the focus on MEG source imaging. The first

was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest

objective registration error (ORE) after being registered (rigid body transformation with

isotropic scaling) to the subject’s digitized head surface. The second was the averaged

rank pseudo MRI that is generated by averaging of headmodels and sourcemodels

from multiple MRI scans respectively, after being registered to the subject’s digitized

head surface. Subject level analysis showed that the mean upper bound of source

location error for the approximated sourcemodel in reference to the real one was 10

± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first

rank pseudo MRI approach. Functional group source response in the brain to visual

stimulation in the form of event-related power (ERP) at the time latency of peak amplitude

showed noticeably identical source distribution for first rank pseudo MRI, averaged rank

pseudo MRI, and real MRI. The source localization error for functional peak response

was significantly lower for averaged rank pseudo MRI compared to first rank pseudo

MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the

averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of

the functional group source response.

Keywords: MRI, pseudo MRI, ICP registration, MEG source imaging, sourcemodel, headmodel

INTRODUCTION

Currently, magnetoencephalography (MEG) is one of the most important non-invasive
neuroimaging modalities used to investigate various brain spatiotemporal neural dynamics and
cognitive functions. Typically, MEG-based studies involve anatomical localization of the source
from the recorded neural activity at MEG sensors. This process essentially requires co-registration
of anatomical information of the brain from MRI scan and MEG sensors in a common three-
dimensional space. Hence, participants of MEG experiments also require visiting anMRI recording
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facility, which is often located away from the MEG setup,
thus requiring an additional experimental setting. Moreover,
MRI scanning involves significant time and money resources,
and participant drop out is often a costly inconvenience. One
alternative approach to bypass MRI scanning is to generate
approximated anatomical head or brain models, or pseudo MRI,
from an available pool of MRI scans.

Anatomical source localization of sensor MEG (and EEG)
activity requires the a priori construction of the headmodel and
sourcemodel (Wendel et al., 2009). The headmodel represents the
volume conductor model (for the electric current or magnetic
field) for the source activity in the brain to the sensors. The
sourcemodel represents the source locations in the brain from
where the source activity is to be reconstructed. Anatomical
information from the MRI scan of the subject is generally used to
create the headmodel and sourcemodel. However, in the absence
of an MRI scan of the subject, pseudo MRI (the headmodel and
sourcemodel) can be approximated in one of two ways. Firstly,
it can be done by warping surface landmarks of a standard MRI
template (e.g., averaged MNI, ICMP-152, colin27, averaged from
the target populationMRI) to the digitized head landmarks/scalp
surface of a subject (Fuchs et al., 2002; Darvas et al., 2006;
Tadel et al., 2011). Or, researchers can select an individual
MRI scan from an MRI dataset that is registered to a subject’s
digitized head surface with minimum objective registration error
(ORE) (Holliday et al., 2003). Recently, the use of pseudo
MRI in the absence of real MRIs has also been suggested;
but with taking into consideration the source localization error
in the absence of intracranial structure information (Gross
et al., 2013). In a previous EEG-based study, pseudo MRI
was computed using thin plate spline warping of the 10−20
electrode placement system, like grid landmarks on the head
of the participant to corresponding landmarks on a standard
template (Darvas et al., 2006). This study showed a mean source
localization error magnitude of 15.2 ± 5.9mm in the atlas
space, while error magnitude exceeded 25mm for peripheral
brain regions for approximated pseudo MRI compared with real
MRI information. Moreover, Darvas et al. (2006) also evaluated
rigid body transformation with scaling (Fuchs et al., 2002) and
observed a maximum source localization error exceeding 35 mm.
This is likely because scaling was based only on three fiducial
landmarks. Similarly, Brainstorm software provides rigid body
transformation with scaling and warping transformation-based
functionalities to approximate pseudo MRI from template MRI
using information from the subject’s digitized head surface (Tadel
et al., 2011). In an EEG-based study, average approximated
realistic MRI-based models, such as surface-based models or
leadfields, were computed from a target population consisting
of 305 MRIs (Valdés-Hernández et al., 2009). The resulting
average approximated model was closer to all individuals of
the target population in terms of shape and seemed to perform
marginally better than the MNI-shaped model. However, the
electrode position for an individual was directly projected from
the template MRI, and the error matrix thus disregarded the
electrode positioning error (Valdés-Hernández et al., 2009).

In a MEG-based study, instead of using single template MRIs,
pseudo MRI was approximated by selecting individual MRIs

from a dataset of a total of 27 MRIs that optimally registered to
the subject’s digitized head surface (Holliday et al., 2003). This
study showed a mean source localization error of about 6mm
(using 27 subjects and only eight dipole locations in each subject)
while in 90% of the cases the source localization error fell below
12.5mm. Additionally, these researchers observed a functional
group brain response (at the source level) similar for both real
and pseudo MRI in response to a verbal fluency task (Holliday
et al., 2003). However, this estimate was based on six participants
only.

The studies mentioned above have mainly focused on
the source localization error for the simulated source at the
individual level. Typically, MEG-based brain functional mapping
is carried out as a group study where the conclusion is drawn
from the mean group effect. It is worth noting that there exists
functional and anatomical variability across subjects (Xiong et al.,
2000; Nieto-Castanon and Fedorenko, 2012), error from the
registration of digitized head surface or fiducial to real MRI
(Whalen et al., 2008; Chiarelli et al., 2015), error from registration
of real MRI to template MRI or atlas (Hinds et al., 2009; Ghosh
et al., 2010; Nieto-Castanon and Fedorenko, 2012), and error
from head movement inside the Dewar during MEG signal
recording. Despite the advantage of having real MRIs for each
of subjects, the aforementioned functional and anatomical inter-
individual discrepancies cause blurring of the brain response.
Consequently, due to the large inter-subject variability in brain
responses, a little information may be lost in a group effect after
analyzing the data using the approximated pseudo MRI instead
of real MRI (Holliday et al., 2003).

The goal of the present study was multifold. First, we aimed
to find an approximated pseudo MRI from an MRI dataset
that best matched a subject’s digitized head surface in terms of
head shape and size. The effective strength of MRI information
further increased as we considered scaling these MRIs during
our search for the best pseudo MRI. Second, in addition to
using single best substitute pseudo MRI with the lowest ORE,
we approximated a subject-specific averaged pseudo MRI (i.e.,
sourcemodel and headmodel) by averaging the first n number
of pseudo MRIs that optimally registered to subject’s digitized
head surface. Given that the source localization error for different
pseudo MRIs is likely to be in different orientations, averaging
them might neutralize error to a certain extent. Third, we aimed
to evaluate the similarity or difference in functional group source
response for the real MRI and approximated pseudo MRI using
real functional MEG signals.

MATERIALS AND METHODS

Dataset
Data used in the preparation of this work were obtained from
the MGH-USC Human Connectome Project (HCP) database.
The HCP project (Principal Investigators: Bruce Rosen, M.D.,
Ph.D., Martinos Center at Massachusetts General Hospital;
Arthur W. Toga, Ph.D., University of California, Los Angeles,
Van J. Weeden, MD, Martinos Center at Massachusetts General
Hospital) is supported by the National Institute of Dental and
Craniofacial Research (NIDCR), the National Institute of Mental
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Health (NIMH), and the National Institute of Neurological
Disorders and Stroke (NINDS). Collectively, theHCP is the result
of efforts of co-investigators from the University of California,
Los Angeles, Martinos Center for Biomedical Imaging at
Massachusetts General Hospital (MGH),WashingtonUniversity,
and the University of Minnesota (Larson-Prior et al., 2013).

From the database, we used pre-processed MRI and 3D
digitized head surface data from 92 participants. The detailed
experimental setup and data pre-processing pipeline are available
at (http://www.humanconnectome.org/documentation/S500/
HCP_S500+MEG2_Release_Reference_Manual.pdf). Briefly,
structural MRI was recorded using a whole-head Magnes 3600
MRI scanner (4D Neuroimaging, San Diego, CA, USA) at a
resolution of 0.7mm that was subsequently changed to 1mm. In
addition to the structural MRI scan, 3D digitized head surface
and head fiducial landmarks such as nasion, and the left and
right pre-auricular landmarks of the subject were also provided.
Head surface was digitized with more than 2,000 points.
Moreover, the dataset also provided a precomputed cortical sheet
sourcemodel with 8,004 source (dipole) locations registered to
the common template (Conte69) space and precomputed single
shell headmodel associated with each of the MRIs.

We also used pre-processed functional MEG signals from 82
participants performing a working memory task, available on the
human connectome project web portal (Van Essen et al., 2013).
Briefly, MEG data were recorded from participants performing
the 0-back or 2-back working memory task in the visual sensory
modality. We used data from only one out of two sessions, with
eight blocks of the 0-back working memory task (sample to
match task). In a single block of the 0-back working memory
task, a target image of either a face or a tool was presented to
a participant followed by a sequence of 10 images interspaced
with a fixation cross. Each image and fixation cross was displayed
for a duration of 2,000 and 500 ms, respectively. The participant
had to press a button during the period of the subsequent
presentation of the fixation cross whenever the image matched
the target image. In total, there were 80 trials of the 0-back
working memory task for each participant.

Registration of Digitized Head Surface and
MRI
Estimation of source activity in the brain from MEG sensor
activity requires registration of MEG sensors and brain anatomy
in a common three-dimensional space. It is frequently achieved
by registering head fiducial landmarks, and head surface digitized
points to corresponding fiducial landmarks and scalp surface in
an MRI image. For that, we adopted the following registration
process. First, each MRI image was segmented into various
tissue types (using volumesegment function with scalpthreshold
value set to 0.08) using the Fieldtrip toolbox (Oostenveld et al.,
2011). The MRI scalp surface in the form of mesh (with 50,000
vertices) was extracted from this segmented volume. Initially,
digitized head surface and MRI scalp surface were registered to a
common headspace (i.e., the BTi coordinate system) based on the
nasion, and the right and left pre-auricular fiducial landmarks.
Subsequently, a rigid body registration (six degrees of freedom,

i.e., 3D rotation and 3D translation) was performed to fine-tune
the co-registration between the digitized head surface and the
MRI scalp surface using the point to plane iterative closet point
algorithm (ICP) as provided in the Fieldtrip toolbox. Before this,
we excluded the digitized head points that were more than 10
mm (i.e., < −10mm in z-axis in BTi coordinate) below the
plane formed by the nasion, left pre-auricular, and right pre-
auricular fiducial landmarks. In practice, the head surface was
often sampled with 50–150 digitized points. Thus, we used only
100 (uniformly distributed) out of more than 2,000 available head
surface digitized points for the registration process.

The point to plane ICP algorithm registers source points
to the target surface by minimizing objective error function
that is the mean Euclidian distance between source points and
target surface (Rusinkiewicz and Levoy, 2001; Park and Subbarao,
2003; Low, 2004). For the ICP registration process, various
parameter values were set as follows: error “Minimization”
parameter was set to “Point to plane,” “Iteration” number was
set to 50, “WorstRejection” was set to 0.05 (it rejects the
given percentage of worst points having a higher magnitude of
error), and “Extrapolation” was set to “true” (it leads to faster
convergence by using gradient direction information). This ICP
process minimizes the registration error between two surfaces,
and returns the rigid body transformation matrix and residual
ORE. Here, residual ORE represents the mean Euclidian distance
between the digitized head surface points and the MRI scalp
surface after registration; the lower the ORE the better the
registration between two surfaces. However, the ICP algorithm
is sensitive to local minima; the resultant solution may not
necessarily be a perfect one. As the head size differs across
subjects, it is important to incorporate a scaling parameter in the
registration process. However, the rigid body ICP algorithm does
not include a scaling parameter. Therefore, we adopted a serial
approach in which ICP registration was performed after applying
different levels of isotropic scaling to the MRI scalp surface.
Indeed, the scaling factor can be estimated simultaneously with
rotation and translation using another variant of ICP methods
(Labadie et al., 2004). However, it also escalates the local minima
due to the addition of more free parameters and may hence
result in a higher registration error. Previous studies have
also suggested better registration quality with the serial scaling
approach (Whalen et al., 2008). In the present study, scaling
was applied to the MRI scalp surface before the ICP registration
process. We used scaling factors ranging between 0.85 and 1.15
with a resolution of 0.01 (∼1 mm), which sufficiently covers all
head sizes in the database. Moreover, we estimated the scaling
parameters for the registration of the digitized head surface and
real MRI scalp surface (with digitized head surface andMRI from
the same subject), since MRI gradient inhomogeneity and the
pre-processing (smoothing) of MRI images also introduce some
level of scaling of the MRI image (Whalen et al., 2008).

Pseudo MRI
In the present study, approximate pseudo MRI essentially
implies the approximation of headmodel and sourcemodel
instead of the entire MRI image. An outline of pseudo MRI
computation from the available pool of MRI images is provided
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in Figure 1. In the absence of an MRI scan from a given
subject, we registered each MRI image (“j”) in the dataset
(91 MRI scans that do not contain subject’s own MRI scan)
to the subject’s digitized head surface (“i”). For this we used
the aforementioned ICP registration process and estimated the
rigid body transformation with scaling matrix (Ti,j) and OREi,j

(Equation 1). The estimated transformation (Ti,j) was applied to
the MRI associated precomputed sourcemodel and headmodel,
resulting in a registered pseudo MRI, i.e., pseudo sourcemodel
(PSMi, j, i 6= j) and pseudo headmodel (PHMi, j, i 6= j) and
a real MRI, i.e., real sourcemodel (RSMi, j, i = j) and real
headmodel (RHMi, j, i = j) for a given subject (Equations 2
and 3). Subsequently, all pseudo MRIs (PSMi,j and PHMi, j)
were ranked according to the ORE-value in ascending order

for a given subject (PSMi,rank and PHMi,rank, Equation 4). In
the present study, we considered two kinds of pseudo MRIs.
The first rank pseudo MRI [PSM(FR), PHM(FR), Equation
5] was the pseudo MRI with the lowest ORE. The averaged
rank pseudo MRI [PSM(AR,n), PHM(AR,n, Equation 6] was
the average of first n rank pseudo MRIs [PSMi,rank=1 to n and

PHMi, rank=1 to n, models are in the head coordinate system (BTi
coordinate) after the ICP registration process] for a given subject.
An averaged sourcemodel was directly computed by taking the
centroid of the particular source grid point location (r) of first
n rank pseudo sourcemodels (Equation 6a). This was not the
case for the headmodel of the averaged rank pseudo MRI.
Therefore, 3D brain volume was computed from the headmodel

FIGURE 1 | Outline of first rank pseudo MRI and averaged rank pseudo MRI

approximation, and related error estimation. ORE, objective registration error;

AT, affine transformation; SGPLE, source grid point location error; CE, Centroid

error.

mesh for each of n number of pseudo headmodels and then
averaged. This averaged 3D brain volume was thresholded with
a 0.5 voxel value (volume overlap for more than 50% of the
cases). An averaged headmodel mesh was recomputed using this
thresholded averaged 3D brain volume (Equation 6b).

Ti,j, OREi,j = register
(

Digitized head surfacei,MRI

scalp surfacej
)

(1)

PSMi,j = Tij ·MRIj
(

sourcemodel
)

, i 6= j (2a)

RSMi = Tij ·MRIj
(

sourcemodel
)

, i = j (2b)

PHMi,j = Tij ·MRIj(headmodel), i 6= j (3a)

RHMi = Tij ·MRIj(headmodel), i = j (3b)

{PSMi, rank | rank = 1, 2, . . . 91} = Sortas per ORE {PSMi, j| j

= 1, 2, . . . 91} (4a)

{PHMi, rank | rank = 1, 2, . . . 91} = Sortas per ORE {PHMi, j| j

= 1, 2, . . . 91} (4b)

PSMi(FR) = PSMi, rank=1 (5a)

PHMi(FR) = PHMi, rank=1 (5b)

PSMi
r(AR, n) =

∑n
rank=1 PSM

i,rank
r (x, y, z)

n
(6a)

PHMi(AR, n) = mesh

(

∑n
rank=1 volume(PHMi, rank)

n
>0.5

)

(6b)

Where “i” and “j” are the subject and associatedMRI image index
respectively, T, rigid body transformation with scaling matrix,
ORE, objective registration error, PSM, pseudo sourcemodel,
PHM, pseudo headmodel, RSM, real sourcemodel, RHM, real
headmodel, r, source grid point location in sourcemodel,
(x,y,z): rth location coordinates in head coordinate (after ICP
registration), FR, first rank, AR, averaged rank.

Event-Related Power (ERP) at Source Level
The event related field at sensor level was computed by averaging
all trials within a subject. The sensor level averaged event-
related field response was then projected to the source level
using unconstrained minimum-norm estimate inverse solution
as implemented in the Fieldtrip toolbox (Oostenveld et al., 2011).
For computation of the inverse solution, the noise covariance
matrix was determined from the baseline period (−1 to −0.5 s),
leadfields were pre-whitened, the signal to noise ratio (SNR) value
was set to three, and the normalization parameter value was set to
0.8. For each source grid point location in the sourcemodel, three
orthogonally-oriented dipoles bring about three time series of
source activities per source location. Thus, a single source activity
time series [i.e., event-related power (ERP)] was computed by
taking the norm of all three-source activity time series. The
source ERP time series was normalized by subtracting the mean
baseline amplitude and then dividing by the baseline standard
deviation. For comparison, the source ERP time series for each
of the sourcemodel grid point locations were computed for real
MRI, first rank pseudo MRI, and averaged rank pseudo MRI.
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Source Error Computation
We evaluated two kinds of errors, subject level error and group
level error. In the evaluation of the subject level error, we
measured the Euclidian distance between the corresponding
source grid point locations of the sourcemodel from real
MRI and pseudo MRI for each subject. Since the source
reconstruction errors are less model sensitive for MEG imaging
modality, the source localization error mainly results from the
deviation of grid point locations in the pseudo sourcemodel
(PSMi

r) from real sourcemodels (RSMi
r). Therefore, the Euclidian

distance between the corresponding grid point locations in
the real sourcemodel and pseudo sourcemodel [i.e., the
sourcemodel grid point location error (SGPLE)] directly provides
an approximation of the possible source localization error
(Equation 7).

SGPLEir = distance
(

RSMi
r(x, y, z), PSM

i
r

(

x, y, z
))

(7)

Where RSMi
r(x, y, z) and PSMi

r (x, y, z) are the coordinate values
for ith subject at rth source grid point location in the real
sourcemodel and pseudo sourcemodel, respectively.

The source peak location, source strength, and source size
(spatial distribution) are often the parameters of interest in
functional brain mapping using MEG source imaging in group
studies. Since the SGPLE for a given source location is likely
to be different in terms of magnitude and orientation across
subjects, it mainly causes blurring of the source, but it likely
causes a lesser impact on the source’s peak location in overall
group effects. SGPLE in a group effect [henceforth called centroid
error (CE)] provides a hint regarding the peak source localization
error in a group response. In order to compute CE (Equation
8), we first randomly selected a number (group size) of subjects
from our sample of 92. For each of the subjects in a group,
we computed a vector that corresponded to the difference in
the coordinates of the corresponding source grid point location
between the real sourcemodel and pseudo sourcemodel. In other
words, this vector represented the magnitude and orientation of
SGPLE. Thereafter, these vectors from the subjects in a group
were summed up and the computed norm of the resulting vector
corresponded to the CE (Equation 8). We repeated this process
100 times (iterations) for each of the different group sizes range
from 1 to 92. In fact, the peak location of the functional group
source response depends additionally on the functional inter-
subject variability. However, the CE, as computed here without
taking account of the functional inter-subject variability, does not
provide complete information but provides at least a hint toward
a possible peak source localization difference between pseudo and
real MRIs.

CE
group size
r = norm

(

∑group size

i=1

(

RSMi
r(x, y, z)−PSMi

r (x, y, z)
)

)

(8)

Where RSMi
r(x, y, z) and PSMi

r (x, y, z) are the coordinate values
for ith subject at rth source grid point location in the real and
pseudo sourcemodel, respectively.

All the SGPLEs mentioned above for pseudo MRI were
computed with reference to real MRI. In the current practical

scenario, perfect registration of digitized head surface and MRI
scalp surface is not guaranteed. Therefore, there also exists source
localization error that arises from poor registration even when
using real MRI. Furthermore, there exists inter-subject functional
variability in source activity and brain anatomy registration error
in matching MRI to a standard template (Xiong et al., 2000;
Nieto-Castanon and Fedorenko, 2012). Altogether, these cause
blurring of the functional source response even when using real
MRI. Therefore, we performed a direct comparison of functional
group source ERP response from both real and pseudo MRI.
In practice, it is common to have 10–30 participants per group
in MEG group studies. Therefore, we made a comparison of
functional group source ERP responses from real and pseudo
MRIs with 20 participants per group. We performed such
comparisons 100 times (group iterations) in which 20 subjects
were chosen randomly out of 82 participants in a single iteration.
For functional source activity comparison, our focus was on
observing similarity or difference in peak source strength, peak
source location, and spatial distribution of source activity for real
and approximated pseudo MRIs.

For the statistical evaluation of the peak source strength (for
each group iteration), we first identified a peak source location
with the highest source ERPmagnitude (at time latency of around
0.108 s) in each of the left and right visual cortices, and for both
real and pseudo MRIs. We used the bootstrapping approach
to generate a null distribution for statistical evaluation of the
difference in peak source strength. For each subject, baseline
source ERP response at the peak source location was permuted
(in the circular shift) homologously for both real and pseudo
MRI, and then respectively, averaged across the subjects from one
group (group size = 20) to generate the baseline group source
ERP response. After that, we computed the difference in source
magnitude between these baseline group source ERP responses
from real and pseudo MRI, at each of the baseline time points.
We repeated this process 100 times and combined all values to
generate a null distribution (having 100 × 508.675 [sampling
rate] × 0.5 s [baseline period] examples). Significant threshold
values were determined by taking 0.5 and 99.5 quantile (p< 0.01)
values from the null distribution. These threshold values were
used to evaluate the significance of the difference in functional
peak source strength (observed at a latency of around 0.108 s)
between real and pseudo MRI.

RESULTS

Sourcemodel Grid Point Location Error
(SGPLE)
The meanSGPLEprc values, that is prc = 5, 15, 25, 75, and
95 percentile values of SGPLE across source locations within
a subject were extracted and then averaged, respectively across
subjects (Equation 9). First rank pseudo MRI showed a mean
upper bound SGPLE (i.e., meanSGPLE95) of about 16 mm
(Figure 2A). However, SGPLE increased with the rank of
pseudo MRI so that the difference in ORE was about 4
mm between first and last rank pseudo MRI (Figure 2A).
The difference in ORE between two consecutive ranks of
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FIGURE 2 | Sourcemodel grid point location error (SGPLE) and objective registration error (ORE). (A) The meanSGPLEprc (Equation 7) for different rank of pseudo

MRIs. (B) The meanSLEprc (Equation 7) for averaged rank pseudo MRIs. (C) Difference in ORE between first rank pseudo MRI and 2nd to 91st rank pseudo MRIs

(x-axis). Each line represents the result for one subject. There were total 92 subjects. (D) Scatter plot with the linear regression line for SGPLE against ORE for each of

91 pseudo MRI (dots) for one representative subject. (E) Distribution of the correlation coefficient and linear regression R-square coefficient for association between

ORE and SGPLE across the subjects.

pseudo MRI was minimal (Figure 2C). Indeed, the difference
in ORE between the first and second pseudo MRI was
below 0.3 mm, while it was below 0.5 mm between the
first and the 20th rank pseudo MRI for the majority of
subjects. Moreover, there were weak to moderate associations
between the ORE and SGPLE across subjects with correlation
coefficients and R-squared regression coefficient ranging from
∼0 to 0.48 and ∼ 0 to 0.22, respectively (Figures 2D,E).
These results indicate that a minimum rank pseudo MRI that
has a minimum ORE does not necessarily imply minimum

SGPLE.

meanSGPLEprc =

∑N
i=1 prc of {SGPLEir | r = 1, 2, . . . , R}

N
(9)

Where R (= 8004) is the number of source locations,
prc is the percentile value, N (= 92) is the number of
subjects.

In contrast to the first rank pseudo MRI, the upper bound
of SGPLE (i.e., meanSGPLE95) for averaged rank pseudo MRI
decreased from 16 to 12 mm after averaging 20 or more pseudo
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MRIs (n ≥ 20; Figure 2B). This indicates that SGPLEs for
different rank pseudo MRIs were in a different orientation
and, consequently partially neutralized following the averaging
of multiple pseudo MRIs. Since, SGPLE was optimal for
averaging of 20 pseudo MRIs, averaged ranked pseudo MRI i.e.,
PSMi(AR, n = 20)), was used for subsequent analysis.

Spatial distribution of SGPLE for first rank pseudo MRI [i.e.,
PSMi

r(FR)] and averaged rank pseudo MRI (i.e., PSMi
r;AR, n =

20) is depicted in Figures 3A,B. The maximum SGPLE among
source grid point locations was about 13 ± 5 mm (mean ± s.d.
across subjects) and 10 ± 3 mm (mean ± s.d. across subjects)
for first rank pseudo MRI and averaged rank pseudo MRI,
respectively. In the case of spatial distribution, the peripheral
brain regions, particularly the occipital, parietal, and lateral
frontal cortices, showed more SGPLE compared with central
brain regions. The majority of the source grid point locations
showed significantly (p< 0.001,Wilcoxon signed-rank test, n= 92
subjects) lower SGPLE for averaged rank pseudo MRI compared
with first rank pseudo MRI (Figure 3C).

FIGURE 3 | Spatial distribution of the sourcemodel grid point location error

(SGPLE). (A) SGPLE for each of sourcemodel grid point locations across the

subjects (mean ± standard deviation) where locations are ordered according

to mean SGPLE. (B) Spatial distribution of mean of SGPLE across the

subjects. (C) Spatial distribution of SGPLE difference (p < 0.001, Wilcoxon

signed-rank test, n = 92 subjects) between first rank pseudo MRI and

averaged rank pseudo MRI.

Centroid Error (CE)
As expected, the magnitude of mean CE (averaged over 100
iterations) decreased with the increase in the number of subjects
in a group (Figure 4A). With a group size exceeding 20 subjects,
the maximum mean CE (100 percentile) across the source
grid point locations was below 4.5 and 2.5 mm for the first
rank pseudo MRI and average rank pseudo MRI, respectively
(Figure 4A). The magnitude of mean CE (averaged over 100
iterations) was higher at the occipital-parietal and lateral-frontal
cortices compared with central brain regions (Figure 4B). For a
group size of 20 subjects, the majority of the source grid point
locations showed significantly (p < 0.001, Wilcoxon signed-rank
test, n = 100 iterations) lower CE for averaged rank pseudo
MRI compared to first rank pseudo MRI (Figure 4C). These
results indicate that source localization error for the peak source
activation in a group effect is likely to be minimal and tolerable.

Functional Source Localization Error for
Group Effect
Functional group source ERP response (averaged across the 100
group iterations) showed a peak response (P1 component) at a

FIGURE 4 | Spatial distribution of the centroid error (CE). CE represents the

SGPLE in a group effect. (A) Distribution of mean CE (averaged over 100

iterations) across the sourcemodel grid point locations, for different group

sizes. (B) Spatial distribution of mean CE (averaged over 100 iterations) for

group size of 20 subjects. (C) Spatial distribution of CE difference (p < 0.001,

Wilcoxon signed-rank test, n = 100 iterations) between first rank pseudo MRI

and averaged rank pseudo MRI.
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time latency of 0.108 s and localized in the left and right primary
visual cortices (Figure 5). Another peak response was observed
at time latency−0.39 s, which was the stimulus off response from
previous trials (Figure 5A). Noticeably, the source distribution
of the ERP map at P1 latency (0.108 s) showed broadly similar
source activity distribution for real MRI, first rank pseudo MRI,
and averaged rank pseudo MRI (n= 20; Figure 5).

We performed a statistical comparison of peak activation
magnitude between pseudo and real MRIs for each of the
group iterations [see Section Event-Related Power (ERP) at
Source Level], and results are depicted in Figure 6A. There was
significantly (p < 0.01) higher peak (P1) source strength for real
MRI compared to first rank MRI in most (>70 out of 100) group
iterations (Figure 6A). There were significantly (p< 0.01) higher
peak magnitudes for averaged rank pseudo MRI compared with
real MRI in most group iterations (68 out of 100) in the left
visual cortex (Figure 6A). In contrast, there were significantly
(p < 0.01) higher peak magnitudes for real MRI compared with
averaged rank pseudo MRI in most group iterations (88 out of
100) in the right visual cortex (Figure 6A).

The peak source localization error (that is, the distance
between peak source activity locations) in pseudo MRI and real
MRI (at a latency of around 0.108 s) is depicted in Figure 6B. In

the left visual cortex, peak source localization error was about 7.0
± 6.2 mm (mean ± s.d. across group iterations) for first rank
pseudo MRI and 2.8 ± 3.3 mm for averaged rank pseudo MRI,
which was significantly (p < 0.001, Wilcoxon signed-rank test, n
= 100 group iterations) lower than that of the first rank pseudo
MRI. In the right visual cortex, the peak source localization error
was about 9.1 ± 7.9mm for first rank pseudo MRI and 8.2 ± 6.1
mm for averaged rank pseudo MRI. However, the overall peak
source localization error decreased further with the increase in
the number of subjects in a group (Supplementary information,
Figures S1, S2).

The overlap of activated brain regions (number of
sourcemodel grid point locations) between pseudo and real
MRIs, after applying different levels of the threshold value
to functional group source activity distribution at P1 peak
(at a latency of around 0.108 s), are depicted in Figure 6C.
For higher threshold values, there was an absent or minimal
overlap of activated brain regions between real and pseudo MRI
(Figure 6). Obviously, this was directly influenced by the peak
source localization error. However, the overlap of activated brain
regions [about >50% overlap for threshold value <0.4 (a.u:
arbitrary units)] increased with the decrease of the threshold
value (Figure 6C).

FIGURE 5 | Functional group source response (event-related power [ERP]) from visual stimulation (averaged over 100 group iterations for 20 subjects in a group). (A)

ERP time series for source locations with peak source activity at latency of 0.108 s (P1 peak) in left and right visual cortices. Baseline period: −1 to −0.5 s, Stimulus

onset: 0 s. (B) Current density distribution for ERP peak (P1 component). a.u. arbitrary unit where a.u. = 1 corresponds to maximum source ERP value over the

cortex for the real MRI. RM, real MRI; FR-PM, First rank pseudo MRI; and AR-PM, averaged rank pseudo MRI.

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2017 | Volume 11 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gohel et al. Approximate Subject Specific Pseudo MRI

FIGURE 6 | Comparison of functional group source ERP response between pseudo MRI and real MRI for 20 subjects in a group and 100 group iterations. (A)

Comparison of peak source ERP magnitude for different group iterations. Y-axis represents number of group iterations showed significant difference for peak source

ERP magnitude (p < 0.01: blue and red bar, p > 0.01: green bar, bootstrap approach). (B) Peak source localization error across the group iterations (mean ±

standard deviation). *p < 0.01, Wilcoxon signed-rank test, n = 100 group iterations. (C) Overlap of activation region (no. of grid point locations) between real MRI and

pseudo MRI after applying different levels of threshold value across the group iterations (mean ± standard deviation). RM, real MRI; PM, pseudo MRI; FR-PM, first

rank pseudo MRI; AR-PM, averaged rank pseudo MRI; L-VC, left visual cortex; R-VC, right visual cortex; a.u., arbitrary unit where a.u. = 1 corresponds to maximum

source ERP value for a given group iteration in visual cortex for real MRI.

DISCUSSION

In the current study, we approximated pseudo MRIs (i.e.,
headmodel and sourcemodel) from an available MRI dataset
using structural information of the subject’s digitized head
surface. We approximated source localization error at an
individual and group level for pseudo MRI in reference to the
subject’s real MRI.

We observed larger SGPLE and CE mainly in the periphery
rather than the center of the brain (Figures 2, 3). This is in line
with a previous study reporting the similar spatial distribution of
source localization error for approximated pseudo MRI (Darvas

et al., 2006). The magnitude of the error that arose from brain
surface-based registration of individual brain anatomy to a
template brain (Hinds et al., 2009; Ghosh et al., 2010) was much
lower than the observed SGPLE in the present study. A higher
magnitude of SGPLE was found in the peripheral than the central
region of the brain, and given the semi-spherical shape of the
head SGPLE likely resulted from an error in the registration of
digitized head surface to MRI scalp surface; a rotation rather
than a translation error. Another likely contributing factor is
the cortical gyrus folding pattern variability across subjects.
As the head size differences between the subjects were already
compensated through scaling during registration, the difference
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in brain size and shape in relative to head size and shape between
the subjects was another contributing factor to the observed
SGPLE magnitude and spatial distribution.

Averaged rank pseudoMRI showed significantly lower SGPLE
compared with first rank pseudo MRI (Figures 1, 2). Moreover,
lower ORE did not necessarily imply lower SGPLE (Figure 1).
Therefore, ORE is not a sufficient indicative parameter for
selecting the best pseudo MRI from the MRI dataset, i.e., first
rank pseudo MRI. However, this was not the case for averaged
rank pseudo MRI, which is not very dependent on ORE. SGPLE
for averaged rank pseudo MRI exponentially decreased as the
number of pseudo MRIs (n) ranked from 1 to 20 increased,
and then stabilized afterward despite the further inclusion of
higher rank pseudo MRIs that have a higher SGPLE (Figure 1).
Taken together, these results support our hypothesis that source
localization error for different pseudo MRIs is likely to be in
different orientations. Therefore, the error is neutralized to a
certain extent after the averaging of multiple pseudo MRIs,
bringing about an approximate model (i.e., averaged rank pseudo
MRI) that is closer to the real one.

The mean upper bound of approximate source localization
error (i.e., SGPLE) at the individual level was about 10mm
for the averaged rank pseudo MRI (Figure 3), better than or
close to that observed in previous studies (Van ’t Ent et al.,
2001; Holliday et al., 2003; Darvas et al., 2006; Valdés-Hernández
et al., 2009). However, many of these studies focused on EEG
applications whereas the present study is mainly focused on
MEG applications. Compared to EEG, MEG-based source error
is less conduction model sensitive; therefore, the inter-subject
variability in corresponding source locations in the sourcemodel
mainly contributes to source localization error. Moreover, EEG-
based studies more often use the non-linear warping-based
methods to generate pseudo MRI, taking into consideration the
electrode positions over the scalp. In contrast to the rigid body
affine transform with scaling, warping transformation also takes
into consideration the head shape information during pseudo
MRI approximation. However, this approach is more sensitive
to a number of sampling points and spatial regularity on head
surfaces. Moreover, the accuracy of warping transformation is
more reliable at points closest to the scalp, and may lead to
over-correction in deeper brain structure (Valdés-Hernández
et al., 2009). In contrast, we used a larger number of MRIs
(head shapes) with scaling, which effectively widens the search
space and offers one solution to matching the subject’s head
shapes more closely. Thus, this excludes the necessity of warping
and, hence, the problem of over- or under-correction without
compromising head shape information. Moreover, the proposed
principle and approach of averaged rank pseudo MRI can be
extended for EEG applications, but needs to take various issues
into consideration, particularly the assumptions of linearity
during averaging of the headmodel to generate pseudo-realistic
models (Guimond et al., 2000; Christensen et al., 2006; Valdés-
Hernández et al., 2009).

MEG-based studies frequently involve multiple subjects and
the conclusion is often drawn from a mean group effect. One
of the advantages of the present study is that it provides
some quantitative analysis of functional source localization error

between real and pseudo MRIs for functional MEG data, which
is the closest to practical scenarios. Moreover, the use of a visual
stimulus that recruits primary visual cortex offers two advantages.
First, it is less prone to inter-subject functional and anatomical
variability (Hinds et al., 2009; Nieto-Castanon and Fedorenko,
2012); therefore, results are more representative of model
approximation error. Second, the primary visual cortex showed
higher model approximation error (i.e., SGPLE), thus reducing
the bias toward getting lower peak source localization error.
In the present study, we observed broadly similar functional
group response distribution (at a latency of peak ERP activity)
in the visual cortex in response to visual stimuli for real and
pseudo MRIs. It suggests that the effect of functional inter-
subject variability on group source response is sufficiently larger,
in such a way that the source localization error arising from the
use of pseudo MRI exerts a minimal effect on group functional
response. However, the averaged rank pseudo MRI, compared
with the first rank pseudo MRI, showed better performance in
terms of peak source localization error (Figures 5A,B), which is
in line with the observed source grid point location error (SGPLE,
Figure 3) and centroid error (CE, Figure 4) performance. The
interpretation of the difference in source strength and source
overlap between real and pseudo MRIs is not straightforward,
given the complex relationship between spatial characteristics
of the source distribution, peak source activity, and strength of
source activity. However, higher source strength (in the left visual
cortex) along with lower peak localization error also endorses
the averaged rank pseudo MRI over the first rank pseudo MRI
(Figure 6).

There exists inter-subject functional variability, which is
a limitation in trying to take complete advantage of real
MRI because perfect registration of MRI and MEG sensors
is not guaranteed, and limitation of spatial resolution of
inverse methodology (i.e., MNE solution in the current study).
Consequently, there was a subtle difference in functional group
source activity between pseudo MRI and real MRI that is less
likely to affect the general interpretation of group effects, at
least for functional visual stimulation response as used in the
present study. Also, averaged rank pseudo MRI has an advantage
over first rank pseudo MRI in terms of model approximation
error that is also reflected in functional peak source localization
error. Taken together, these facts support the use of pseudo
MRI, particularity averaged rank pseudo MRI, over real MRI for
functional group MEG studies.

In the present work, the population from which digitized
head anatomy and MRI dataset recorded were from the same
ethnic group. Racial or ethnic differences between the target
population (digitized head anatomy) and the population from
which the MRI dataset was recorded may influence the source
localization error (anatomical). However, Valdés-Hernández
et al. (2009) reported a non-significant impact of race and gender
on headmodel approximation. Therefore, in the case of non-
availability of MRI dataset from an ethnic group similar to the
target population, wemay use another availableMRI dataset (e.g.,
HCPMRI dataset or otherMRI scans recorded from a population
as ethnically close as possible to the target population), without
much influencing the outcome. Moreover, it is not very difficult
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to create such an MRI database specific to a country or an ethnic
group.

In conclusion, pseudo MRI, particularly the averaged rank
pseudo MRI approximated from an available MRI dataset, can
be a reliable substitute in the absence of real MRI or to bypass
the necessity of real MRI for participants in group-based MEG
studies. It can achieve this without considerably affecting the
generality of the functional group source response.
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