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Aim: The research described is intended to give a description of articulation dynamics as

a correlate of the kinematic behavior of the jaw-tongue biomechanical system, encoded

as a probability distribution of an absolute joint velocity. This distribution may be used in

detecting and grading speech from patients affected by neurodegenerative illnesses, as

Parkinson Disease.

Hypothesis: The work hypothesis is that the probability density function of the absolute

joint velocity includes information on the stability of phonation when applied to sustained

vowels, as well as on fluency if applied to connected speech.

Methods: A dataset of sustained vowels recorded from Parkinson Disease patients is

contrasted with similar recordings from normative subjects. The probability distribution

of the absolute kinematic velocity of the jaw-tongue system is extracted from each

utterance. A Random Least Squares Feed-Forward Network (RLSFN) has been used as

a binary classifier working on the pathological and normative datasets in a leave-one-out

strategy. Monte Carlo simulations have been conducted to estimate the influence of the

stochastic nature of the classifier. Two datasets for each gender were tested (males and

females) including 26 normative and 53 pathological subjects in the male set, and 25

normative and 38 pathological in the female set.

Results: Male and female data subsets were tested in single runs, yielding equal

error rates under 0.6% (Accuracy over 99.4%). Due to the stochastic nature of each

experiment, Monte Carlo runs were conducted to test the reliability of the methodology.

The average detection results after 200 Montecarlo runs of a 200 hyperplane hidden

layer RLSFN are given in terms of Sensitivity (males: 0.9946, females: 0.9942), Specificity

(males: 0.9944, females: 0.9941) and Accuracy (males: 0.9945, females: 0.9942). The

area under the ROC curve is 0.9947 (males) and 0.9945 (females). The equal error rate

is 0.0054 (males) and 0.0057 (females).
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Conclusions: The proposed methodology avails that the use of highly normalized

descriptors as the probability distribution of kinematic variables of vowel articulation

stability, which has some interesting properties in terms of information theory, boosts

the potential of simple yet powerful classifiers in producing quite acceptable detection

results in Parkinson Disease.

Keywords: neurologic disease, Parkinson disease, speech neuromotor activity, aging voice, hypokinetic

dysarthria, random least squares feed-forward networks

INTRODUCTION

Shaking palsy, as was first defined by James Parkinson in 1817
(Parkinson, 2002) or Parkinson Disease (PD) as is modernly
known, is a pathology of neuromotor origin due to the decay
of the neurotransmitter dopamine by degeneration of substantia
nigra pars compacta in midbrain, which is characterized by
bradikinesia, rigidity, resting tremor, freezing of gait and facial
mask, and speech disorders, among other disease manifestations
(Yunusova et al., 2008; Brabenec et al., 2017). Its effects in
speech and phonation, gathered under the general term of
hypokinetic dysarthria are quite relevant and notorious, to the
point that they may become clear subjective clinical indicators
of neuromotor deterioration (Goetz et al., 2007), in the sense
that there is “compelling evidence to suggest that speech can
help quantify not only motor symptoms ... but generalized
diverse symptoms in PD” (Tsanas, 2012). Hypokinetic phonation
is characterized by voice blocking, changes in energy and
fundamental frequency of a specific low frequency (tremor, or
pathologic vibrato), hypotonic (asthenic) phonation, etc. (Gómez
et al., 2017). Hypokinetic dysarthria may appear itself as a
reduction in magnitude and velocity of articulatory movements,
besides showing inter-articulator timing disturbances. These
manifestations seem to be the result of neuromotor disfunctions
affecting to “individual or collective movements of articulators
such as the jaw, tongue and lips” (Yunusova et al., 2008).
Disturbances in the temporal coordination of articulatorymotion
of speakers of PD or Amyotrophic Lateral Sclerosis (ALS) are
one of the early marks of these neuromotor pathologies. The
role of the tongue, jaw and lower lip movements seem to be
behind these dysartrhias. Acknowledging these facts, there have
been different approaches to evaluate phonation and articulation
by quantitative analysis. Regarding phonation, an early work by
Gamboa et al. (1997) tried to compare voice production from
patients before and after dopaminergic treatment estimating
distortion features as jitter, shimmer and noise-harmonic energy
ratios using a popular voice analysis tool (CSL, 2017). Phonation
analysis is based on the stability of fundamental frequency,
energy and distortion measurements as harmonics-noise ratios
(see Mekyska et al., 2015 for a comprehensive review). Regarding
articulation, quality analysis is based on acoustic measurements
on the span defined by the first two formants, as the Vowel Space
Area (VSA) and the Formant Centralization Ratio (FCR), defined
by Sapir et al. (2010). Other approaches depend on measuring
the articulation positions either from scan images (Bouchard
et al., 2016) or from invasive methods using sensors attached
to different parts of the oral cavity (Savariaux et al., 2017). The

interest of acoustic analysis is based on its non-invasive nature
and the immediacy of data gathering, as it uses speech recordings.
Its weakness is due to the presence of certain ill-posed inversion
problems which may jeopardize the uniqueness of the solutions.
Nevertheless, if properly handled, these weaknesses may be
overcome. One of the limitations of the VSA or FCR indices
come from their static nature. Speakers are recorded uttering
running speech, to obtain good estimates of extreme formant
positions on the vowel triangle (VSA and FCR are evaluated on
these estimations). Therefore, the text of the utterance should
contain a rich representation of the extreme vowel repertoire;
typically at least the vowels [a:], [i:], and [u:] should be present.
The problem is that to be reliable and robust enough, VSA and
FCR must depend on average formant positions, and once these
have been established, a static photo-finish is obtained. Much of
the interest of articulation analysis is not only in static formant
representations (although these may reveal as very interesting
data in diseases as ALS), but also in the dynamic behavior
of articulation positions (Green, 2015), as these have been
recognized as behavioral landmarks in hypokinetic dysarthria
(Yunusova et al., 2011), in the belief that dynamic articulation
descriptions may be more sensitive to this behavior than static
estimations on the vowel triangle. In the present work research
is oriented to define a measurement which collects articulation
kinematics, opening the possibility of estimating articulation
dysfunction from simple and short utterances, as sustained single
vowels as [a:], easing data gathering and analysis. Therefore, the
paper is structured as follows: section Methods and Materials
is devoted to treat the methods proposed for the detection
of PD speech by a description of hypokinetic dysarthria in
terms of articulation kinematics (Section Kinematic description
of speech articulation), explaining the fundamentals inspiring
articulation biomechanics, giving an example contrasting the
statistical properties of articulation kinematic distributions
from a normative control and a PD female patient, to better
understand the dynamic properties of the features proposed.
The classification algorithms to be used are introduced in
section Classifier proposed for PD speech detection, with special
emphasis in their representation properties. Section Materials is
dedicated to describe briefly the dataset used in the experiments
using articulation features derived from vowel utterances. Section
Results and discussion is devoted to present classification results
from a single run, and due to the stochastic nature of the
classification algorithm, to provide a statistical description of
the optimal parameter settings and classification scores following
Monte Carlo simulations. Section Conclusions briefly describes
the most relevant conclusions derived from the study, as the
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high semantic value of articulation kinematics and the high
efficiency of the stochastic feed forward networks in the proposed
classification tasks.

METHODS AND MATERIALS

Kinematic Description of speech
Articulation
Speech production involves cognitive and neuromotor resources
of the human physiology, from planning and instantiation in the
linguistic neuromotor cortex (Demonet et al., 2005), to muscle
activation in the pharynx, tongue, larynx, facial mask, chest, and
diaphragm through a wide network of neuromotor pathways.
The intermediation between cortical neurons (primary) and
neuromotor units activating the muscles takes place in the
basal ganglia, where secondary neurons connected through
sub-thalamic secondary pathways produce sequences of motor
actions with intervention of other parts of the central nervous
system, as the cerebellum, hippocampus and frontal lobes. It
is a well-established fact that neurotransmission failures in the
basal ganglia due to the progressive death of dopaminergic
neurons in the substantia nigra pars compacta are the main
reason behind PD neuromotor symptoms: “The substantia nigra
is the origin of the nigrostriatal pathway, which travels to various
structures within the basal ganglia... The dopamine deficiency in
this nigrostriatal pathway and the basal ganglia account for most
of the typical features of PD. Once the brain is no longer able to
compensate for this dopamine loss, there are a number of effects
which can occur. Typical symptoms include muscle rigidity,
akinesia, bradykinesia, and tremor...” (Goberman and Coelho,
2002), more specifically “The essential neuropathological changes
in PD are a loss of melanine-containing dopaminergic neurons in
the substantia nigra pars compacta... This results in a dysfunction
of the basal ganglia circuitries, which is an integral part of cortico-
basal ganglia-cortical loops that mediate motor and cognitive
functions (Harel et al., 2004). Besides affecting limb movements,
neuromotor failures may affect all motor functions in the body,
among them respiration (diaphragm, chest), phonation (larynx)
and articulation (velopharyx, jaw, tongue, lips and other facial
mask muscles). These failures result in dysphonic and dysarthric
behavior manifested in speech as different acoustic correlates.
As far as dysarthria is concerned, these manifestations are the
result of improper work of the articulation biomechanics, which
is mainly reflected in the action of the tongue, jaw and lower lip,
as mentioned before. In what follows, a biomechanical system
of the jaw-tongue will be proposed, which may be modeled to
estimate the neuromotor behavior of the system, and provide
specific markers of proper or improper neuromotor activity.
For the purposes of the present study, only the Jaw-Tongue
Biomechanical System (JTBS), as seen in Figure 1, is to be
considered.

The jaw (J) is fixed to the skull bone at fulcrum (F) as in
a third-class lever system. The tongue (T) is supported by jaw
and the hyoid bone. The reference point of the jaw-tongue
system Prjt is defined at {xr ,yr}, where forces acting on the
system induce movements in the sagittal plane (x: horizontal,

FIGURE 1 | (A) Jaw-Tongue Biomechanical System. The jaw bone is

represented in light gray, the tongue structure is represented in light orange.

The point Prjt given by {xr, yr} is the reference point of the biomechanical

system. (B) Speech articulation neuromotor and biomechanical system.

or rostral-caudal, y: vertical, or dorsal-ventral); these forces
are fm (masseter), fsg (styloglossus), fgi (intrinsic glossus), fgh
(hyoglossus), and fw (gravity). The kinematic displacements
experienced by Prjt as a result of these forces are given
as {∆xr , ∆yr}. Lateral movements orthogonal to the sagittal
plane are assumed small enough not to be considered (system
with only two degrees of freedom). The functioning of the
speech articulation neuromotor and biomechanical system may
be explained in Figure 1B. The phonation and articulation
systems are governed by specific neuromotor units activated
from the bulbar structures in the midbrain (1), which control
the retraction of the velopharyngeal switch (2) in nasalization,
activate tongue movements up, down, back and forth (3: intrinsic
and extrinsic lingual muscles), modify lower jaw position (4:
masseter, stylo and hyoglossus), or control larynx and vocal
fold configuration (5: vocalis, crico-arytenoid, transversal and
oblique). In the present study, as far as PD neuromotor
degeneration is considered, only subsystems (3) and (4) will
be taken into account. Neurotransmission failures in the basal
ganglia affect to fine movement control involving proprioceptive
feedback. Depending on the structures involved (cerebellum,
hippocampus, and frontal lobes...) different feedback loops with
distinct latencies are active in motor control. These loops
are continuously over or underactivating the neuromotor flow
depending on the response of the sensory neurons, therefore a
slow amplitude tremor may be present in the muscle activity in
the band over 25 Hz due to fine tuning, which is considered a
correlate of healthy motor behavior. The lack of dopamine due to
degradation of dopamine-producing cells in substantia nigra pars
compactamay lead to improper feedback loop function, and this
produces insufficient or excessive excitatory flow (inducing hypo-
or hypertonicity), or in a sloth overcorrecting flow, which results
in wider muscle tension oscillations in the band from 5 to 8 Hz,
and is considered a pathological tremor (Mertens et al., 2013).
Therefore, hypo- hyper- or unstable muscle tone are markers of
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possible PD neurodegeneration, and these can be traced from
speech. A feasible option to monitor dysarthria is to resource
to acoustic correlates of articulation. It is a well established fact
that muscles in the jaw-tongue structure may modify the vocal
tract in a predictable and highly controllable way (Dromey et al.,
2013), and acoustic phonetics provides a good description of the
acoustic results summarized as the vowel polygon by IPA (2015)
Figure 2.

The IPA chart explains the association between articulation
gestures (open-close in the vertical dimension and back-front
in the horizontal one) and acoustic properties (formants)
in a simple way, which may be more formally established
(Sanguinetti et al., 1997). As vowel positions are related to
formant descriptions, a possible way to estimate articulation
dynamics could be through formant kinematics (Carmona et al.,
2016). Let’s assume that the first two formants {f1, f2} of a speech
segment are known. A general, unspecific functional relationship
could be established among formants and the reference point as

[

f1(t)
f2(t)

]

=

[

a11 a12
a21 a22

] [

x(t)
y(t)

]

(1)

where aij are the transformation weights explaining the position-
formant association, and t is the time. This relationship is known
to be one-to-many, i.e., the same pair of formants {f1, f2} may
be associated to more than a single articulation position. This
inconvenience may be handled by modeling the joint probability
of all the possible articulation positions associated to a given
formant pair (Dromey et al., 2013).

In the sequel the following important assumptions have been
taken into account:

• The tongue top surface, in oposition to the teeth, alveolar
ridge, palate and velum is the primary element configuring the
main articulation cavity (Gerard et al., 2006).

• The transversal section normal to sound propagation of the
main articulation cavity is inversely proportional to the tongue
profile in the sagittal plane.

FIGURE 2 | IPA vowel chart.

• The lower formants {f1, f2} are specifically determined by the
concatenate tube equivalent model of the main articulation
cavity.

• The kinematic displacements {∆xr , ∆yr} are limited to
millimeter oscillations around the reference point Prjt (small
signal hypothesis).

• The tongue profile in the sagittal plane is directly related to the
kinematic displacements.

• Labialized sounds will not be considered.
• The system given by Equation (1) may be considered linear,

time-invariant and invertible.

Under the above stated conditions, the system in Equation (1).
may be inverted, as

[

x(t)
y(t)

]

=

[

w11 w12

w21 w22

] [

f1(t)
f2(t)

]

(2)

where wij are the weights of the inverse system. The algorithmic
methodology implied in the process of deriving kinematic
variables from acoustical ones depends on the estimation of
the first time derivative of this system, associating formant
derivatives in time with the reference point kinematics

[

vx(t)
vy(t)

]

=

[

w11 w12

w21 w22

]

[

df1(t)
dt

df2(t)
dt

]

(3)

where it has been assumed that vx and vy are the caudal-
rostral and dorsal-ventral velocities of the reference point. It may
be hypothesized that the dorsal-ventral velocity will be mostly
related to changes in the second formant (back-front), and that
the caudal-rostral velocity will be related to the dynamics of the
first formant (up-down). This is equivalent to consider that w11

and w22 will be negligible compared to w12 and w21.
Therefore, the absolute kinematic velocity (AKV) of the

reference point may be estimated as

∣

∣vRP(t)
∣

∣ =

[

(

w12
df2(t)

dt

)2

+

(

w21
df1(t)

dt

)2
]1/2

(4)

Reliable estimates for these scale factors were obtained
from different calibration exercises, for example diphthong
articulations involving changes in the positions of the reference
point which show a fast and monotonous change, for instance
in the repetition of the sequence /aiu/ uttered as [...ajijuwa...].
The averaged estimations for both coefficients from such an
utterance by a male speaker were found to be respectively w12=

1.62.10−3 cm.s and w21= 1.47.10−3 cm.s. The methodology to
estimate the AKV in a practical case consists in evaluating the
first two formants {f1, f2} by adaptive inversion of the speech
segment after removing radiation effects to produce an estimate
of the vocal tract transfer function in time and frequency.
Formant positions are obtained either from the local maxima
of the transfer function in each time instant, or from the polar
positions of the prediction polynomials used to invert the speech
segment. Formant estimates are used to evaluate the AKV, and
its normalized histogram for the record segment being processed
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is to be defined as the non-parametric descriptor of the AKV
statistical properties. In what follows a contrastive example
showing the estimation of the AKV statistical distribution from
its histogram is to be shown. The utterances of the five vowels [a:],
[e:], [i:], [o:], and [u:] were recorded and used in the example. The
five vowel record from a 34 year-old normative female speaker is
given in Figure 3.

The spectrogram was evaluated from a 9-order adaptive
lattice-ladder filter to remove the influence of the glottal residual,
sampled at 8 kHz and 16 bits (Haykin, 2013). Estimations
of the spectrum using Linear Prediction Spectral Techniques
were obtained each 2 ms. The next step will be to refine
formant estimates to eliminate glitches and other hazards which
could produce artifacts in evaluating kinematic variables. This is
accomplished using a low-order predictive filter on each formant
estimate. The kinematic variables vx and vy are evaluated from
the derivatives of f2 and f1, as given by Equation (3). As formant
kinematics is related with the neuromotor activity driving the
jaw-tongue biomechanical system, frequency contents above 20
Hz are not pressumably of interest, due to the inertial properties
of the system, therefore to estimate vx and vy formant derivatives
have been low-pass filtered at a cutoff frequency of 20 Hz. Using
these estimates, the AKV given in Equation (4) for the vowels in
Figure 3 is shown in Figure 4.

In Figure 4A the reference point velocity is given in horizontal
and vertical components describing a plot in module (AKV)
and angle. The zero degree angle corresponds to the forward
horizontal direction movement of the reference point (toward
lips). In Figure 4B the AKV is presented the time-domain,
showing large spikes in the vowel onsets and decays, and
reflecting a much smaller activity in the vowel nuclei, supposedly
due to the residual tremor amplitude induced by healthy
neuromotor tuning. Figure 4C shows the AKV probability
density function and its cummulative distribution, derived from
the histogram of AKV values in amplitude. It may be seen that
the probability density distribution (blue) shows a peak for low
velocities, and a gentle decay toward 10 cm.s−1, which may be
seen as an indicator of healthy behavior. The large loops in the
right part of the polar plot in Figure 4A are related to large
movements of the reference point due to adjustments of the jaw-
tongue system in the vowel onsets, specially in [e:] (forwards)
and [o:] (backwards), whereas the activity in the vowel nuclei
is seen as a cloud of small amplitude actions in the center of
the plot. The probability density function of the AKV will be
used as a functional descriptor to detect articulation normality
as explained in Section Materials. To stress the relevance of
AKV in articulation stability detection, a similar analysis will be
shown in Figure 5 from a 72 year-old female patient suffering

FIGURE 3 | Spectrogram of an utterance with the five cardinal vowels [a:], [e:], [i:], [o:], [u:] by a female normative speaker, with the first two formants superimposed

(f1: black, f2: blue). Top: speech trace and energy envelope (red). Bottom: spectrum and formants.

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2017 | Volume 11 | Article 56

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gómez-Vilda et al. Parkinson Detection from Articulation Neuromechanics

FIGURE 4 | AKV from a normative female case. (A) Reference point velocity in module and angle. (B) AKV in the time domain. (C) AKV probability distribution (blue)

and cummulative distribution (red).

from PD, grade 2 in Hoehn andYahr scale (Hoehn and Yahr,
1967).

Relevant tremor and articulation instability can be clearly
appreciated in this case, both in harmonics as in formants. It
must be said that these two tremors need not be correlated,
as they depend on different neuromotor pathways, phonation
being controlled by laryngeal nerves (vagus), whereas articulation
depends mainly on jaw, lingual and facial nerves (branches of
trigeminal), and PD may affect both systems differently. The
statistical characterization of the AKV is given in Figure 6 as
before.

It may be seen that horizontal and vertical velocities behave
quite differently in the PD case than in the normative case.
In the PD case the movements in the vowel onsets are
significantly smaller, but much stronger in vowel nuclei, whereas
their frequency is much smaller (around 8 Hz), which is
a clear indication of pathological tremor being present. It
may be seen also that the AKV horizontal and vertical loops
move forwards and backwards as well as up and down, an
indication of intense activity during vowel nuclei, as the speaker’s
proprioceptive system is trying to adjust vowel positions, but an
improper feedback loop produces overshoot and undershoot in
the articulation gestures, and this instability results in tremor.
The statistical quality of articulation is captured in the AKV
probability density function (Figure 6C) which shows activity
over 10 cm.s−1, and the decay is slower. To evaluate the different
statistical behavior of both AKV distributions non-parametric

tests were conducted assessing the non-normal behavior of both
distributions, as well as their independent origin. The test results
are given in Table 1.

It becomes evident that both AKV distributions do not pass
the normality tests. Besides, both can be considered different
either under the Kolmogorov-Smirnov and the Wilcoxon tests
for a significance level of 0.05.

At this point, it will become clear that the AKV probability
density function may be a good candidate marker to establish
differentiation between stable and unstable articulation induced
by PD. Due to the nature of AKV as given in Equation (4) it
is clear that its probability density function may be modeled
as a χ2 (chi-square) distribution with two degrees of freedom
(NIST, 2015), and its general shape will obey the pattern given in
Figure 7, where the differential behavior of speech of PD patients
with respect to healthy controls, following χ2 distributions
is simulated as well. The AKV probability distribution from
a healthy subject (diamond marks) is expected to follow a
faster decay than the one from a PD patient when uttering
sustained vowels. As the area under both distributionsmust equal
one (being probability distributions), the control distribution
is expected to start from a larger value than the pathological
one and show a faster decay, confirmed by the results shown
in Figures 4C, 6C. The difference between AKV probability
densities can be established in terms of the Kullback-Leibler
Divergence (KLD) following Information Theory principles
(Cover and Thomas, 2006). For instance, the estimated KLD
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FIGURE 5 | Spectrogram of an utterance with the five cardinal vowels [a:], [e:], [i:], [o:], [u:] by a female PD patient, with the first two formants superimposed (f1: black,

f2: blue). Top: speech trace and energy envelope (red). Bottom: spectrum and formants.

in the example of Figure 7 is 0.96346, as given in the plot.
The kinematic behavior of a given utterance is encoded in its
probability distribution, having into account that the AKV is
a correlate of the horizontal and vertical movement speed of
the jaw-tongue reference point, evaluated from a histogram of
counts, in the following regions

R1. Silent intervals and pauses are accumulated as counts in
the origin of the abscise point (zero bin). The higher this
value, the larger the number of pauses, and the longer their
duration.

R2. If formants remain stable or slightly changing during
vowel nuclei the associated counts to these regions will be
accumulated near the origin, under 3 cm.s−1.

R3. Smooth formant adjustments due to glides and
approximants are to be found around 5 cm.s−1.

R4. Values of the AKV probability density function above 10
cm.s−1 are to be expected in vowel onsets following stop
consonants and in other sharp phonation changes.

The way in which probability functions distribute on these four
regions will depend on the kind of pathology being monitored,
and on the type of utterance being analyzed. For instance,
in pathologies were sentences are used to detect the residual
articulation competence, as in Amyotrophic Lateral Sclerosis

it will be expected that distributions from patients will show
less activity in R3 and R4 than controls. In certain cognitive
pathologies where fluency is compromised, it will be expected a
larger number of counts in R1 relative to controls if continuous
speech is monitored. In the case of PD patients uttering sustained
vowels or sequences of vowels, the activity in R2, R3, and R4 is
expected to be larger than in controls. This behavior will be used
to monitor a database of sustained [a:] uttered by PD patients.
In the next section these normalized distributions will be used in
classification experiments.

Classifier Proposed for PD speech
Detection
The classifier proposed is a specific kind of supervised multiple-
layer artificial neural networks (ANN’s) where the weights
between input and output layers are fixed following stochastic
methods (input layer) and least-squares learning bases (output
layer), which will be referred as Random Least-Squares Feed-
forward Networks (RLSFN), originally known as Random
Vector Functional-Link Networks (RVFLN). These networks
fulfill certain optimization criteria, but do not implement them
in a successive sequence of weight adjustment iterations; on
the contrary, weights are determined in specific fixed steps.
They were proposed in 1988 by Broomhead and Lowe (1988),
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FIGURE 6 | AKV from a PD female case. (A) Reference point velocity in module and angle. (B) AKV in the time domain. (C) AKV probability distribution (blue) and

cummulative distribution (red).

TABLE 1 | Different behavior between the AKV distributions of the PD patient and

the normative subject.

Subject/Test Test result Test

interpretation

Normative female (model)–Lilliefors test p < 0.001 Normality rejected

PD female patient (target)–Lilliefors test p < 0.001 Normality rejected

PD vs. Normative–Kolmogorov-Smirnov p = 2.44 10−5 Same distribution

rejected

PD vs. Normative–Wilcoxon-Mann-Whitney p = 0.0103 Same distribution

rejected

and in 1994 by Pao et al. (1994) with slightly different
formulations. Later on, they were redefined by Huang and Siew
(2004) under the name of extreme learning machines. They
are especially well suited to solve n-class decision problems
when the training set is composed of individual samples
randomly selected from a given population. If the training
set is derived from a temporal (stochastic) process in which
samples cannot be considered independent in time, an adaptive
formulation of weight adjustments should be used, in a mixed
stochastic-adaptive methodology. Therefore, these RLSFN’s can
be considered within a family of “block” solutions, rather than
to adaptive ones. Correspondingly, the results produced have to
be validated under statistical terms as well. In the case under
study the problem to be solved is that given a set of probability
density feature vectors from speech samples by matrix X and

their corresponding classification target marks given in matrix
T (supervised training) specifying if sample vector x is to be
associated by a target t as a member of a given class or category
C (for instance, Cn for normative or Cp for pathological, in
the present case), a mapping system has to be found based
by linear projections and nonlinear kernels, to associate X to
T minimizing an interclass confusion error function defined
in statistical terms. This is a typical two-class problem as is
the association of targets to two possible classes (normative
or pathological), a two-layer RLSFN has been used. It will be
assumed that the input x ǫ R

ns is a row vector from an ns
x nf matrix X ǫ R

ns×nf , each row 1 ≤ i ≤ ns corresponding
to a feature vector from the i-th subject, where 1 ≤ j ≤ nf is
the j-th feature index. Indeed, as feature vectors are probability
density functions, in general 0 ≤ xij ≤ 1. Target components will
be defined as ts ǫ {0,1}, 0 for normative, and 1 for pathologic
samples. The first layer of the RLSFN will be defined as W1

ǫ R
nf×nh , where 1 ≤ k ≤ nh is the number of hyperplanes

projecting input vectors x on the hidden nodes of the RLSFN,
as by

Y = W1X (5)

where W1 is originally filled with real random values following
a normal distribution with µ = 0 and σ = 1. This operation
may be seen as building nh linear combinations of the
input vector x on an ns dimensional subspace, where the
weights of the linear combinations are random real numbers,

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2017 | Volume 11 | Article 56

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gómez-Vilda et al. Parkinson Detection from Articulation Neuromechanics

FIGURE 7 | Simulated AKV probability density functions from a target (pathologic speaker) and a model (normative speaker). KLD: Kullback-Leibler Divergence.

FIGURE 8 | Subspace of two dimensions (M2) showing the dispersion and

projection processes implicit in the RLSFN used in the experimental

framework.

therefore defining a set of nh vectors y. A reduced 2-
dimensional example to visualize this construction is depicted in
Figure 8.

In the 2-dimensional example shown in Figure 8, input
samples are represented by vectors xs1 and xs2 from two different
subjects (assuming a two-class detection example, as is the case
with normative and pathologic subjects, for instance). The linear
combinations implicit in expression Equiation (5). produce a
set of randomly distributed vectors (in dash), of which yh is
an example, h being the reference to a specific distribution
hyperplane. The purpose of these linear combinations is to “fill”
the subspace described by X with as many linear combinations
of input samples into ground vectors Y as needed to supply
enough combinations to the projection process implied in the
next step. A non-linear mapping may be introduced in Equation

(5) with two purposes: to limit the values of the components
of ground vectors Y to a given interval (typically [0, 1]) and to
introduce some distortion in the representation space to help
with non-linear separable spaces (typically sigmoid, radial basis
functions or other limiting kernels may be used). This process is
represented in

Y = f1 {W1X} (6)

where f1{·} is the non-linear mapping kernel used. In the present
case a sigmoid mapping to the interval [0, 1] has been used with
the purpose of easing the optimization process implied in the
estimation of the output layer matrix. The third step consists in
elaborating a new linear combination of the ground vectors Y
given by z which is a vector intended to be as close as possible
in terms of least squares to the expected target label t

z = W2Y (7)

such that fixing adequately the mapping weights W2 the
approximation error

e = t − z = t −W2Y (8)

may be reduced to a minimum norm by an optimal estimate of
the second layer mapping

W2op = arg
{

min
[

e2(W2)
]}

(9)
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It may be shown thatW2opt can be estimated as by the following
expression

W2op = P2t; P2 = PT(YYT)
−1

(10)

where the projection matrix P2 is the minimum norm
least squares inverse matrix (Moore-Penrose pseudoinverse)
minimizing the error between the target t and the estimated label
z (Barata and Hussein, 2012). This optimization problem could
be solved by an iterative approximation (adaptive methods), as
in classical back propagation weight adjustment, or by block
estimation, as it is the case in the present study. Adaptive
methods are more convenient if input samples X are expected
to vary between training epochs, whereas block methods are
recommended if no substantial changes are expected between
training and testing conditions, and if a lower computational cost
is required.

The structure of the network is depicted in Figure 9 for a
better understanding of the training and testing dataflows.

Once the network has been trained, a slight modification was
proposed with respect to the original formulation of the RLSFN
to produce more robust classification scores. This modification
consisted in redefining expression Equation (7) as

z = f2 {W2Y} (11)

where f2{·} is a sigmoid centered in the origin, mapping the
output to the interval [0, 1]. The purpose of the sigmoid is
to produce an output vector z for each sample vector x such
as that the matrix Z ǫ R

nsx2 will become the output matrix,
composed of ns rows (the number of samples, with as many rows
as subjects inX, distributed as pathologicals and normatives), and
two columns, whose elements ts ǫ {0,1} are expected to take values
tending to 0 or 1, depending on the specifications of the training
matrix t ǫ R

nsf x2. In this way, each pair of values {zsp, zsn} of z,
as the estimated response to input sample xs from subject s are
interpreted as the membership probability of being pathological
or normative, respectively

zsp = p
(

xs|Ŵp

)

; zsn = p (xs|Ŵn) (12)

where Γp and Γn are respectively the ideal distribution sets
of AKV probability distributions from potentially pathological
and normative subjects. A specific mapping can be used to
estimate the normative membership for sample s in terms of a
log-likelihood ratio (λs) between the normative or pathological
probability memberships as

λs = log

{

p
(

xs|Cp

)

p (xs|Cn)

}

= log zsp − log zsn (13)

The value of this log-likelihood will imply labeling a sample as
pathological subject when λs> 0 and labeling it as normative
otherwise. Therefore λs will be interpreted as a unified score
be compared to targets, in which process four possibilities
could be faced: a sample from a subject originally labeled as
pathological, producing a score to be interpreted as pathological

(true positive); a sample originally labeled as pathological,
producing a score interpreted as normative (false negative);
a sample originally labeled as normative, producing a score
interpreted as normative (true negative), and a sample labeled
as normative, producing a score interpreted as pathologic (false
positive). Classically, the ratio between true positives and all
the samples labeled originally as positives is known as the
Sensitivity of the classifier. Similarly, the ratio between true
negatives and all the samples labeled originally as negatives
is known as the Specificity. The Accuracy is the sum of true
positives and negatives relative to the whole sample set. The
detection strategy is based in fixing a given threshold θr which
explores the whole span from the minimum score value to the
maximum (λsmin≤ θr≤ λsmax) in a step-wise sweep, estimating
the number of true positives and negatives attained at each
step. Plotting the number of true positives against false negatives
gives a figure of merit for the classifier, which is the Receiver-
Operator-Characteristic curve (ROC). Another figure of merit is
the Area Under the ROC (AUC). Log-likelihood scores have been
successfully used in Biometry (Taroni et al., 2006). Among other
properties, they allow to model the detection process in terms of
moving thresholds plotting the number of false positives vs. false
negatives in logarithmic scale, giving place to a figure of merit as a
Detection-Error- Trade-off curve (DET), see Martin et al. (1997).
The point where false positives and false negatives meet (or come
closest together) is known as the Equal-Error-Rate (EER), and is
also a figure of merit. These estimations are accompanied by the
value of the optimum threshold, θrop, corresponding to the EER
point.

Materials
Studies in monitoring PD dysarthria from speech articulation
are mainly based on indices as the Vowel Space Area (VSA)
and the Formant Centralization Ratios (FCR) as mentioned
before, which depend on the positions of the first two formants
f1 and f2 in extreme vowels (typically the trio [a:], [i:], and
[u:] are used). The vowels are to be sustained, and average
estimations from formant clusters are evaluated. Therefore, these
indices stand on static measures of the articulator positions. The
present study is intended to explore the dynamic behavior of
vowel emission in open sustained vowels, as [a:] assuming that
formant positions may slightly change responding to phonation
instability as a consequence of the patient’s inability to keep fixed
articulation positions. The main difference is that the emphasis
is placed in estimating these instabilities by the probability
distributions of vowel kinematics, instead of searching for
vowel spaces or average positions. The descriptors will be
the distribution functions, instead of their second moments.
Under a statistical point of view it would be expected that
a more complete representation could be produced (working
hypothesis). To check this hypothesis, vowel utterances from the
Czech Parkinsonian Speech Database (PARCZ) were used. This
database was recorded at St. Anne’s University Hospital in Brno
(Czech Republic). Patients were fully informed of the protocol
and reach of the study, and accepted willingly to participate by
signing an informed consent for their voice to be recorded and
personal data to be included in an anonymous database for the
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FIGURE 9 | Data structures and flow of the RLSFN. Matrix dimensions are annotated close to rectangle sides (rows to vertical, columns to horizontal).

study. The study and informed consent were approved by the
ethical committee at St. Anne’s University Hospital. The database
contained recordings from four sets of five Czech vowels ([a:],
[e:], [i:], [o:], and [u:]) uttered in four different ways: modal
short vowels, modal long vowels, stressed long vowels and weak
long vowels (soft, but not whispered). The subsets selected for
the present study corresponded to phonations of long stressed
[a:] at maximum loudness, from both male and female speakers,
pathological and normative. The recordings were taken at 16,000
Hz and 16 bits, and segments of 500 ms were selected for
analysis. A second database used for normative purposes was
recorded from a set of 50 male and 50 female normative subjects
free from organic or neurologic pathology selected by the ENT
services of Hospital Universitario Gregorio Marañón of Madrid
(HUGM). Long sustained vowels ([a:]) were recorded at a 44,100
Hz sampling frequency and 16 bits from each subject. When
used in the experiments described, both the PARCZ and HUGM
recordings were down-sampled to 8,000 Hz. The numbers of
subjects included in the study are given in Table 2.

The first two formants were estimated using inverse adaptive
filtering (Gómez et al., 2009) and the respective probability
distributions of the absolute kinematic velocity were calculated
as by expression Equation (4). An example of the distributions
for the male set (26 normative and 53 pathological) is shown in
Figure 10A.

TABLE 2 | Subjects considered in the study.

Gender/Condition Normative

PARCZ

Normative

HUGM

Pathological

PARCZ

Males 26 24 53

Females 25 25 38

It may be seen in Figure 10B that the target sample set
(rows 1–53) is ordered as a matrix, where the lowest-order rows
correspond to the distributions showing less dispersion, whereas
the highest-order rows include the distributions showing a larger
dispersion. Similarly themodel set (rows 54–79) are ordered from
the less to the most disperse distributions. This matrix and a
similar one for the female sample sets will be the input to the
network training process following expressions Equations (5–10).

RESULTS AND DISCUSSION

Before running detection experiments it is of vital importance
to determine if the datasets to be contrasted (pathological or
target vs. normative or model) show differentiate statistical
distributions under classical hypothesis test conditions.
Acknowledging their non-normality, and having into account
that a complete analysis should contrast any distribution in
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FIGURE 10 | Probability distributions for the male set samples: (A) Target (pathological: rows 1–53) and Model (normative: rows 54–79) samples ordered by the

Kulback-Leibler Divergence (KLD) between the sample to the average normative set; (B) silhouette of the probability distribution logarithm, showing probability density

concentrations toward low or high absolute velocity values. Dispersion of the probability distribution may be induced by phonation instability as a consequence of

pathological behavior.

the pathological dataset against any other in the normative
dataset, which would generate a matrix of contrast data,
difficult to interpret, a test on the average distributions has

been chosen as an intermediate and more compact choice.
Therefore, in Table 3 below the results of the contrastive tests
are provided, in a similar way to the one to one analysis given
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TABLE 3 | Reference tests between the AKV distributions of the different PD and

normative datasets.

Dataset/Test Test result Test interpretation

1. Normative males (model)–Lilliefors test p < 0.001 Rejects normality

2. PD male patients (target)–Lilliefors test p < 0.001 Rejects normality

3. PD vs. Normative

males–Kolmogorov-Smirnov (p < 0.05)

0.363% Good separability

4. Normative females (model)–Lilliefors test p < 0.001 Rejects normality

5. PD female patients (target)–Lilliefors test p < 0.001 Rejects normality

6. PD vs. Normative

females–Kolmogorov-Smirnov (p < 0.05)

0.316% Good separability

7. Joint Normatives (model)–Lilliefors test p < 0.001 Rejects normality

8. Joint PD patients (target)–Lilliefors test p < 0.001 Rejects normality

9. Joint PD vs.

Normatives–Kolmogorov-Smirnov (p < 0.05)

0.302% Good separability

in Table 1 for the introductory examples on the five-vowel
system.

The data subsets considered were normative and PD male
subjects (26 and 53 subjects, respectively), normative and PD
female subjects (25 and 38 subjects, respectively) and joint
normative and PD subjects (51 and 91 subjects, respectively).
Each data subset was first tested for normality using Lilliefors test.
A p-value below 0.05 would reject the null hypothesis (normal
distribution membership). It may be seen from tests in rows 1,
2, 4, 5, 7, and 8 that the null hypothesis was rejected for all data
subsets below the lowest p-value tabulated (0.001), consistently
with their quadratic nature (following χ2 distributions). The
next comparison consisted in testing each distribution from
each pathologic subset (males, females, and joints) vs. each
distribution from each normative subject in the respective subset
(males vs. males, etc.). Therefore, for the male subsets 53× 26 =
1,378 were carried on; similarly 38× 25= 950 tests corresponded
to the female dataset, and 91 × 51 = 4,641 tests corresponded
to the joint datasets. The number of results not rejecting the
null hypothesis (that both the pathological and the normative
histograms came from the same distributions, therefore that the
pathological and normative samples could not be differentiated)
were added up and divided by the total number of tests for that
subset. This figure multiplied by 100 would give the percent of
cases in which the test could not differentiate between normative
and pathologic. It may be seen that the Kolmogorov-Smirnov test
failed in differentiating 0.363% (males), 0.316% (females), and
0.302% (joint) of the pathologic cases from the normative ones.

The first classification experiment using the RLSFN consisted
in running a single pass of the train and test algorithms to
determine the figures of merit. The training pass used all the
normative and pathological samples in each data subset (males
and females) except one, which was used for testing, repeating
this process over the whole sample set in a leave-one-out strategy.
Figure 11 gives the results in terms of Sensitivity, Specificity,
Accuracy, ROC and DET curves for the male dataset (53
pathological and 26 normative samples) from PARCZ (Table 2).

In Figure 11A the sensitivity (true positives with respect to
original numbers of positives) is plotted in red as a function

of the moving threshold θr . It may be seen that for low values
of θr the number of positives detected is 100%, but at the cost
of missing all the negatives (blue line, giving the specificity
as the number of true negatives with respect to the original
number of negatives). Both curves cross and overlap between
−0.05 ≤ θr≤ 0.05. A compromise is established on the accuracy
(green), which is evaluated adding the values of true positives
and negatives with respect to the total number of original
samples (positives and negatives). The maximum value of the
accuracy is aligned with the optimal threshold θrop. Figure 11B
considers the sensitivity and specificity as the cumulative and
the complementary distribution functions of the true positive
and negative probability distributions. Figure 11C represents
the receiver-operator-characteristic curve (ROC) in terms of the
true vs. false positives, which measures the ability of a detector
to distinguish between true and false alarms. The closest this
curve is to the upper left corner of the diagram, the better
the detector performance. This is estimated evaluating the area
under the ROC curve (AUC). It is easy to see that a perfect
detector would show an AUC = 1. In cases where the curve
sticks tight to the ordinate axis it may be difficult to see how
close it is with respect to the upper left corner. In this case,
the detector-error-trade-off curve (DET) as in Figure 11D gives
a more precise and meaningful view The DET curve is a plot
of the complementary ROC in logarithmic scale, therefore the
details of sample inclusion and exclusion from the true positive
and negative sets are seen as stair steps in the bend. Another
figure of merit is the equal error rate (EER), which is the point
at which the numbers of false positives and negatives come to a
tie. This score is also very important to fit detection conditions
toward reducing the number of false negatives (crucial strategy
in clinical applications) at the cost of increasing the number of
false positives.

Due to the stochastic nature of the RLSFN, the results for
matrices W1 and W2 will be different if different training
processes are repeated. The figures of merit, given by the EER
and the optimal threshold θrop will vary correspondingly. To
understand how these scores distribute under random setting
conditions, Monte Carlo simulations have been conducted. The
simulations were used to obtain estimate averages of the ERR and
Threshold values. Each simulation epoch was started initializing
the weights of the input hyperplanes (W1) with randomnumbers,
and following the data flow given in Figure 9 for training and
testing. The results of one of these runs for n = 200 simulation
epochs is shown in Figure 12 for the same male dataset.

In Figure 12A it may be seen that the EER tends to distribute
in horizontal lines within a central band between 4.5 and
6.5·10−3. The apparent grouping in lines is due to the discrete
nature of the classification process, as only a few samples
are misclassified in each experiment, with similar results. The
distribution of the EER is given in Figure 12B as a boxplot. The
median is 5.4·10−3, with few values out of the central band.
The distribution of the optimal threshold values θrop given in
Figure 12C is also regular, the median being at λs= 0.0179,
and the second and fourth quartiles symmetrically distributed.
The number of outliers found is testimonial. Figure 12D shows
the scatter plot of εerop vs. θrop. The diagram shows a certain
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FIGURE 11 | Results for a single pass of the leave-one-out strategy. The number of hyperplanes in the hidden layer was np = 200. (A) Merit figures; (B) True-Positive

and True-Negative distributions; (C) ROC curve; (D) Equal Error Rate curve.

correlation, which can be estimated around ̺ = 0.3851 with a p-
value of 1.79·10−8. The average detection results after 200 Monte
Carlo runs of a 200 hyperplane hidden layer RLSFN are given in
Table 4.

These results are especially relevant to fix the sub-optimal
value of the detection threshold in the test phase. The stochastic
behavior of the RLSFN affects the reproducibility of the results,
as two different runs of the train phase will produce different
results. Therefore, detection accuracy can only be estimated in
its dispersion and expected values by repeating training runs.
After repeating the training phase for 200 simulations, the results
of the accuracy as the median, first and third quartiles (within
parenthesis) are given in Table 3. The pathological dataset is
respectively the male or female in PARCZ, whereas the normative
datasets used are the PARCZ or the HUGM.

It may be seen that the accuracy is almost the same for
both gender datasets, being slightly better for the HUGM
normative dataset than for the PARCZ. As both datasets are
comparable, the only reason favoring the HUGM dataset is
that it consists of carefully maintained phonations of [a:] at
a modal phonation, whereas PARCZ normative subjects were
asked to produce phonations at a louder (stressed) modality,
therefore the articulation gesture could be subject to more

involuntary modifications. In any case, it may be seen that the
AKV probability distributions seem to capture an important part
of articulation instability to ease a clear cut between pathologic
and normative articulation. The straight forward configuration
of a RLSFN is capable of achieving acceptable detection ratios,
which do not let much margin for further improvements. The
tuning of the classifier is quite sharp, depending mostly on the
number of hyper-planes used in the hidden layer. A clear decline
in the EER is observed when this number (nh) is raised from
60 to 80. Above this figure, the EER seems to remain at a low
value. Below 60, there are still many misclassifications affecting
the data samples used in the training phase. Above 80, only
samples from the leave-one-out set are marginally misclassified.
Apparently, the ability of the pseudo-inverse projector to capture
the relevant relations involving generalization is finely tuned
using the least squares algorithm to estimate the pseudo-inverse
using expression Equation (10). It is interesting to compare at this
point the results obtained by the RLSFN with those produced
by non-parametric tests, as the ones given in Table 5. It may
be seen that the optimal number of misclassified samples from
the male dataset is 0.54%, in the same order of magnitude than
the percentage of pathological samples not rejecting the null
hypothesis in the Kolmogorov-Smirnov test (0.363%), whereas
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FIGURE 12 | Results from 200 passes of the leave-one-out strategy. The number of hyperplanes in the hidden layer was np = 200. (A) Merit figures; (B) True-Positive

and True-Negative distributions; (C) ROC curve; (D) Equal Error Rate curve.

TABLE 4 | Figures of merit for the male and female subsets after 200 Monte Carlo

runs.

Score/Dataset Males Females

Sensitivity 0.9946 0.9942

Specificity 0.9944 0.9941

Accuracy 0.9945 0.9942

Area under the curve 0.9947 0.9945

Equal error rate 0.0054 0.0057

these respective figures are 0.57 and 0.316% for the female subset.
It seems that the classification results are well supported by
Kolmogorov-Smirnov tests. As a remark, it may be mentioned
that the decoding results of both the male and female data subsets
are quite comparable.

Another fact to be considered is that of computational
expenses. As the computation is deterministic and dataflow
is predictable, computational costs are assumable, and
parallelization is a clear option. Computational costs for a
200-epoch run on an i7 core at 3.4 GHz workstation running
MATLAB with no special optimization improvements is of
648.97 s with an average of 3.425 s per run. Finally, as the
residual improvement depends on the generalization capability

TABLE 5 | Average detection accuracy for the male and female datasets using

the PARCZ and HUGM normative databases for 200 simulation runs.

Gender/Accuracy (%) Normative PARCZ Normative HUGM

Males 99.46 (99.36–99.51) 99.80 (99.78–99.83)

Females 99.42 (99.78–99.81) 99.81(99.78–99.87)

The number of hyperplanes in the hidden layer was np = 200.

of the RLSFN, further improvements could still be possible if
nonlinear region-distorting mappings other than the sigmoid,
as radial basis functions were used for f1{·}. This possibility
and the use of SVM’s are potential continuation lines of further
research.

CONCLUSIONS

The aim of the work presented is to find out more compact,
sensitive and semantic features of speech articulation by
Parkinson Disease patients, which could be used in high
accurate detection experiments (Cecchi, 2017). In this kind
of problems the accuracy of the classifier is to be attributed
to the capability of the input mapping structures to create
separate and clear representations of input data, which can
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be associated to target scores in the output, as well as in the
consistence of data. The most problematic inconsistence of
data is ambiguity. As input data are produced under a pre-
defined separation of samples into pathological and normative,
and the feature extraction algorithms are producing estimates
of the AKV distributions “blindly,” it is highly possible that
some samples from pathological subjects may show a higher
stability than expected. Conversely, due to articulation hesitation,
for instance, a normative subject could produce unstable
articulation. Separating these two types of behavior by a clear cut
is always conditioned by a background group of samples where
the initial hypothesis of stable articulation need not be precisely
followed. The main contributions to be found in this work with
respect to early work are:

• The definition of a neuromechanical model of jaw and tongue.
• The proposition of a kinematic variable with the statistical

properties of a two-degree χ2 distribution as the classification
feature.

• The modification of a RLSFN to include log-likelihood scores
for optimal decision taking.

• The use of vowel-based data subsets to characterize the
stability of phonation

• The use of Monte Carlo simulations for the validation of the
stochastic nature of the results

• The use of non-parametric tests to avail the consistency of the
data used in the experiments.

Summarizing, the following conclusions from the work presented
can be derived:

• Modeling the dynamical behavior of the articulation
processes by means of the AKV seems to be efficient
in retaining the most important facts affecting speech
stability.

• The representation of the statistical instability of speech
articulation by means of AKV distributions seems to be
compact enough to afford classification processes between
normative and pathologic samples.

• The instability behavior is apparently well compacted in
the AKV distributions to allow their classification using
RLSFN’s with only two layers and simple nonlinear mapping
kernels.

• A log-likelihood ratio on the output complementary target
output vectors can provide a meaningful score, which
eventually, may be compatible with a severity degree.

• Generalization seems to behave relatively well to ensure high
detection accuracy scores.

• Sensitivity, Specificity and Accuracy scores are well over 99%
for both gender data subsets.

• More experimentation is needed in this sense, both enlarging
the normative and pathologic databases with a larger number
of subjects and with multiple sessions.

• Distinguishing other factors as aging, and the application
to other other Parkynsonian syndromes, such as progressive
supranuclear palsy (PSP) and multiple system atrophy (MSA).
Differential diagnosis among these syndromes is a rather
challenging task.

The future lines of work are to improve the research results,
including more samples from different subjects, and similarly,
more phonations from the same subjects to better assess intra-
speaker variability and to provide results from a longitudinal
study. This means processing larger databases, in which case the
code should be optimized in order to reduce computational costs.
The use of look-up tables to implement nonlinear mappings,
and optimizing matrix inversions in Equation (10) are other
key improvements to speed up calculations. Merging these
articulation features with phonation ones would add up a better
description to both normative and pathologic subjects. The use of
nonlinear kernels in the second stages of classification could be
useful in this case, as possibly data distributions would become
more complex.
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