
fninf-11-00063 November 2, 2017 Time: 16:43 # 1

ORIGINAL RESEARCH
published: 03 November 2017
doi: 10.3389/fninf.2017.00063

Edited by:
Andrew P. Davison,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:
Andrei Irimia,

University of Southern California,
United States

Christian Haselgrove,
Worcester Foundation for Biomedical

Research, United States

*Correspondence:
Tara M. Madhyastha

madhyt@uw.edu

†Data used in preparation of this
article were obtained from the

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database

(adni.loni.usc.edu). As such, the
investigators within the ADNI

contributed to the design and
implementation of ADNI and/or

provided data but did not participate
in analysis or writing of this report.

A complete listing of ADNI
investigators can be found at:

http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf

Received: 07 June 2017
Accepted: 18 October 2017

Published: 03 November 2017

Citation:
Madhyastha TM, Koh N, Day TKM,
Hernández-Fernández M, Kelley A,
Peterson DJ, Rajan S, Woelfer KA,

Wolf J and Grabowski TJ (2017)
Running Neuroimaging Applications

on Amazon Web Services: How,
When, and at What Cost?

Front. Neuroinform. 11:63.
doi: 10.3389/fninf.2017.00063

Running Neuroimaging Applications
on Amazon Web Services: How,
When, and at What Cost?
Tara M. Madhyastha1* , Natalie Koh1, Trevor K. M. Day1, Moises Hernández-Fernández2,
Austin Kelley1, Daniel J. Peterson1, Sabreena Rajan1, Karl A. Woelfer1, Jonathan Wolf1

and Thomas J. Grabowski1,3†

1 Department of Radiology, University of Washington, Seattle, WA, United States, 2 Centre for Functional Magnetic
Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom, 3 Department of Neurology, University of
Washington, Seattle, WA, United States

The contribution of this paper is to identify and describe current best practices for
using Amazon Web Services (AWS) to execute neuroimaging workflows “in the cloud.”
Neuroimaging offers a vast set of techniques by which to interrogate the structure and
function of the living brain. However, many of the scientists for whom neuroimaging is an
extremely important tool have limited training in parallel computation. At the same time,
the field is experiencing a surge in computational demands, driven by a combination
of data-sharing efforts, improvements in scanner technology that allow acquisition of
images with higher image resolution, and by the desire to use statistical techniques
that stress processing requirements. Most neuroimaging workflows can be executed as
independent parallel jobs and are therefore excellent candidates for running on AWS,
but the overhead of learning to do so and determining whether it is worth the cost
can be prohibitive. In this paper we describe how to identify neuroimaging workloads
that are appropriate for running on AWS, how to benchmark execution time, and
how to estimate cost of running on AWS. By benchmarking common neuroimaging
applications, we show that cloud computing can be a viable alternative to on-premises
hardware. We present guidelines that neuroimaging labs can use to provide a cluster-
on-demand type of service that should be familiar to users, and scripts to estimate cost
and create such a cluster.

Keywords: cloud computing, neuroimaging pipelines, workflow, reproducibility

INTRODUCTION

Cloud computing provides on-demand, scalable access to resources that manage, process and store
data through the use of remote storage services and emulated computing systems, otherwise known
as virtual machines, over the Internet. In many cases, cloud services can be used to provide access
to storage and computing resources to accommodate bursts of activity without the costs of setting
up and maintaining a computing infrastructure that might sit idle for a significant portion of time.
For this reason, cloud computing has been widely embraced by several biomedical fields, such as
comparative genomics and proteomics, and is likely to see an increase in use in these and other
disciplines over the next few decades (Fusaro et al., 2011; Liu et al., 2014; Tsaftaris, 2014).
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In neuroimaging, processing of datasets typically requires
execution of complicated pipelines that are both time-consuming
and computationally intensive. It is not uncommon for jobs to
run for days, although the exact time varies depending on the type
and size of the data sets being processed. Processed neuroimaging
datasets can also quickly balloon in size. Most labs therefore
find it necessary to purchase computer systems with enough
computing power and storage space to accommodate multiple
hundred-gigabyte projects and backups. However, the total cost
of ownership of computing infrastructure increases non-linearly
with processing requirements and the total size of data. The cost
to move from a desktop to a shared-memory workstation is much
smaller per added unit of processing capability or storage than
the cost to move from a workstation to a large cluster. These
costs motivate the examination of cloud services, which may be
more suited to accommodating temporary computational bursts,
to process and store neuroimaging data.

Today, popular cloud providers include Amazon Web Services
(AWS), Google’s Cloud Platform, Microsoft’s Windows Azure,
Rackspace’s Open Cloud and IBM’s SmartCloud Enterprise. In
this paper, we limited our benchmarking to services provided by
Amazon because of their development of cfncluster,1 an AWS
framework that simplifies the creation and management of high
performance computing clusters, which are similar to platforms
commonly used to run large scale neuroimaging applications.
Amazon offers hundreds of services, but Elastic Compute Cloud
(EC2) and Simple Storage Service (S3) are among the most
important in our context. While the scope of this paper is
limited to AWS, we believe that the benchmarking practices
described here are relevant to other cloud service providers as
well.

In practice, there are a number of barriers that may deter
scientists from using cloud computing services. As with any new
set of complex services, there is a steep learning curve involved
in learning how to use these services correctly and efficiently.
Even creating an account and using the Web interface to launch
EC2 instances, for example, may not be immediately intuitive.
In addition, interacting with computers using a command-line
interface (CLI) can be daunting. There is also overhead in terms
of time and cost to package up data, automate an analysis in
the cloud, and download results to a local machine. Determining
which EC2 instance type and which pricing model to use can be
difficult when it is not clear how these variables will affect the
final cost of running a job. Moreover, many scientists may lack
the interest or necessary information to make these decisions or
to configure a cluster that is optimal for their workloads.

These barriers motivate our approach to define a set of best
practices for deciding when it is worth running an application
in the cloud. We estimate the cost of running commonly used
neuroimaging pipelines on different machines and streamline
parallel execution in the cloud. Specific questions we address in
this paper are:

(1) Is it better to build a cluster out of larger or smaller
instances, or does it not matter?

1http://cfncluster.readthedocs.io/en/latest/. Note that cfncluster is the successor to
starcluster (http://star.mit.edu/cluster/)

(2) Is performance across data sets stable enough such that
we can use a sample of data to estimate execution time on
EC2?

(3) When is it worth purchasing GPU instances for
GPU-accelerated workloads rather than just using more
cores?

Finally, informed by this exercise, we describe a set of tools
that we have developed and made available on GitHub2 to help
scientists estimate the cost of a job and start an on-demand
customized cluster on EC2.

The benchmarking for this paper was performed in the context
of a summer course held at the Integrated Brain Imaging Center
(IBIC) and was made possible by a grant of credits from AWS
Cloud Credits for Research.

HOW: INSTANCES AND STORAGE

AWS EC2 provides virtual machines that are optimized for
running various applications on the cloud. Virtual machines
emulate computer systems, so that many virtual machines can
be run on the same physical computer hardware. These virtual
machines differ in the number of virtual central processing
units (vCPUs) available, the size and type of memory storage
used, and networking capacity. Each potential virtual machine
configuration is called an “instance type.” Once an instance type
has been selected and launched, it is called simply an “instance.”
Up to date descriptions of available types are on EC2’s website3.

Pricing of EC2 instances, regardless of type, is complex. The
two types of pricing that we considered here are on-demand
instances and Spot instances. On-demand instances are priced
per hour of usage, according to a fixed fee schedule that
varies depending on the instance type and region chosen. We
used on-demand pricing in our benchmarking as a worst-case
scenario. Spot instances, on the other hand, allow users to bid
on extra EC2 computing capacity, and is normally significantly
cheaper than on-demand pricing. With Spot instances, the price
fluctuates according to demand, and jobs are terminated when
the cost of running them exceeds the amount that a user is willing
to pay. A reasonable strategy for selecting a suitable Spot bid is to
offer the on-demand rate (or slightly higher). The user will pay
the current Spot rate, which is normally much lower than the
on-demand rate. As long as the capacity being used represents
a small proportion of the Spot market (and we would expect
most neuroimaging applications to be small workloads relative
to commercial interests) the bid will be unlikely to significantly
affect the current Spot rate. As demand increases or decreases
more broadly, the user will continue to pay the Spot rate. If the
user is outbid, their instances are terminated, which is why it is
safest to bid slightly more than the on-demand rate to ensure that
the probability of being outbid is low.

Storage and data transfer also incur a cost. We used two
types of storage in our benchmarking. The first is Amazon
Elastic Block Store (EBS), which provides persistent block storage

2https://github.com/IBIC/ibic-cfncluster
3https://aws.amazon.com/ec2/instance-types
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volumes for EC2 instances. This type of storage is used to
store the hard drive contents of EC2 instances, along with
snapshots of these instances. The second type of storage that
we used is Amazon S3. Compared to EBS, S3 storage is less
expensive, scalable, and offers cheap solutions for long-lived but
less frequently accessed data. Although downloading data from
S3 incurs a charge, transferring data into S3 is free. Moreover,
accessing data stored in S3 takes less time than would be
required if one were to use secure copy (SCP) to copy data
from remote machines. S3 can therefore be useful for storing
neuroimaging data used to run benchmarks. We did not include
storage and download costs in our cost estimations because
these were negligible in the applications that we evaluated.
However, these are likely to vary significantly in production
environments.

WHEN: DECIDING WHEN TO USE
CLOUD COMPUTING

Most neuroimaging applications are parallelizable, because a
single brain, a single voxel or even sub-voxel components can
often be analyzed independently of the others. Therefore, if
one has multiple processing units (or cores) available, these
independent analyses, or “jobs,” can be run simultaneously. In
this way, the total time to execute N jobs can thus be reduced
by a maximum factor of close to P, the number of processors.
The original execution time of a workload divided by the reduced
execution time is called the “speedup.”

Two common approaches to parallelization in neuroimaging
include using a computing cluster or Graphics Processing Unit
(GPU) acceleration. Computing clusters unite multiple machines
with multiple cores with some scalable storage and a software
platform that provides a unified way to execute parallel jobs.
GPUs are special purpose processing units that are optimized for
processing data in parallel, and are generally better at handling
certain types of parallel compute-intensive processing than
general purpose Central Processing Units (CPUs). Many long-
running neuroimaging applications have GPU-enabled versions
to accelerate processing. Examples include Oxford Centre for
Functional MRI of the Brain (FMRIB) Software Library’s (FSL)
BEDPOSTX and PROBTRACKX for tractography (Behrens et al.,
2003b, 2007; Jbabdi et al., 2012), and FreeSurfer, a workflow to
quantify structural measures such as cortical thickness (Fischl,
2012).

We assume that because neuroimaging is a compute-intensive
field, most neuroimaging scientists have access to some on-
premises (i.e., dedicated) computing platform. Having access to
even more processors through the cloud means that either the
time to execute a particular analysis can be reduced, or that a
larger problem size (e.g., more subjects) can be solved in the same
amount of time. Analyses that take too long to be feasible are
“intractable.” Cloud computing, by providing temporary access
to specialized hardware or bursts of computational resources,
is therefore attractive when it can make an analysis that is
intractable tractable more cheaply than by purchasing dedicated
hardware.

Several trends in neuroimaging make cloud computing an
attractive option. These include:

(a) The advent of data-sharing initiatives, such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)4,
the 1000 Functional Connectomes Project/INDI5, the
UK Biobank6 (Miller et al., 2016), and the Human
Connectome Project (HCP)7 (Van Essen and Ugurbil,
2012; Sotiropoulos et al., 2013), that have made several
large data sets available to the public. Most of these
data sets come from multi-site collaborative projects.
Therefore, each data set may include more subjects than
most individual studies could expect to obtain, and sites
may not have the computational power to process these
data sets, or the storage to hold both raw data and data
products, providing an incentive to use cloud services.
Even when data are shared under license agreements that
prevent making these data publicly available, researchers
may benefit from storing and processing them securely on
cloud resources.

(b) Recently developed multiband echo planar imaging
(EPI) approaches can greatly accelerate acquisition of
magnetic resonance imaging (MRI) data, yielding images
with higher spatial and temporal resolution than those
achieved using standard EPI protocols (Moeller et al.,
2010). However, these scans require more time to process
and greater storage space.

(c) The use of non-parametric statistical methods for
voxelwise and clusterwise inference are becoming
increasingly popular in the neuroimaging community
(Eklund et al., 2016a,b). Most of these methods involve
permutation testing, a technique that shuffles data
randomly and re-runs the statistical analysis on each
permutation to develop a distribution of the test statistic
under the null hypothesis. Permutation testing is
computationally intensive, because one needs to execute
hundreds or thousands of statistical tests instead of
a single test to obtain a distribution. Cloud resources
can potentially speed up execution if tests are run
simultaneously over a cluster of virtual machines with
multiple cores (Winkler et al., 2014).

Because on-premises computing resources may be scarce,
there has been significant interest in using cloud computing tools
for processing neuroimaging data (Mori et al., 2016; Shatil et al.,
2016; Vogelstein et al., 2016). The Neuroimaging Informatics
Tools and Resources Clearinghouse (NITRC), for example, is
a popular repository for neuroimaging tools and data that
began offering a cloud-based virtual computing platform in late
2012. The NITRC Computational Environment (NITRC-CE)
comes pre-configured with many widely used neuroimaging
analysis applications and an easy-to-use graphical user interface
(Kennedy et al., 2015). Similarly, C-PAC (Configurable Pipeline

4http://adni.loni.usc.edu/
5http://fcon_1000.projects.nitrc.org/
6http://imaging.ukbiobank.ac.uk/
7http://www.humanconnectomeproject.org/
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for the Analysis of Connectomes) is an environment to automate
preprocessing and analysis of resting-state fMRI data, and is
available as a machine image on EC2 (Craddock et al., 2017).
Newer platforms like MRICloud shift neuroimaging processing
entirely to the cloud, and links different types of service tools to
offer an integrated software-as-a-service model that enables users
to run analyses and quality assurance procedures through a web
interface (Mori et al., 2016).

The Total Costs of Ownership of
Different Computing Platforms
We considered three scenarios for parallel execution of
neuroimaging applications. The first is a commodity 4 core
desktop. We imagine that this might be the type of machine
that a researcher purchases to use for interactive work, and is
largely self-maintained and administered. The second type of
machine is a 24 core shared memory workstation. This type
of workstation might service a lab, and is modeled on typical
workstations here at IBIC. Associated costs to maintain such a
workstation include a yearly support contract, hosting in a shared
rack with uninterruptable power supply, and maintenance by
a system administrator (for some percentage of effort). Finally,
the third machine is a scalable cluster, with a high performance
file system. Associated costs to maintain such a cluster are
based on costs for the University of Washington Hyak system,
a shared and high performance computing cluster dedicated to
research computing. Pricing for Hyak is highly subsidized, but
includes power, networking, and system administration support.
Descriptions of all machines and how we arrived at our cost
estimates can be found in Supplemental Materials.

Figure 1 shows the costs per hour per core for each of
these three models. We amortized the cost over 5 years for the
workstation and desktop (matching a typical grant cycle), and
over 4 years for the cluster (as Hyak does). As seen in Figure 1,
the cost per core-hour increases dramatically with scale across
this range of computation platforms. This is largely because
of system administration overhead and system complexity. We
also note that because computer time is wasted if not used, the
cost per core-hour decreases for every computation platform as
utilization increases.

The equivalent on-demand cost per core-hour for a compute-
optimized EC2 instance (c4) in the us-west-2 region (as of this
writing) is indicated by the horizontal line in Figure 1. Note
that the compute capacity of EC2 instances is specified in terms
of vCPUs, each of which is a hyper-threaded CPU. Hyper-
threading duplicates certain sections of a physical core, but not
the main execution resources, creating two virtual cores for
each physical core. Although this improves throughput for many
applications, neuroimaging workloads are too computationally
intensive to benefit significantly from hyper-threading. In this
plot we estimate the cost of a single real core as two times the cost
of a vCPU on a c4 instance (as of this writing, this is $0.105/hour
in the us-west-2).

Figure 1 shows that the workstation we have designed for
neuroimaging applications is competitive with cloud computing
at approximately 40% utilization. As we describe in the

FIGURE 1 | Cost per core per hour for different computing platforms at a
range of utilizations (desktop, workstation and cluster). Cost of an on-demand
c4 instance (not dependent on utilization) is shown by the dotted line.

next section, if a job is intractable on a typical workstation
(characteristic of those found in neuroimaging labs such as IBIC),
and does not reflect an ongoing increase in workload that would
push utilization consistently over approximately 70%, we would
consider cloud services before investing in cluster infrastructure.
We do not have sufficient expertise with GPUs to draw a similar
performance curve for GPUs, although one could certainly do so
to evaluate the utilization at which it was worth investing in GPUs
versus using GPU-enabled instances.

None of these cost estimates explicitly include uninterruptible
power supply costs, cooling, networking costs, or space, as these
are subsidized by the university. If included, they would not
change the shape of the curves, but they would significantly
increase the utilization until which cloud computing is an
attractive alternative to on-premises resources. Also, all EC2 cost
estimates were based on AWS’ on-demand pricing. Spot pricing
for EC2 instances is much lower (although more volatile), and
can change the point at which cloud computing using AWS is
cost-effective. As of this writing, 30-day Spot pricing estimates
for c4 instances were approximately 20% of the on-demand
pricing, which makes cloud computing using AWS exceptionally
attractive.

Finally, the cost estimates do not include storage (or transfer),
which is charged per gigabyte per month, and varies dramatically
by lab and analyses. An attractive benefit to maintaining a
workstation, even if it experiences less than 40% utilization, is
that it provides redundant storage for 20 TB of neuroimaging
analyses. At current pricing in the us-west region, it costs $23
per month to store 1 TB of data on S3 for standard, or frequent,
access (or approximately $5520 per year for 20 TB). Using one
of our own current projects with anatomical, diffusion, perfusion
and multiecho fMRI sequences as an example, we estimated that
a project with 100 subjects would require 105 GB of storage
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FIGURE 2 | Estimated time to execute different workloads on different computing platforms. (A) FreeSurfer (B) Whole brain tractography of HCP data.

space for processed FreeSurfer data, which costs $2.42 per month
to store on S3. Unprocessed data for 100 subjects would need
approximately 177 GB of storage space, costing $4.07 per month
on S3. Once data has been processed, the size of the data increases
dramatically to 1.54 TB. This would cost $35.37 per month on
S3. Adding up costs, we would expect a typical project to cost
about $38/month to store on S3 once data has been processed,
not including the storage of scripts and programs that may be
necessary to process the data and snapshotting of the instances
on EBS. Maintaining data on EBS or S3 storage over time can
thus dramatically change the cost estimates of Figure 1.

The Time Required to Analyze Data on
Different Platforms
Figure 2 shows the theoretical execution time curves for
two applications: (1) FreeSurfer, a pipeline used for cortical
parcellation, and (2) whole brain tractography on HCP
data, on our identified compute platforms. FreeSurfer takes
approximately 6 h to process one brain on a single workstation,
assuming no within-brain parallelism, i.e., the total execution
time across multiple cores is limited by the processing time of a
single brain. Whole brain tractography takes approximately 31 h
to process one brain, but the processing can be fully parallelized,
yielding smooth curves.

Figure 2 illustrates that the time required to run an analysis
application, the number of subjects in the data set(s) being
processed, and the available computing resources all contribute to
the estimate of execution time. For example, a lab with a modest
cluster of 240 cores (e.g., 10 workstations) will be able to process
1000 subjects with FreeSurfer in a week. In contrast, that same
workload would monopolize a desktop for months. Whole brain
tractography, a procedure that takes approximately five times as
long as FreeSurfer’s recon-all to run to completion, would take a
week to complete on a cluster, and would probably be considered
intractable on a workstation.

There are GPU-enabled versions of FSL’s BEDPOSTX and
PROBTRACKX, FSL utilities used in our tractography script,
which offer speedup that may be larger than the number of
cores available on a node. FreeSurfer also released a GPU-enabled
pipeline in 2012, but this is not actively supported anymore;
consequently, we did not benchmark FreeSurfer on EC2
GPU-enabled instances. GPU acceleration is not reflected in the
calculations in Figure 2; we discuss the tradeoffs between using a
GPU instead of a CPU more extensively in the results.

In Figure 2, we assume perfect speedup, i.e., that the time to
execute N jobs on P cores is exactly N/P. In reality, this is not
true. Even though the N jobs are independent, as P increases there
may be aspects of the system architecture that serialize part of
the computation and limit performance. More importantly, there
is additional human time that is required to set up and check
the results of a large parallel analysis. There is, unfortunately, no
way to purchase computer resources to reduce this effort. You
might decide that it does not matter whether an analysis finishes
in an hour or a week if you will not have the time to look at the
results for 2 weeks. However, running hundreds or thousands of
tractography analyses on your desktop is likely to take too long to
be feasible simply because P is too small.

In summary, the decision of when to run an analysis in the
cloud depends upon (1) the number of subjects, (2) the time it
takes a program to run for each subject on-premises, (3) how the
workload can be parallelized (potentially using GPUs), and (4) the
human overhead involved in setting up and checking the analysis,
which cannot be parallelized.

AT WHAT COST: BENCHMARKING EC2

Many variables contribute to the performance of an application
on EC2 instances, and benchmarking cloud services is an
important research topic in its own right (Deelman et al., 2008;
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Leitner and Cito, 2014). While there are published methods
with detailed steps for evaluating cloud services, variation in
performance of cloud services over time can make it difficult to
generalize results from a paper (Gillam et al., 2013). Performance
may vary because of characteristics that are transparent, such as
the match of basic application characteristics to instance type,
the time of execution, and geographic region. Performance may
also vary because of characteristics that are not clearly visible
to the user, such as the hardware heterogeneity that underlies
virtual instances, scheduling policies used by the cloud provider,
and the effects of running multiple virtual instances together
with other users on the same hardware (otherwise known
as multitenancy). Finally, performance can be unpredictable
because of the characteristics of the application itself (Minervini
et al., 2015). The variability of execution time and its impact on
cost must also be considered.

Given our limited benchmarking budget, we focused
exclusively on benchmarking our application suite on
appropriate instance types. We excluded certain instance
types from consideration because they were mismatched to our
sustained CPU-intensive workloads. For example, the t2 instance
types are intended to handle short bursts of CPU utilization
rather than sustained CPU intensive workloads. To achieve high
overall CPU utilization, a single physical core would have to
support multiple t2 instances which are then penalized by the
virtual machine scheduler for sustained CPU usage. For this
reason, we did not examine t2 instance performance. We also
did not look at instance types intended for memory-intensive or
storage-intensive applications. Instead, we limited our evaluation
of instance types to the latest generation of general purpose and
CPU-optimized instance types as of this writing (m4 and c4).
Besides this, we evaluated GPU performance on g2 instances
(the latest AWS GPU instance type as of this writing, which was
an NVIDIA GRID K520). A complete list of EC2 instance types
with detailed descriptions and use case scenarios can be found
on Amazon’s EC2 website8.

To estimate the costs of running fairly standard neuroimaging
applications on different instances, we benchmarked execution
time on each instance type (using all available vCPUs in parallel)
in two conditions. In the first condition, we processed the same
data set (i.e., same brain) on each vCPU, using all vCPUs in
the instance. In the second condition, we processed a different
data set on each vCPU, using all vCPUs in the instance. This
allows us to examine how variable execution time is for different
data sets. In each condition, we calculated the average time
for the processing of the data sets to complete on the fully
loaded instance. This allowed us to determine whether it was
reasonable to use an execution time estimate from a single data
set (or an average) as a proxy for multiple data sets. Note that
AWS charges for instances by the hour; in our cost estimates
we did not “round up” the execution time for jobs that took
less than an hour. This overhead would be small under heavy
utilization.

We did not conduct our benchmarking on cfncluster, although
the appeal of using cfncluster and Spot pricing motivated this

8https://aws.amazon.com/ec2/instance-types/

work. As in our normal workflow, we prototype and benchmark
on single machine and run on a cluster in production. There
is some fixed setup time for cfncluster creation that may
ultimately need to be considered in total cost when running on a
cluster.

Given that there are many other sources of performance
variability that we did not control or evaluate, our benchmarking
is admittedly not comprehensive. It is intended instead to
represent a strategy for obtaining information to guide a realistic
and generalizable cost analysis using critical neuroimaging
applications at a specific lab.

Description of Benchmarks
Assuming that different labs have different classes of hardware
to conduct the analyses that they do, and that most scientists
might prefer to conduct analyses that complete within a few days,
we identified three candidate benchmarks for AWS. These are
described below.

FreeSurfer is an image analysis suite designed for processing
structural neuroimaging data, which performs cortical
reconstruction and volumetric segmentation (Fischl, 2012).
The technical details of these procedures are described in prior
publications (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al.,
1999a,b, 2001, 2002, 2004a,b; Fischl and Dale, 2000; Ségonne
et al., 2004; Han et al., 2006; Jovicich et al., 2006; Reuter et al.,
2010, 2012). Briefly, this processing includes motion correction
and averaging of T1 weighted images (Reuter et al., 2010),
removal of non-brain tissue using a hybrid watershed/surface
deformation procedure (Ségonne et al., 2004), automated
Talairach transformation, segmentation of the subcortical white
matter and deep gray matter volumetric structures (Fischl
et al., 2002, 2004a), intensity normalization (Sled et al., 1998),
tessellation of the gray matter white matter boundary, automated
topology correction (Fischl et al., 2001; Ségonne et al., 2007), and
surface deformation following intensity gradients to optimally
place the gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines the transition
to the other tissue class (Dale and Sereno, 1993; Dale et al.,
1999; Fischl and Dale, 2000). We used FreeSurfer version 5.3 to
conduct this benchmarking.

FreeSurfer typically takes several hours or more to process a
single brain, which means that an analysis of several hundred
subjects will be faster if subjects are run in parallel on a large
cluster.

Two data sets were used for benchmarking FreeSurfer. One set
of isomorphic 1mm structural images was obtained from subjects
in the Alzheimer Disease Neuroimaging Initiative (ADNI-1 &
ADNI-Go9). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see www.

9https://adni.loni.usc.edu
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adni-info.org. This data set was processed using the standard
recon-all pipeline on a single structural scan.

The second data set consists of.8mm isomorphic structural
images scans from the University of Washington’s Alzheimer’s
Disease Research Center10 (ADRC). The ADRC dataset was
run through FreeSurfer twice; once on downsampled data
(resolution = 1 mm), and the second time on the original
high-resolution 0.8 mm data, using the procedure described by
Lüsebrink et al. (2013).

Tractography is a technique used to process diffusion MRI
data to quantify the structural connections between regions
in the brain (Mori et al., 1999). Specifically, we benchmarked
probabilistic tractography on data from the Human Connectome
Project (HCP: Van Essen et al., 2012). To do this, we used
FSL’s BEDPOSTX (Bayesian Estimation of Diffusion Parameters
Obtained using Sampling Techniques) to build up distributions
of diffusion parameters obtained at each voxel (Behrens et al.,
2003b, 2007) using FSL’s pre-specified default parameters, then
ran the outputs through FSL’s PROBTRACKX (Behrens et al.,
2003b, 2007). PROBTRACKX generates probabilistic streamlines
by repeatedly sampling data from the distributions of the
principal diffusion directions obtained from BEDPOSTX. As an
example of a realistic application of probabilistic tracking, we
used PROBTRACKX to compute a frontal lobe connectivity-
based parcellation of the thalamus, which involved classifying
each voxel in the left thalamus according to the strength of
the connection from the voxel to left frontal lobe regions in
the Desikan-Killiany atlas (Behrens et al., 2003a; Desikan et al.,
2006) (PROBTRACKX thalamic parcellation). For comparison
with published results, we also timed the application reported
by Hernandez-Fernandez et al. (2016), which reconstructs dense
connectome matrices (PROBTRACKX dense connectome). Both
benchmarks used data from the WU-Minn HCP 500 Subjects
release.

These methods are computationally very demanding.
BEDPOSTX uses a computational modeling and signal-
processing framework, and takes as its input multidimensional
data that can consist of millions of image voxels. A Bayesian
inference framework and inversion of models is then performed
via Markov-Chain-Monte-Carlo (MCMC) integration. Such
a problem is very parallelizable given the large number of
independent elements that can be subjected to voxel-wise
modeling. In the GPU version, a further parallelization occurs
during the estimation of the a-posteriori distributions of model
parameters at each voxel, which involves expensive likelihood
calculations. Thus, several lightweight threads collaborate
together to execute within-voxel computations (Figure 3A).

In PROBTRACKX, another inference framework is used to
numerically integrate the local estimates from BEDPOSTX for
the purposes of solving ordinary differential equations (ODE).
The task is repeated many times in a Monte-Carlo fashion.
Millions of ODE solvers need to be launched in order to
achieve converged spatial distributions, and this can lead to
large computational times. However, solvers can be computed in
parallel and be assigned to different threads (Figure 3B). Indeed,

10http://depts.washington.edu/adrcweb/

the GPU implementations of BEDPOSTX and PROBTRACKX
can allow speedups of more than two orders of magnitude
compared to the single-threaded CPU implementations. To
benchmark tractography, we used a GPU-enabled version of
BEDPOSTX included in FSL version 5.0.9 (Hernández et al.,
2013) and a beta version of GPU-enabled PROBTRACKX
(Hernandez-Fernandez et al., 2016).

The third application we benchmarked was Neuropointillist,
an in-house program written in R (version 3.2.3) to analyze
neuroimaging data at the group-level using mixed effects
modeling. The Neuropointillist R package defines functions to
combine multiple sets of neuroimaging data, automate parallel
execution of arbitrary R code (a “model”) on each voxel, output
results, and reassemble the data. Although still undergoing active
development, we decided to benchmark Neuropointillist because
it is an example of a compute-intensive voxel-wise analysis that is
analogous to voxelwise analyses in other labs.

Neuropointillist was benchmarked on EC2 using a dataset
obtained from John Flournoy (personal communication; Pfeifer
et al., 2013). Adolescents were scanned at 3 waves (N1 = 78,
N2 = 49, N3 = 35) at ages 10–16 while making evaluations of
target ‘self ’ and ‘other’ (Harry Potter) in both social and academic
domains. An equal number of items that had positive and
negative valence were presented to participants during each MRI
scan session, and sample phrases included: “I am popular,” “I wish
I had more friends,” “I like to read just for fun,” and “Writing is
so boring.” The data set consisted of whole-brain t-statistic maps
for each cell of a 2 × 2 Analysis of Variance (ANOVA) design
with target (‘self ’ or ‘other’) and domain (social or academic)
as factors, as well as demographic information such as age, sex,
pubertal status and answers from self-report questionnaires. We
fitted and compared two mixed effects models across a sample
of voxels in the brain; the base model included fixed effects of
age, time, domain and target and a random intercept for each
individual and time point, while the extended model included
an additional interaction between target and domain. Equations
for these models are included in Supplemental Materials. The
two models were compared using the ANOVA function in R to
determine where in the brain an interaction between target and
domain was present. Timings for Neuropointillist are for a “job,”
or a subsample of voxels, not an entire brain.

Table 1 shows the full complement of benchmarks and
instance types that we benchmarked.

RESULTS

Choosing Instance Types to Obtain the
Best Performance
Figures 4, 5 show the price per brain to execute FreeSurfer
and Neuropointillist, two examples of relatively CPU-intensive
applications, on a range of m4 and c4 instances. We see in both
cases that the c4 instances are less expensive per brain than the
m4 instances. The c4 instances have less memory and cost less
per vCPU than the more general-purpose m4 instances. Hence,
if applications can run with limited memory requirements, they
can execute more cheaply on c4 instances. The processors in c4
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FIGURE 3 | Parallelization and multithreading for tractography. (A) GPU-enabled BEDPOSTX. (B) GPU-enabled PROBTRACKX.

instances are also faster than those in m4 instances, as indicated
by the description of instance types.11 We find execution time
to be slightly less on the c4 instances than on the m4 instances,
contributing to the lower price per brain on c4 instances. Note
that there can be substantial variability in individual subjects,
as in the subjects selected for benchmarking on the m4.large
instance. By chance, one subject completed significantly faster
than the average. With larger samples such execution time
differences were not significant.

In addition, we noted that the price per brain for FreeSurfer
was systematically lower on smaller instance types within a class
of instances (i.e., c-class instances or m-class instances) than on
larger instance types, despite the fact that the price per vCPU
is identical across instance types within a class. One possibility
that we explored for this performance differential is the fact
that two vCPUs correspond to a single physical core, and the
vCPUs are implemented using hyper-threading. Hyper-threading
is typically not helpful for CPU-intensive jobs of the type we are
benchmarking. We hypothesized that on small instance types that

11https://aws.amazon.com/ec2/instance-types/

reflect a portion of a larger physical machine, the penalty for
hyper-threading might be smaller than on larger instance types
that occupy the entire physical machine (except for cores reserved
for the hypervisor, which creates and runs virtual machines). To
test this hypothesis, we ran the FreeSurfer benchmark using only
half the number of vCPUs (Figure 4C). Although execution time
decreased across all instance types, it decreased by less than half,
and the cost pattern we observed was the same.

A technical feature that would explain this performance is
that AWS uses intel Xeon processers which supply Intel Turbo
Boost technology. Turbo Boost increases the chip clock speed
based on temperature and power consumption of the cores. This
feature is enabled through the virtualization layer that maps the
virtual instances to the physical server. Turbo Boost does not
engage when the entire server is used for computationally heavy
workloads as is the case when all of the processors are being
used on a c4.8xlarge. However, when the physical server is shared
among other workloads, as it is in smaller instances, it is possible
that the overall server utilization is lower and Turbo Boost can
engage, improving performance of our jobs on smaller instances
relative to larger ones. This would mean that this effect is not

TABLE 1 | Benchmarking matrix.

Application Data type EC2 instance type

benchmarked m4.large m4.xlarge m4.4xlarge c4.large c4.xlarge c4.4xlarge c4.8xlarge g2.2xlarge

Freesurfer Recon-all Same X X X X

(Downsampled Images) Different X X X X

Freesurfer Recon-all Same X X X X

(High Resolution Images) Different X X X X

FSL PROBTRACKX Same X

Different

FSL BEDPOSTX Same X

Different X

Neuropointillist Same X X X X X X

Different X X X X x X
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FIGURE 4 | Price per brain ($) to execute FreeSurfer. (A) Price per brain for identical subjects. (B) Price per brain for different subjects. (C) Price per brain on
identical subjects using only half of the available cores. Vertical bars show 95% confidence intervals, calculated over the number of jobs equal to the number of
vCPUs (A,B) or half the number of vCPUs (C).

FIGURE 5 | Price per job ($) to execute Neuropointillist. (A) Price per job for same workload (B) Price per job for different workload. Vertical bars show 95%
confidence intervals, calculated over a number of jobs equal to the number of vCPUs.

reliable, because it is dependent upon load on the physical server.
We did not see this performance differential across instance types
on neuropointillist, but those jobs may be too short to witness this
effect. We did not have the budget to test this hypothesis further.

Figures 6 and 7 show the results for the two stages of
the FreeSurfer high resolution pipeline. The downsampled run
(Figure 6) is analogous to the timing in Figure 4, but on a
different data set. We can see that although overall execution time
and cost is slightly higher for the higher resolution ADRC data
than the ADNI data, the rank ordering of instance class costs is
the same for both stages of processing. Note that we do not see as
strong an effect of smaller instance types being more efficient.

Estimating Execution Time on EC2
Table 2 shows the ratio of execution time on our workstation
to the mean execution time on all c4 and all m4 instances
for the same subject. We grouped instance types to compute
this ratio because performance variability across instance types
was relatively small. On average, the ratio of the workstation
execution time to c4 instances is higher than the ratio of

workstation execution time to m4 instances, reflecting the fact
that the c4 instances are slightly faster. We observe that across the
two applications, the ratio of execution times is relatively stable
(especially for m4 instances). The ratio of workstation time to
execution time on c4 instances is somewhat more variable. This
may be related to the variable impact of Turbo Boost technology
as described above. However, this general stability shows that we
can estimate execution time of compute-intensive applications
on EC2 from on-premises resources to within a reasonable
error.

GPU Acceleration versus Increased
Parallelism
The applications used for tractography (BEDPOSTX,
PROBTRACKX) can use GPUs, where available, to accelerate
computation. However, instance types that support GPUs are
typically more expensive than compute-optimized or general
purpose instance types. This begs the question of when it is
cheaper to use more expensive GPU-enabled instances for
a shorter period of time versus a larger number of cheaper
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FIGURE 6 | Price per brain ($) to execute the downsampled portion of the
high-resolution FreeSurfer pipeline on different subjects. Vertical bars show
95% confidence intervals, calculated over a number of jobs equal to the
number of vCPUs.

non-GPU-enabled instance types for a longer period of time,
if the goal is to obtain the highest throughput at the lowest
cost.

The answer to this question depends upon the speedup
achievable using GPUs versus non-GPU-enabled instances and
the relative costs of these instances. If the relative speedup
obtainable is not substantially higher than the relative cost, it
is not worth the expense of GPU instances. We estimated the
time to run BEDPOSTX and PROBTRACKX on non-GPU-
enabled instances by scaling execution times on our reference
workstation. Figure 8 shows the execution time to execute both

TABLE 2 | Ratio of execution time on reference workstation to AWS (using the
average of timings on all c4 and m4 instances together), and timings on all c4 and
m4 instances separately.

Application Workstation
/AWS

Workstation
/c4

Workstation
/m4

Neuropointillist 0.65 0.71 0.60

FreeSurfer 0.60 0.61 0.59

FreeSurfer High
Resolution Pipeline,
Stage 2

0.63 0.64 0.60

BEDPOSTX and PROBTRACKX sequentially on our reference
workstation and on a g2 instance with a single GPU. BEDPOSTX
runs 80.9 times faster on a GPU than on a single workstation
processor, which we determined from our benchmarking (see
Table 2) is conservatively 1.67 times the speed of a c4 vCPU.
Therefore, we estimate that the speedup relative to a vCPU
would be 1.67∗80.9, or approximately 135. Figure 8C shows
the time to execute PROBTRACKX on our example problem
on a workstation and a single GPU. PROBTRACKX runs
only 7.8 times as fast on this problem on a GPU than on a
single workstation processor. Thus, the speedup relative to an
equivalent vCPU would be approximately 1.67∗7.8, or 13.0. This
was substantially less than the speedup of 68.29 reported by
Hernandez-Fernandez et al. (2016) so we also ran the dense
connectome benchmark described therein on our workstation
and on the same GPU platform.12 The speedup of the dense
connectome benchmark (calculated from only one timing on
each platform) was 22.9 (35.6 h on our workstation and 1.55 h
on a single GPU). This would be equivalent to a speedup of 38.2
(1.67∗22.9) relative to a vCPU.

12Note that to assemble the input data for this problem size, it was necessary to use
a large G4 instance with sufficient memory. However, our speedup calculations do
not take into account memory as a limiting factor.

FIGURE 7 | Price per brain ($) to execute the high-resolution portion of the high-resolution FreeSurfer pipeline. (A) Price per brain for identical subjects (B) Price per
brain for different subjects. Vertical bars show 95% confidence intervals, calculated over a number of jobs equal to the number of vCPUs.
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In AWS’ Spot pricing system, the ratio between the cost of
a GPU and a vCPU fluctuates as the prices for those instances
changes over time. Figure 9 shows the ratio between the
minimum cost for a GPU (on a g2 instance) and the minimum
cost for a vCPU (on an m4 or c4 instance) in US regions for the
week of October 23 through October 29 2016. This information
is important to understand whether a GPU accelerated program
would be cheaper to run on GPU instance types or vCPUs. We
need to look up the speedup obtainable for a GPU to a vCPU for
a particular application and determine what fraction of the time
the price ratio is less than the speedup.

For example, we estimated that BEDPOSTX runs
approximately 135 times faster on a GPU-enabled (g2) instance
than on non-GPU-enabled instances (m4, c4), on our HCP
subjects. The GPU/vCPU price ratio even of on-demand
instances is far less than 135, so it will always be cheaper to
run BEDPOSTX on GPU-enabled instances on this workload.
However, the speedup of PROBTRACKX on our benchmark
was only 13. A horizontal line shows where this line occurs in
Figure 9. Referring now to Figure 9, we can see that of the 168 h
in the week, only 23 (13.7%) had a cost ratio favorable to the g2
instances. On average, it would be more expensive to execute this
PROBTRACKX benchmark on GPU-enabled instances than on
vCPUs. In contrast, the speedup of PROBTRACKX relative to a
vCPU on the dense connectome benchmark was much higher, at
38.2. At this speedup, the cost ratio was favorable to the dense
connectome benchmark.

TOOLS TO IMPLEMENT BEST
PRACTICES

Through the process of conducting this benchmarking, we
developed some tools to help replicate this approach. These are
publically available and documented at https://github.com/IBIC/
ibic-cfncluster. They are summarized here.

Estimating and Minimizing Cost
We were able to calculate the ratio of execution time of
CPU-intensive programs on a single core on our workstation to

an m4 or c4 vCPU on EC2. This ratio allowed us to estimate the
number of vCPU hours that are required to run a job on EC2.
We wrote a script (get_spot_estimate) to use the AWS interface
to query the Spot pricing history for the previous week to identify
the historically least expensive instance type that could be used to
create a cluster and estimate the expected and maximum cost to
execute the job on that cluster.

The inputs to the script are the number of jobs, and the
expected number of hours on a vCPU. It is possible to produce
cost estimates at a different site by running benchmarks on an
on-premises reference workstation (using local storage) and on
EC2 to obtain a site-specific scaling factor.

Creating Specialized Clusters on
Demand
In this paper we consider the scenario where EC2 services
are used to speed execution of a problem through parallelism.
Although we did our benchmarking by launching instances
individually and using secure shell (ssh) to connect to them,
to run a large-scale application one must create a cluster
of computers. This additional configuration is automated
by the AWS cfncluster package. We followed Amazon’s
recommendations for best practices to use this package to
automate creation of a configuration tailored for a specific
application.

The recommended workflow is to create a cluster of cfncluster
default Amazon machine images (AMIs), and to write a
configuration script that installs only the software required for
the application. Data is also most quickly transferred to and
from S3. Once the cluster is created, a job can be run using one
of the supported schedulers, including Son of Grid Engine (SGE;
Gentzsch, 2001)13, torque (Staples, 2006), Openlava (Teraproc
Inc.), and SLURM (Jette et al., 2002). We have used only SGE
in our testing. Note, however, that AWS imposes limits on the
number of instances that can be started by an individual by
default. Individuals must request these limits be increased to
create a large cluster.

13https://arc.liv.ac.uk/trac/SGE

FIGURE 8 | Time (hours) to execute BEDPOSTX and PROBTRACKX on our reference workstation and two AWS GPU-enabled instances. (A) Execution time (hours)
for identical subjects. (B) Execution time (hours) for different subjects. (C) Execution time (hours) to execute PROBTRACKX on identical subjects. Vertical bars show
95% confidence intervals calculated over N = 8 runs.
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FIGURE 9 | Hourly ratio of cost per GPU to cost per vCPU in US regions, estimated hourly over a week (Oct 23 2016 - Oct 29 2016). Hours below the horizontal line
show when it is more cost-effective to run PROBTRACKX on a GPU versus the vCPUs available on EC2 instances.

cfncluster can take advantage of Spot pricing, using the
cheapest instance type identified from the script described
in Section “Choosing Instance Types to Obtain the Best
Performance,” and also dynamically launch and stop instances as
needed to service the queue. With Spot pricing, instances may
be terminated if Spot prices rise above your bid price, when the
demand for Spot instances rises, or when the supply of Spot
instances decreases. Because we normally execute our parallel
workloads using qmake, a parallel version of make, it is easy
to pick up from partially completed jobs should instances be
terminated (Askren et al., 2016). However, if the computational
time for each step (before output or checkpointing information
is saved) is much longer than an hour, the cost for this compute
time would be lost. Similarly, if Spot instances are not available at
the current bid price, the cluster cannot run jobs.

We have created scripts that create default cluster
configuration files for the workloads described in this paper and
instructions for copying the appropriate installation files to S3
(see Supplemental Materials).

DISCUSSION

Because of the cost of scanning subjects and limits on the
number of subjects who can be scanned in any given timeframe,
neuroimaging workloads at many labs are relatively small.
Software has generally been optimized to complete in a
reasonable amount of time on commonly used desktops and
workstations. Indeed, there may currently be few neuroimaging
workloads that currently exceed the capacity provided by a cluster
of several workstations, and are thus candidates for the cloud.
However, trends toward large-scale data sharing, the availability
of higher resolution multiband data and statistical methods
that require more computation time might change this. Cloud
computing is a viable alternative to on-premises hardware for
labs that do not have sustained workloads that would justify the

purchase of additional hardware. Even if on-premises computing
resources are sufficient to accommodate the workload, the ability
to create a cluster on demand enables one to run larger problems
in the same amount of time, perhaps on specialized hardware
(e.g., GPUs) that are not available in the lab.

Despite the complexity of AWS services, we were able to
limit our benchmarking to a small set of candidate applications
that would benefit from cloud computing, and a corresponding
subset of appropriate instance types. We identified important
trends in selection of instance types for lowest cost. First,
smaller instance types performed better than larger ones, and
c4 instance types performed best (as expected) on the compute
intensive workloads. Importantly, we found that we could
consistently estimate execution time on EC2 instances from our
on-premises workstation. We also outlined how to calculate GPU
speedup and to determine whether it is more cost efficient to
use a GPU or to parallelize over vCPUs. For our workloads,
BEDPOSTX is always faster to run on GPUs versus vCPUS but
PROBTRACKX depended on the characteristics of the problem.
Dense connectome tractography, which generates thousands of
streamlines between locations, achieved higher speedup using the
GPU implementation than the thalamic parcellation benchmark,
which was smaller and less able to benefit from GPU acceleration.
This underscores the importance of benchmarking specific
workflows to determine the most cost-effective EC2 platform.
Although the nature of neuroimaging applications and cloud
services will change in the future, the fundamental approach to
benchmarking and making cost calculations described in this
paper will remain relevant for understanding any pay as you go
computing model.

Finally, we have released some tools developed as a result
of our experiences to make the process of estimating the cost
of running a workload on EC2 and launching a cluster more
streamlined. Because the system administration overhead of
setting up machines is automated in EC2, it is possible to
think about creating a special purpose cluster of machines
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optimized for a specific workload. To do this, we leverage
AWS cfncluster, which involves creating an install script for
specialized software to support a job on an AMI customized for
cfncluster. This strategy runs contrary to a common paradigm
for creating a lab computing environment, which is to install
all necessary software on a computing platform. The need for
IT support is therefore minimized because there are fewer
interactions between different versions of programs that can
cause problems, and troubleshooting is easier. However, in EC2
the most effective strategy is to limit the disk size and avoid any
extraneous processes so that resources are dedicated entirely to
the neuroimaging workload. A cost-effective strategy is to use
Spot pricing and to bid no more than the on-demand pricing (or
slightly above), knowing that most hours will incur the Spot price.
Note, however, that our cost estimates do not take into account
any additional overhead required to create cluster instances and
configure cluster software. These contributions reflect the current
state of the art and best practices and are likely to change
significantly as AWS services evolve.

In summary, we believe that cloud computing will play
an increasingly important role in neuroimaging. It is easy to
conjecture that neuroimaging applications will change rapidly, as
will cloud services, and that in the future they may not resemble
those described in this paper. However, as long as there is a cost
associated with application execution time, the benchmarking
approach described here can be used to guide decisions about use
and selection of cloud services and investment in on-premises
resources. In the meantime, the strategies and software we have
outlined contribute to current best practices for use of AWS
computing services.
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