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Human brain connectivity is extremely complex and variable across subjects. While long 
association and projection bundles are stable and have been deeply studied, short asso-
ciation bundles present higher intersubject variability, and few studies have been carried 
out to adequately describe the structure, shape, and reproducibility of these bundles. 
However, their analysis is crucial to understand brain function and better characterize the 
human connectome. In this study, we propose an automatic method to identify repro-
ducible short association bundles of the superficial white matter, based on intersubject 
hierarchical clustering. The method is applied to the whole brain and finds representative 
clusters of similar fibers belonging to a group of subjects, according to a distance metric 
between fibers. We experimented with both affine and non-linear registrations and, due 
to better reproducibility, chose the results obtained from non-linear registration. Once 
the clusters are calculated, our method performs automatic labeling of the most stable 
connections based on individual cortical parcellations. We compare results between 
two independent groups of subjects from a HARDI database to generate reproducible 
connections for the creation of an atlas. To perform a better validation of the results, we 
used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 
subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right 
hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the 
atlas to automatically segment 78 new subjects from a different HARDI database and to 
analyze stability and lateralization results.

Keywords: dMri, harDi, hierarchical clustering, short association bundles, white matter

1. inTrODUcTiOn

One of the goals of white matter (WM) studies is the construction of an atlas of human brain con-
nections, which is an important step toward the understanding of human brain function (Sporns, 
2013). Human brain connectivity is extremely complex and variable across subjects; therefore, its 
description is still incomplete. Long association and projection bundles have been deeply studied due 
to their large size and stability across subjects. Therefore, a large number of studies have been carried 
out to describe, segment, and analyze these bundles. On the other hand, few studies about short 
association bundles of superficial white matter (SWM) exist. These bundles have a smaller size, an 
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unknown structure, and a high intersubject variability, resulting 
in higher difficulties for their study. The analysis of SWM fibers 
is important to describe the human connectome to explain and 
predict human brain functions. Thus, their study can improve the 
knowledge of specific local connections by helping to understand 
functions and features that can be altered in some psychiatric 
disorders or neurological pathologies.

Diffusion magnetic resonance imaging (dMRI) is the preferred 
technique for the study of human brain white matter structure 
in  vivo through the measurement of the restricted diffusion of 
water molecules (Basser, 1995). From dMRI, we can compute a 
diffusion local model that represents the main diffusion direc-
tions or local fiber orientations at each voxel. Using this informa-
tion, tractography algorithms allow the reconstruction of the 
most probable fiber trajectories (Mori and Van Zijl, 2002). The 
most used diffusion local model is the diffusion tensor (DTI). 
This technique has allowed the study of long bundles on several 
neurological diseases, but the DTI model presents some limita-
tions for the representation of fibers with different directions 
within a voxel. During the last 10 years, new techniques of dMRI 
with high angular resolution (HARDI) have been used, especially 
for research purposes. These images feature better quality and, 
together with a high-order local diffusion model (Tuch et  al., 
2002; Descoteaux et al., 2007), enable the identification of fiber 
crossing within a voxel, thus improving tractography results. 
With the adequate application of preprocessing and diffusion 
pipeline algorithms, whole-brain HARDI tractography data sets 
achieve a good representation of white matter bundle structure, 
including short association fibers. The obtained data sets can 
contain over a million fibers, even for deterministic tractography, 
when using all the WM voxels as seeds. Note that we use the term 
fibers to describe the three-dimensional polylines generated by a 
tractography algorithm. These do not represent real neural fibers, 
but an estimation of the main WM fiber pathways.

dMRI provides information about the integrity of the WM 
through the measurement of fractional anisotropy (FA). This 
index, along with other diffusion-based indices, allows the 
detection of differences in WM structure and infers connection 
characteristics of neurological diseases or psychiatric disorders. 
Known white matter bundles can be segmented in subjects for 
WM quantitative studies (O’Donnell and Pasternak, 2015). For 
example, differences were found in the corpus callosum, the 
cingulum, and the arcuate fasciculus for patients with bipolar 
disorder (Sarrazin et al., 2014). Other studies related changes 
in the cingulum with schizophrenia (Whitford et al., 2014) or 
in thalamic radiations with Alzheimer’s disease (Niida et  al., 
2013).

For the study of SWM, mainly two approaches have been 
used. First, previously published work has employed manual or 
automatic placement of regions of interest (ROI): Zhang et  al. 
(2010) used a non-linear warping of a gray matter and white 
matter ROI atlas to extract the fibers that connect two gyri. With 
these results, probability maps of 29 short fibers from 20 subjects 
of a DTI database were created. This work was the first of its type, 
but no deep analysis of the bundles was performed and no bundle 
shape description was obtained. In he study by Pardo et al. (2013), 
the authors applied the same method to a HARDI database of 

30 subjects (Schmitt et al., 2012), studying the variability of the 
obtained bundles.

The other group of works applies manual positioning of ROIs 
performed by an expert: Catani et al. (2012) used this approach to 
perform a detailed study of the frontoparietal association connec-
tions using HARDI data. Furthermore, a lateralization analysis 
of frontoparietal U-shaped tracts and premotor connections was 
performed using 12 subjects. Rojkova et  al. (2016) applied the 
same method to segment the bundles described in this study, over 
a population of 47 subjects. The authors used a probabilistic rep-
resentation of the bundles to study the differences in white matter 
due to age and education. Magro et al. (2012) characterized the 
short fibers of the brain central area using six ROIs, computed as 
a subdivision of the precentral and postcentral gyri. Next, fibers 
connecting pairs of regions were extracted from a whole-brain 
tractography. In the later study, by applying a similar strategy, the 
authors studied the connections within the primary motor cortex 
using the subdivision of the precentral gyri (Magro et al., 2014). 
By using a validation technique, Vergani et al. (2014) studied the 
connections of the supplementary motor area using postmortem 
dissections and dMRI. Region-based analyzes can be very precise 
on the extraction of specific short bundles when a manual deline-
ation of ROIs is applied. However, this task requires an expert 
and is very time consuming; therefore, it is restricted to a small 
or medium-sized group of subjects and some brain regions. On 
the other hand, automatic parcellations of the cortex allow the 
study of whole-brain connections through the automatic extrac-
tion of the fibers traversing a group of regions. However, they use 
larger regions, thus leading to groups of fibers connecting two 
regions with inhomogeneous shape and a very high intersubject 
variability.

Other strategies are mainly based on fiber clustering, and use 
a distance metric between fibers. These have been extensively 
applied to known white matter bundles. O’Donnell and Westin 
(2007) was one of the first works that used clustering on a 
whole-brain tractography data set. The method applies spectral 
clustering to an affinity matrix, based on the mean closest point 
distance between fibers. Wassermann et  al. (2010) proposed a 
hybrid approach to extract the most-known WM tracts. They 
model WM fibers as Gaussian processes, and use this model 
to define a distance metric between fibers. Their method then 
performs hierarchical clustering on the data and produces a 
dendrogram, which is then combined with a priori information 
given by a gray/white matter atlas to extract the most probable 
anatomical bundles. Visser et al. (2011) proposed the use of hier-
archical clustering, applied to subsets of the data, to achieve good 
scalability. Guevara et al. (2012) applied an automatic intrasubject 
and intersubject clustering to 12 subjects of a HARDI database. 
The clusters present in at least half of the subjects were selected. 
Then a manual labeling was performed to create a multisubject 
atlas of deep white matter bundles. Several other works have 
been proposed to study those bundles (Durrleman et al., 2011; 
Garyfallidis et al., 2012; Yoo et al., 2015).

All the previous algorithms were designed to analyze known 
deep white matter bundles. Small differences between bundles 
did not need to be considered, as large bundles present a main 
core shape, composed by several sub-bundles, with variable 
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spread extremities. In contrast, the analysis of short association 
bundles requires more stringent similarity measures, to discrimi-
nate bundles connecting different small cortex regions. Only very 
similar fibers, with the same shape along the entire bundle, must 
be regrouped. The first attempt of clustering short association fib-
ers was done by Guevara et al. (2012), leading to the creation of 
an atlas of short association fibers of the left hemisphere. A total 
of 47 short bundles were found, with medium to high reproduc-
ibility across subjects. A normalization term was used to take 
into account fiber length. However, results were very preliminary, 
with a high inhomogeneity within each cluster and were inferred 
from only 12 subjects.

Recently, Guevara et al. (2017) proposed a hybrid method for 
the reproducibility study of short association bundles. For each 
subject, subtractograms connecting pairs of gyri were extracted. 
Then, intrasubject shape-based fiber clustering performed a 
compression of each subtractogram into a set of bundles. Finally, 
for each pair of gyri, a match of the bundles across subjects was 
found using intersubject clustering. The method found a total of 
100 bundles for the whole brain, with medium to high reproduc-
ibility across subjects. From the point of view of the construction 
of an SWM bundle atlas, results from the study by Guevara et al. 
(2017) are interesting, because they used a large and high-quality 
database and performed validation using two groups of subjects. 
The advantage of this method is that it can find reproducible 
bundles across the whole brain, including those with moderate 
reproducibility. However, this method relies on the cortical 
parcellation being applied to the fibers. All the subsequent steps, 
mainly based on clustering algorithms, are applied individually 
to each group of fibers connecting two gyri. Errors in cortical 
parcellation and intersubject registration will impact the final 
bundles, in particular those localized in the frontiers of the gyri.

To overcome this issue, we propose a method for the study of 
SWM based on the intersubject clustering of whole-brain short 
white matter fibers. This approach has also the advantage of 
naturally including in the study the connections within the gyri. 
In contrast to the study by Guevara et al. (2012), the method was 
adapted to short fibers, with the capacity to deal with a larger group 
of subjects and the WM structural complexity of a high-quality 
database (Schmitt et al., 2012), in a reasonable time. To deal with 
a large number of fibers and reduce dimensionality, the analysis 
is applied to the short centroids of preclustered fibers (Guevara 
et al., 2011b). First, the maximum distance between correspond-
ing points is computed between all centroids. Next, an average 
link hierarchical clustering is performed over the centroids, based 
on an affinity graph. Then, to obtain tight clusters, an adaptive 
partition of the resulting hierarchical tree is performed, accord-
ing to the maximum distance between the centroids of a cluster. 
Resulting clusters are then evaluated and validated. A validation 
was also performed by comparing the results from the applica-
tion of the method to pairs of independent groups of 27 subjects 
following a bagging with a total of 74 subjects. In addition, the 
influence of the intersubject registration algorithm was evaluated. 
To achieve that goal, the method was applied using both affine 
registration and a non-linear registration algorithms based on 
the diffusion tensor (Zhang et al., 2006). Results from non-linear 
registration were found to be more reproducible and were used 

to create an atlas containing the most stable bundles. Finally, the 
atlas was used to segment the SWM bundles of 78 new subjects 
and study the reproducibility and lateralization of short bundles.

2. MaTerials anD MeThODs

2.1. Tractography Data sets
2.1.1. Development Data Sets
Development and segmentation data sets were used. All the sub-
jects provided an informed written consent, and the data acquisition 
was performed with the approval of the local ethical committees. 
We used seventy-four healthy subjects (23.6 ± 5.2 years old; 43 
males, 31 females; 71 right handed and 3 left handed), from a 
high quality HARDI database (Schmitt et al., 2012). Scans were 
acquired on a Tim Trio 3 T MRI system with a 12-channel head coil 
(Siemens, Erlangen), and the MRI protocol included the acquisition 
of a T1-weighted data set using an MPRAGE sequence (160 slices; 
TH = 1.10 mm; TE/TR = 2.98/2,300 ms; TI = 900 ms; flip angle 
FA = 9; matrix = 256 × 240; voxel size = 1 mm × 1 mm × 1.1 mm; 
RBW = 240 Hz/pixel), a B0 field map, and a SS-EPI single-shell 
HARDI data set  along 60 optimized diffusion weighted direc-
tions, b =  1,500  s/mm2 (70 slices; TH =  1.7 mm, TE =  93 ms; 
TR = 14,000 ms; FA = 90; matrix = 128 × 128; voxel size = 1.7187
5 mm × 1.71875 mm × 1.7 mm; RBW = 1502 Hz/pixel; echo spac-
ing ES = 0.75 ms; partial Fourier factor PF = 6/8; GRAPPA = 2; 
total scan time = 16 min and 46 s).

The data were preprocessed using BrainVISA/Connectomist-2.0 
software (Duclap et al., 2012). They were preliminary corrected 
for artifacts (eddy currents, susceptibility effects, spikes, and 
noise), and outliers were also removed. Then, the analytical 
Q-ball model (Descoteaux et  al., 2007) was computed. Whole-
brain regularized streamline deterministic tractography (Perrin 
et  al., 2005) was performed on the diffusion-weighted (DW) 
native space, using a T1-based propagation brain mask (Guevara 
et  al., 2011a), with a forward step of 0.2  mm and a maximum 
curvature angle of 30. The mask was used for seeding (one seed 
per voxel at T1 resolution) and to define the space where fibers 
were tracked. The propagation mask is constructed to have a good 
WM mask, in particular subcortical white matter, leading to a 
good reconstruction of short SWM fibers. Resulting tractography 
data sets present an average of one million fibers per subject, each 
with a length between 20 and 300 mm.

Fibers were then processed using intrasubject clustering 
(Guevara et al., 2011b), to remove outliers and reduce the data 
dimensionality. The clustering generates two tractography data 
sets per subject (Figure  1): the cluster data set, consisting of 
compact fascicles of similar fibers, and the cluster centroid data 
set, containing a representative fiber for each cluster, resampled 
with 51 equidistant points. The data sets present an average of 
5,300 clusters per subject. All the fibers are in T2 subject space, 
i.e., in each individual diffusion-weighted space. We term these 
data sets the preclustered data.

2.1.2. Segmentation Data Sets
Seventy-eight subjects from a high-quality HARDI database were 
used for the segmentation of the SWM bundles obtained with the 
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FigUre 1 | Preclustered data sets: example of intrasubject fiber clusters (a) and their centroids (B) for the left hemisphere of Subject 1.

FigUre 2 | Schematization of the SWM bundle identification process. © 2016. Reprinted, with permission, from IEEE 38th Annual International Conference of the 
Engineering in Medicine and Biology Society (EMBC), 2016, p. 5545–9.
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method. Scans were acquired on a Tim Trio 3TMRI system with a 
12-channel head coil (Siemens, Erlangen), and the MRI protocol 
included the acquisition of a T1-weighted data set using the same 
protocol employed for the main database, a B0 field map, and a 
SS-EPI single-shell HARDI data set along 60 optimized diffusion 
weighted directions, b = 1,400 s/mm2 (70 slices; TH = 2.0 mm, TE/
TR = 92/9,300 ms: FA = 90; matrix = 128 × 128; RBW = 1,502 Hz/
pixel; echo spacing ES = 0.75 ms; partial Fourier factor PF = 6/8; 
GRAPPA = 2; voxel size = 2.0 mm × 2.0 mm × 2.0 mm).

The data were preprocessed using BrainVISA/Connect-
omist-2.0 software (Duclap et al., 2012) using the same steps as 
for the main database up to the computation of the tractography 

data set. Tractography data sets were calculated in T2 subject 
space, but an affine normalization to Talairach space was applied 
to each data set for bundle segmentation purposes.

2.2. clustering-Based sWM Fiber Bundle 
identification
Our goal was to develop a method for the identification of the 
most reproducible SWM bundles of the whole brain, based on 
intersubject clustering, and adapted to high-quality databases. 
The method, depicted in Figure  2, begins with a selection of 
short centroids, to reduce the number of elements and focus the 
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analysis on short association fibers. Next, the selected centroids 
from a group of subjects in Talairach space are clustered using a 
fiber distance metric. Only reproducible clusters are carried onto 
the next step. An anatomical labeling using cortical parcellations 
is applied. Finally, only stable connections, with a significant 
main connection for most of the subjects, are selected. The rest of 
this section describes each of these steps in detail.

2.2.1. Short SWM Fiber Selection
Short centroids, with a length between 35 and 85  mm, were 
selected from the tractography data sets of the development 
database. Most of these centroids belong to superficial short fib-
ers. Length selection was derived from the observation of bundles 
with different lengths, using the preclustered data. Fibers shorter 
than 35 mm were discarded, because their shape is very variable 
and difficult to analyze. In most cases, these fibers are artifacts 
and do not represent structured bundles. Even in the cases were 
the fibers are regrouped into bundles, these belong to a short 
association bundle that is better represented by longer fibers. We 
selected an upper threshold of 85 mm for fiber length, because 
short U-shaped fibers do not exceed this size.

Using a multi-subject deep white matter (DWM) bundle atlas 
(Guevara et al., 2012), the data are preprocessed to remove short 
centroids that can be part of known bundles. This occurs because 
some DWM bundles are composed in part of short fibers. Another 
cause is the presence of artifacts that can be generated during 
tractography, e.g., fibers belonging to long bundles that were cut 
by the mask. This phenomenon occurs in the periphery of the 
WM mask, where voxels are difficult to label due to the partial 
volume effect. Hence, cut bundles or badly reconstructed bundles 
are mixed with short association fibers. To remove all these fibers, 
which could be very similar to some fibers in deep white matter 
bundles, we compare the short centroids with selected bundles of 
the DWM bundle atlas. The DWM bundles chosen for compari-
son are the short bundles of the arcuate fasciculus, i.e., the anterior 
and posterior segments, uncinate fasciculus, short and temporal 
fibers of the cingulum, fornix, posterior and inferior thalamic 
radiations, and a cut version of corpus callosum fibers. Bundles 
such as the inferior frontooccipital fasciculus or the corticospinal 
tract are composed of only long fibers; therefore, they were not 
used. The corpus callosum is of particular case: our method is 
applied to both hemispheres separately, so the corpus callosum 
fibers were cut across the interhemispheric plane to obtain the 
left and right portions of this bundle. The DWM atlas is in the 
Talairach space; therefore, for this comparison, the short centroids 
were transformed to this space using an affine normalization.

The method computes a distance matrix between the fibers 
from the two data sets, i.e., the selected DWM bundles and short 
centroids from all the subjects. The distance metric used to com-
pare each pair of fibers is the maximum of the Euclidean distances 
between corresponding points (dME), which is calculated as shown 
in equation (1):

 d A B min max a b max a bME i i i i i N ip
( ) ( )( ), = || − ||, || − || ,−  (1)

where ai and bi are the positions of the corresponding points of 
a pair of fibers A and B. The distance is symmetrized, by taking 

the minimum of the two possible directions of the fibers, as 
described by O’Donnell and Westin (2007). This distance was 
chosen because it is more restrictive than the minimum of the 
mean distances between closest points (O’Donnell and Westin, 
2007) or between corresponding points (Garyfallidis et  al., 
2012). Centroids are considered similar to the selected DWM 
bundles when the distance between the centroids and the DWM 
fibers is inferior to a threshold equal to 10 mm. This value is 
very restrictive for long bundles, so only centroids very similar 
to DWM fibers are discarded. Because the bundles selected for 
this process do not contain unknown short fibers, there is no 
risk of discarding short bundle candidates. To speed up the 
calculation, only a random sampling of 20% of the selected 
atlas fibers is used, representing about 400 fibers per bundle. 
This is possible because DWM bundles are very dense and very 
stable across subjects, so samples from different subjects are 
very similar.

2.2.2. Intersubject Clustering
By using the short SWM centroids, we apply intersubject 
hierarchical clustering to a group of subjects (Figure 3), where 
the centroids are aligned in a common space. In this work, we 
used two types of normalization methods: affine registration to 
Talairach space and non-linear registration to DTI-TK “IXI aging 
DTI template.” More details about these registration methods are 
described in Section 2.4.

We compute a distance matrix M for all the pairs of SWM 
centroids using the distance dME. Then, from the matrix, we 
compute an affinity graph. The affinity is defined as aij

dij= − /e σ2

 
(O’Donnell and Westin, 2007), where dij is the distance between 
the elements i and j, and σ 2 is a parameter that defines the similar-
ity scale (60 mm). The affinity computation is performed for each 
pair of fibers with a distance smaller than a defined maximum 
distance (dclmax). This processing allows us to significantly reduce 
the clustering processing time, as only about 5% of the edges are 
included in the affinity graph.

We then run an average-link hierarchical agglomerative clus-
tering algorithm on the affinity graph. This algorithm computes a 
hierarchical tree (or dendrogram) with all the cluster fusions. The 
original implementation of the algorithm is included in the nipy 
Python library.1 It can deal with big data sets, taking advantage of 
the sparcity of the affinity graph.

We then compute an adaptive partition of the hierarchical tree, 
according to a maximum distance dclmax between the centroids of 
a cluster. The analysis starts from the top node and traverses the 
entire tree, selecting nodes to be analyzed and storing their indices 
in a queue. For each of these nodes, the algorithm computes the 
maximum pairwise distance between all its centroid descendants. 
If this distance is smaller than or equal to the maximum distance 
dclmax, the centroids are grouped into a cluster. Otherwise, the two 
children nodes are added to the queue to be analyzed. Typical 
values for dclmax in fiber data vary between 15 and 45 mm.

To cluster a large number of elements (more than 50,000 cen-
troids), we implemented a version of the clustering algorithm that 

1 http://nipy.sourceforge.net/nipy.
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does not store the entire distance matrix M in memory, but rather 
directly computes the affinity graph using the distance threshold 
dclmax. Algorithm 1 shows how the dendrogram is created from 
the list of fibers and the list of affinities between them.

Later, the partition computation stage uses a sparse representa-
tion of the matrix M, containing only the distances smaller than 
the maximum distance (dclmax). Once the partition is computed, 
it is analyzed to verify the number of subjects involved in each 
cluster. Bundles that are representative of the population, that is, 
that exist in most subjects, are identified. We use a strict selection 
criterion, considering as representative only the bundles present in 

at least 75% of the subjects. Note that in some cases, short associa-
tion fibers are not reconstructed due to partial volume effects or 
tractography artifacts. Also, it is possible to miss bundles in some 
subjects due to intersubject variability or normalization errors.

2.3. robust atlas creation
2.3.1. Identification of Similar Bundles between Two 
Different Groups of Subjects
The proposed method was applied to two independent groups 
of N subjects from the same database to create a robust atlas. We 
implemented a comparison algorithm between bundles from dif-
ferent groups to identify the similar bundles across both groups 
of subjects.

First, the intersection between similar bundles is computed. 
For each pair of bundles, composed by bundles from different 
groups, the distance between all the fibers from each bundle was 
calculated using distance dME.

For each bundle, we compute the number of fibers presenting at 
least one close fiber from the other bundle, with a distance smaller 
than 5  mm. The number of fibers of a bundle that match this 
criterion is used as a measure of the intersection between bundle 
sets. Pairs of bundles with an intersection percentage higher than 
50% are considered similar, as they present an important overlap 
between them.

algOriThM 1 | Clustering between N fibers with M affinities and nC 
unconnected elements.

function Clustering elements, affinities

for i := 1 to N - nC do

Find the highest affinity between a pair of elements and use it as a new 
node of the dendrogram

Remove the affinity between the selected pair of elements

Merge the clusters associated to each of the elements

Update the affinities using the average-linkage criterion

end for

return dendrogram

end function
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TaBle 1 | ROIs of the Desikan–Killiany atlas (Desikan et al., 2006) and labels.

rOi abbreviation rOi abbreviation 

Bankssts B Pars opercularis Op
Caudal anterior 
cingulate

CACg Pars orbitalis Or

Caudal middle frontal CMF Pars triangularis Tr
Corpus callosum CC Pericalcarine PerCa
The cuneus Cu Postcentral PoC
Entorhinal En Posterior cingulate PoCg
Fusiform Fu Precentral PreC
Inferior parietal IP Precuneus PreCu
Inferior temporal IT Rostral anterior 

cingulate
RoACg

Isthmus cingulate IstCg Rostral middle frontal RoMF
Lateral occipital LO Superior frontal SF
Lateral orbito frontal LOrF Superior parietal SP
Lingual Lg Superior temporal ST
Medial orbito frontal MOrF Supramarginal SM
Middle temporal MT Frontal pole FPol
Parahippocampal PaH Temporal pole TPol
Paracentral PaC Transverse temporal TrT
Insula Ins
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2.3.2. Atlas Creation
All the processing, including clustering-based SWM fiber bundle 
identification (Section 2.2) and the identification of similar bundles 
between two different groups of subjects (Section 2.3.1), is applied 
to the centroids of a set of subjects, divided into two groups of N 
subjects.

After the comparison between the results of the two groups of 
N subjects, the pairs of similar bundles from the two groups are 
fused. In some cases, two very similar bundles could be separated, 
because of small differences in fiber shape. We chose to fuse them, 
because too much fine granularity is not desirable for short asso-
ciation bundles due to intersubject variability.

2.3.3. Automatic Labeling
The representative bundles obtained by the clustering algorithm 
are analyzed using anatomical information to label the bundles 
according to the regions that they connect. Due to their shape, short 
association bundles (U-fibers) connect two regions. Therefore, the 
labels indicate the pair of ROIs connected by each bundle.

A parcellation of the cerebral cortex calculated using 
FreeSurfer2 is employed. This is based on the major gyri and sulci, 
according to the Desikan-Killiany atlas (Desikan et al., 2006), that 
has 34 parcels per hemisphere (see Table 1). From each subject 
parcellation, an ROI image is generated. For the analysis, the cen-
troids of reproducible bundles are transformed to individual T1 
referential. An oversampling is first applied to every centroid to 
ensure that at least one point of the centroid extremities is located 
in the connected cortical ROIs. The algorithm detects the two 
ROIs connected by each centroid of each bundle. This analysis is 
performed separately for each subject. After that, the results for 
each bundle are analyzed together for all the subjects in the group.

In most cases within a bundle, subsets of centroids connect dif-
ferent pairs of neighboring ROIs. Also, sometimes, the centroids 

2 http://surfer.nmr.mgh.harvard.edu/.

connect different areas of one ROI. After a visual analysis of the 
results, we concluded that the presence of different connections 
within a cluster could be due to clustering, registration, or cortical 
parcellation errors, but in most cases, a main and reproducible 
connection between two ROIs could be found. For each bundle, 
the percentage of centroids connecting each ROI pair, and also the 
number of subjects presenting each connection, was calculated. 
Finally, the most stable connection for each bundle is selected 
and used as label.

2.3.4. Interhemispheric Correspondence
To automatically assign the same labels to the common bundles 
between the left hemisphere (LH) and the right hemisphere (RH), 
an interhemispheric bundle correspondence analysis was applied 
to the atlas bundles.

For the right bundles, their symmetric horizontal reflection is 
calculated to obtain their position in the LH. With bundles from 
both hemispheres in the same space, the intersection between 
similar bundles is calculated using the same processing described 
in Section 2.3.1.

Pairs of bundles from different hemispheres with an intersec-
tion percentage higher than 50% are considered common bundles 
between hemispheres. Similar bundles in both hemispheres are 
renamed to have a common label.

2.4. registration Method analysis
Due to the morphology of each brain, linear registration could be 
insufficient for the application of intersubject clustering methods. 
Non-linear registration can potentially improve the alignment 
of the subjects and hence the results. Therefore, to compare the 
behavior of our robust atlas creation method (Section 2.3.1) with 
different kinds of normalization methods, we applied it to two 
centroid data sets consisting of two groups of 37 subjects aligned 
using affine registration to Talairach space, and the same two 
groups aligned using a non-linear registration method.

For linear registration, preclustered centroid data sets were 
transformed to Talairach space, using an affine normalization, 
based on AC-PC alignment. For non-linear registration, we used 
DTI-TK,3 a method based on the features of the diffusion ten-
sor (Zhang et al., 2006). For the alignment, the “IXI aging DTI 
template” was employed. First, an affine registration is applied to 
the DTI image of each subject, obtaining the affine aligned image 
and the corresponding affine transformation. Next, a diffeomor-
phic registration on the affine aligned image to the template is 
calculated, obtaining the diffeomorphic aligned image and the 
corresponding deformation field. Preclustered centroid data sets 
were transformed to the template space using the calculated affine 
transformation and deformation field, applied to each centroid 
coordinate.

2.5. automatic segmentation of sWM 
Bundles
The created atlas contains the most stable bundles, common 
to both groups of subjects. To evaluate the reproducibility of 

3 http://dti-tk.sourceforge.net/.
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TaBle 2 | Execution time for all stages of the clustering process.

centroids Matrix (min) graph (min) Dendrogram (min) Partition (min) Total (min) 

Group 1 LH 34,375 22 3 108 71 204
RH 35,251 24 4 83 44 155

Group 2 LH 34,571 23 2 110 46 181
RH 34,539 22 5 108 43 178
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the bundles composing the atlas, these were used for the auto-
matic segmentation of 78 new subjects from the segmentation 
database.

The segmentation method calculates the distance dME (equa-
tion  (1)) between each atlas bundle centroid and each fiber in 
the subject from the segmentation data set, normalized to the 
difference between the atlas centroid and the subject fiber lengths 
(Labra et al., 2017):
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where dnf is a normalization factor that penalizes the length 
difference between the atlas centroids and the subject fibers. 
A restrictive threshold was used to label the short association 
bundles, thus selecting only the fibers that are very similar to the 
atlas bundles. We set a threshold between 6 and 8 mm, according 
to the length of the bundles.

The symmetrized atlas was used for segmentation and to 
analyze short association bundle lateralization. The remaining 
reproducible atlas bundles, present only in one hemisphere, were 
also segmented.

2.5.1. Lateralization Index
For bundles segmented in both hemispheres, a lateralization 
analysis was performed. The volume of each bundle was calcu-
lated using a mask, with a voxel size of 2 mm × 2 mm × 2 mm. 
A bundle image was first constructed, with voxels counting the 
number of fibers in the bundle passing across them. Then, the 
bundle image was binarized, considering the voxels with more 
than one fiber. The volume of each bundle was calculated as the 
number of voxels in the bundle mask for each segmented subject. 
The lateralization index (LI) of a bundle was calculated using the 
formula: LI = (Right volume − Left volume)/(Right volume + Left 
volume), as used by Catani et al. (2012). LI is a number between 
−1 and 1, where negative values indicate a left lateralization.

3. resUlTs

This section describes the results of our method in three parts: 
first, the method was applied to test the intersubject clustering 
algorithm, analyze the robust atlas creation method, and to 
select the normalization strategy (Section 3.1). Then, a valida-
tion method was performed, leading to the creation of a final 
atlas (Section 3.2). Finally, automatic segmentation was applied 

to test the reproducibility of the final atlas of SWM bundles 
(Section 3.3).

3.1. robust atlas creation results
To analyze the registration method, the algorithm was applied 
to two independent groups of 37 subjects from the development 
HARDI database, using both types of registration. Each hemi-
sphere was analyzed separately.

Each subject hemisphere in our data set contains on average  
2,345 centroids, from which 1,131 centroids on average corre-
spond to short fibers (35–85 mm). After the comparison between 
the selected DWM atlas bundles, around a 17% of the centroids 
were discarded, leading to a mean of 939 centroids per hemi-
sphere, per subject. This results in around 35,000 centroids per 
group in each hemisphere.

3.1.1. Clustering-Based SWM Fiber Bundle 
Identification
We applied intersubject clustering using different values for 
the maximum distance dclmax, between 15 and 45 mm. The total 
number, shape, and size of the clusters were analyzed, as well 
as the reproducibility of the bundles. We looked for bundles 
that were large enough to ensure good reproducibility, but also 
preserve good shape similarity within the fibers of the bundle. 
The best results were obtained with a value of dclmax = 30 mm to 
compute the clusters. After the computation of the dendrogram, 
the partition stage of the algorithm selects reproducible clusters 
with centroids that belong to at least 75% (28 of the 37 subjects 
in the particular case of the atlas used for the normalization 
analysis).

While most of the stages of the algorithm are largely imple-
mented as Python scripts, we wrote an optimized C++ version of 
the dendrogram construction algorithm depicted in Algorithm 1, 
which accounts for most of the execution time. While Python 
offers enhanced flexibility and productivity, our C++ version of 
the algorithm allows us to improve performance using advanced 
code optimizations and more efficient memory management. In 
fact, on our test machine, the Python code supports a maximum 
of 15,000 centroids, while the C++ implementation was success-
fully executed with up to 150,000 centroids.

Table  2 lists the number of centroids and the execution 
times for each step of the intersubject clustering process, for 
each group and each hemisphere, using non-linear registra-
tion. The process is divided into the following steps: distance 
matrix calculation, affinity graph construction, dendrogram 
calculation, and dendrogram partition. The entire process takes 
between 2.6 and 3.4 h on our test machine. Figure 4 more clearly 
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FigUre 4 | Distribution of the execution time for dendrogram construction in both hemispheres of Group 1.

TaBle 3 | Number of clusters for each hemisphere and each group of subjects.

linear non-linear

group 1 group 2 group 1 group 2

LH 98 97 157 169
RH 96 97 167 164

TaBle 4 | Number of similar bundles from the intergroup comparison, for linear 
and non-linear registration.

linear non-linear

dTh = 10 dTh = 7 dTh = 10 dTh = 7

LH 40 2 91 55
RH 31 2 97 42
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shows the distribution of the clustering execution time for each 
hemisphere in Group 1. Even using the optimized C++ imple-
mentation, the construction of the dendrogram is responsible 
for more than 50% of the execution time in all cases, followed 
by the partition stage, which accounts for about one third of the 
total time. We run our experiments on a 64-bit workstation with 
an Intel i7-4770 quad core processor at 3.4 GHz and 16 GB of 
DDR3 memory.

To determine the anatomical labeling, we calculated the per-
centage of fibers connecting each ROI pair for each bundle and 
the number of subjects containing the connection. Bundles with 
a strong connection were selected and named. Discarded bundles 
with weak connections have extremities localized on the limits of 
several regions.

3.1.2. Analysis of the Method Behavior and 
Normalization Selection
Table 3 shows the number of bundles found for each hemisphere 
and each group, using both registration methods. For non-
linear registration, we obtained about 60% more fascicles than 
using linear registration. In addition, bundles from non-linear 

registration are more dense and, on average, more reproducible 
across subjects. No significant difference was found in the num-
ber of bundles from both hemispheres.

We calculated the similarity between each pair of bundles 
from different groups of subjects, using a restrictive value for 
the maximum mean distance dTh. All the bundles under this 
threshold were considered very similar. Two different thresholds 
were used for this analysis: 7 and 10 mm, and Table 4 summarizes 
our results. By using dTh = 10 mm, we obtained a large number 
of similar bundles, especially using non-linear registration. 
However, for some cases, bundles did not present a high similar-
ity between groups. By using dTh  =  7  mm, we obtained better 
results for non-linear registration, but unsatisfactory results for 
linear registration: only 2 similar bundles between groups in 
each hemisphere were found for linear registration, while for 
non-linear registration, we obtained 55 and 42 similar bundles 
for the left and right hemisphere, respectively. These results are 
due to a better alignment of fibers using non-linear registration, 
which produces more reproducible bundles across subjects using 
the same intersubject clustering method.

To identify the differences and similarities between the 
bundles obtained from both registration methods, we compared 
the results from intergroup comparison, using dTh =  7 mm for 
non-linear registration and dTh = 10 mm for linear registration. A 
comparison using the smaller threshold for both methods is not 
possible as only two bundles were found for linear registration. 
Also, a comparison using the higher threshold is not useful as 
bundles for non-linear registration are better for dTh  =  7  mm. 
Pairs of bundles with a mean distance smaller than 25 mm were 
computed, which is higher than the threshold used within a single 
registration method, because bundles obtained with different 
registration methods present a more heterogeneous structure. 
From these results, we can observe that about 60% of the bundles 
can be identified with both registration methods, 31 for the 
left hemisphere and 32 for the right hemisphere. However, the 
bundle reproducibility and homogeneity are better for non-linear 
registration. The other 40% of the bundles could be identified 
only with non-linear registration, 17 for the left hemisphere and 
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FigUre 6 | Common bundles between hemispheres and their labels. Lateral, superior, frontal, and posterior views.

FigUre 5 | Atlas of the superficial white matter, composed of 44 bundles in the LH and 49 in the RH.
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22 for the right hemisphere, highlighting the advantages of the 
non-linear method.

On the basis of registration results described above, we chose 
to use only non-linear registration in the next steps of the method.

3.2. Validation Method and Final atlas 
construction
To perform a better validation of the results and obtain a meas-
ure of bundle reproducibility, we embedded our method inside 
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FigUre 7 | Atlas bundles found only in left or right hemisphere.

TaBle 6 | Reproducibility for bundles present only in left or right hemisphere, 
based on the number of bootstrap samples including each bundle.

left hemisphere right hemisphere

labels left labels right

IT_IT_1l 10 Tr_Tr_0r 10
SF_SF_0l 9 Tr_Ins_0r 10
Fu_Fu_1l 10 MT_MT_0r 9
IT_IT_0l 8 SF_SF_2r 9
PreC_PreC_0l 9 RoMF_SF_0r 10
ST_ST_1l 9 RoMF_RoMF_0r 10
Cu_Lg_0l 8 RoMF_RoMF_1r 8
PreCu_PreCu_0l 10 PoC_PoC_1r 10
MT_MT_1l 9 PoC_PreC_1r 10
LO_LO_2l 10 SP_SP_0r 10
PreC_Ins_0l 10 PreCu_PreCu_0r 10

SF_SF_1r 10
IP_LO_0r 10
IP_IP_0r 10
LOrF_LOrF_1r 10
Tr_SF_1r 9

TaBle 5 | Reproducibility of bundles common to both hemispheres, based on 
the number of bootstrap samples including each bundle.

label left right

SP_SP_0i 10 10
PreC_SF_0i 8 10
PoC_PreC_3i 10 10
Op_SF_0i 9 10
CMF_PreC_0i 9 10
PoC_PreC_1i 10 10
MT_MT_0i 9 10
PreC_SM_1i 10 9
CMF_CMF_0i 9 10
Fu_IT_0i 10 10
IP_SP_0i 10 10
MT_ST_0i 10 10
LOrF_LOrF_0i 9 10
LO_LO_0i 10 10
CMF_Op_0i 9 10
RoMF_SF_1i 9 10
Tr_SF_0i 9 10
SM_SM_2i 10 10
SM_SM_0i 9 8
RoMF_RoMF_1i 8 10
PoC_SM_0i 10 10
PoC_PreC_2i 10 10
PoC_PreC_0i 10 10
MT_MT_1i 10 10
CMF_PreC_1i 9 10
Fu_Fu_0i 10 10
PreC_SM_0i 10 10
ST_ST_0i 10 10
Tr_RoMF_0i 9 10
LO_LO_1i 10 10
RoMF_SF_0i 9 10 
RoMF_RoMF_0i 8 9
SM_SM_1i 10 10
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a bagging strategy (bootstrap aggregating) performed over the 
ARCHI database (74 subjects). For the atlas creation, the robust 
atlas creation method uses two independent groups of subjects. 
Hence, for the validation, this approach was repeated 10 times, 
employing sets of 54 subjects sampled randomly from the ARCHI 
database, split into two groups of 27 subjects. This processing led 
to 10 SWM bundle atlases for each hemisphere.

To build the final atlas, first a bundle centroid was calculated 
for each bundle. Then, for each hemisphere, our hierarchical 
clustering was performed over the bundle centroids from the 
10 atlases. For cluster selection, a maximum distance between 
centroids equal to 30  mm was used (this distance value is the 
same used for the robust atlas creation method). Only bundles 
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TaBle 8 | Segmentation results for SWM bundles present in only one 
hemisphere: number of segmented subjects.

labels num. subjects l num. subjects r

Cu_Lg_0l 73 –
Fu_Fu_1l 69 –
IT_IT_0l 75 –
IT_IT_1l 77 –
LO_LO_2l 78 –
MT_MT_1l 73 –
PreC_Ins_0l 77 –
PreC_PreC_0l 78 –
PreCu_PreCu_0l 77 –
SF_SF_0l 73 –
ST_ST_1l 76 –
IP_IP_0r – 78
IP_LO_0r – 78
LOrF_LOrF_1r – 75
MT_MT_0r – 78
PoC_PoC_1r – 78
PoC_PreC_1r – 78
PreCu_PreCu_0r – 77
RoMF_RoMF_0r – 78
RoMF_RoMF_1r – 78
RoMF_SF_0r – 77
SF_SF_1r – 76
SF_SF_2r – 71
SP_SP_0r – 78
Tr_Ins_0r – 78
Tr_SF_1r – 78
Tr_Tr_0r – 77

TaBle 7 | Segmentation results for common bundles between hemispheres: 
number of segmented subjects and mean lateralization index.

labels num. 
subjects l

num. 
subjects r

laterality index significant 
differences

CMF_CMF_0i 77 78 0.040
CMF_Op_0i 78 78 0.139
CMF_PreC_0i 78 78 0.046
CMF_PreC_1i 78 78 0.252 ✓
Fu_Fu_0i 75 77 0.143
Fu_IT_0i 76 78 0.190
IP_SP_0i 78 78 −0.004
LO_LO_0i 78 78 −0.002
LO_LO_1i 75 78 0.349 ✓
LOrF_LOrF_0i 78 75 −0.171
MT_MT_0i 78 76 0.282 ✓
MT_MT_1i 70 75 0.207
MT_ST_0i 76 76 0.365 ✓
Op_SF_0i 78 77 0.063
PoC_PreC_0i 70 73 0.021
PoC_PreC_1i 78 78 −0.065
PoC_PreC_2i 78 78 0.131 ✓
PoC_PreC_3i 78 78 0.308 ✓
PoC_SM_0i 78 76 0.114
PreC_SF_0i 75 75 0.152
PreC_SM_0i 78 77 0.154
PreC_SM_1i 77 77 0.131
RoMF_RoMF_0i 78 76 0.204
RoMF_RoMF_1i 76 77 0.389 ✓
RoMF_SF_0i 77 77 0.0350
RoMF_SF_1i 76 78 0.35 ✓
SM_SM_0i 77 74 0.276 ✓
SM_SM_1i 75 76 −0.098
SM_SM_2i 78 78 0.281 ✓
SP_SP_0i 78 78 0.197 ✓
ST_ST_0i 74 77 0.151
Tr_RoMF_0i 75 77 0.354 ✓
Tr_SF_0i 77 77 −0.012
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Figure  6 shows the set of bundles common between hemi-
spheres for the final atlas. Figure A1 in Appendix shows separated 
views of these bundles. Figure 7 displays the atlas bundles found 
only in one hemisphere. Tables 5 and 6 list the measure of bundle 
reproducibility, represented by the number of bootstrap samples 
including the bundle. Note that these results follow the naming 
scheme described in Section 2.3.3. A bundle name is defined by 
the pair of ROIs connected by it. The ROIs used for the labeling 
are listed in Table 1. A bundle connecting ROI1 and ROI2 will be 
called ROI2_ ROI2_xn. The number n is added to distinguish dif-
ferent bundles connecting the same gyri. The number is assigned 
randomly from 0 to the maximum number of connections for the 
pair of ROIs. A letter x is finally included to differentiate bundles 
common to both hemispheres (i), bundles only in left hemisphere 
(l), and only in right hemisphere (r). For example, a bundle 
connecting superior frontal and inferior frontal gyri, present in 
both hemispheres will be called SF_IF_0i. If there exist another 
bundle connecting these gyri, only in the right hemisphere, it will 
be called SF_IF_1r.

3.3. automatic segmentation of sWM 
Bundles
To test the reproducibility of the SWM bundles of the final atlas, 
we performed the automatic segmentation of 78 subjects of the 
segmentation data sets. We calculated the number of subjects 
where each bundle is present and the variability in the number of 
fibers. Small bundles with less than 10 fibers were not considered 
in the analysis.

present in at least 8 of 10 tests were considered in the final atlas. 
The obtained bundles were then named using the automatic 
labeling strategy, based on the pair of ROIs connected by each 
bundle. Only bundles with a strong connection, present in at least 
50% of the fibers, were selected.

Finally, interhemispheric correspondence was automatically 
calculated. To identify these common bundles between the two 
hemispheres, the similarity between the left atlas bundles and 
the reflected right atlas bundles was calculated by measuring 
the intersection between bundles. Pairs of bundles with more 
than 50% of similar fibers, using a distance threshold smaller 
than 5  mm, were considered common bundles between 
hemispheres.

An atlas with a total of 93 bundles was finally obtained  
(see Figure 5). The atlas contains 44 bundles in the left hemisphere, 
49 bundles in the right hemisphere, and 33 bundles common to 
both hemispheres.

For lateralization analyzes, a symmetrized version of the final 
atlas was created with the common bundles in both hemispheres. 
Common bundles were fused to create the symmetrized left 
bundles. Then, these bundles were reflected to the RH to create 
the symmetrized right bundles and thus construct the atlas.
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A lateralization index of the bundle volume was calculated 
for the 33 common bundles between hemispheres, using the 
78 segmented subjects, as described by Catani et al. (2012). The  
two-tail, unpaired samples, t-test was used to evaluate the 
statistical significance of the volume differences. There were 
statistically significant differences in only 12 bundles, of which 
all presented right lateralization (CMF_PreC_1i, LO_LO_1i, 
MT_MT_0i, MT_ST_0i, PoC_PreC_1i, PoC_PreC_2i, RoMF_
RoMF_1i, RoMF_SF_li, SM_SM_0i, SM_SM_2i, SP_SP_0i, and 
Tr_RoMF_0i).

Table 7 shows the mean lateralization index and the num-
ber of subjects correctly segmented for each interhemispheric 
common bundle. Table  8 shows the number of subjects 
correctly segmented for the bundles present in only one 
hemisphere.

Figure 8 shows the segmented bundles for 3 of the 78 sub-
jects, for both hemispheres. Figure 9 shows an example of the 
segmentation results for bundles connecting the precentral and 
postcentral gyri, for both hemispheres of a single subject.

From Table 7, we can observe that a good reproducibility was 
obtained for all the atlas bundles, where 46% of the bundles were 
found in all the subjects. Remaining bundles were missed in some 
cases, but still present a very high reproducibility. Regarding 
laterality, some bundles were found to be right lateralized, but 
further studies must be performed to validate these results.

A comparison between the created SWM bundle atlas and 
the atlas proposed by Guevara et al. (2017) was performed. The 
LNAO-SWM79 atlas is composed of 50 bundles per hemisphere, 
with 35 bundles common to both hemispheres. This atlas was 
constructed using anatomical information for the extraction 

FigUre 8 | Three subjects segmented using the SWM bundle atlas.
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FigUre 9 | Bundles connecting the precentral and postcentral ROIs in both hemispheres segmented in a new subject.

of the fibers and fiber shape analysis based on fiber clustering 
for identification of the bundles. For the comparison, pairs of 
bundles from both atlases were considered similar if their mean 
distance (dME) was smaller than 15  mm. After the intersection 
percentage was calculated, 14 bundles with more than 50% of 
intersection were found for the left hemisphere, and 21 bundles 
were found for the right hemisphere. Results confirm that most 
stable bundles were found by both approaches, in particular those 
from frontoparietal and insula regions. Visual inspection suggests 
that bundles from our results are more homogeneous, probably 
due to our use of non-linear registration. This registration method 
also leads to more reproducible results across subjects, which is 
the reason why the other study found more, but less reproduc-
ible, bundles in some regions. Furthermore, our method could 
identify a non-negligible number of bundles connecting areas 
within a single region (21 bundles in the LH and 25 in the RH), 
which is a feature that was not analyzed by the other approach. 
The comparison results are presented in Table A1 in Appendix 
B, where the similar bundles between our results and the LNAO-
SWM79 atlas are shown.

4. DiscUssiOn anD cOnclUsiOn

We developed and applied an unsupervised method to identify 
short bundles of the SWM based on the intersubject hierarchical 
clustering of the whole brain. The algorithm is applied to two 
groups of N independent subjects in both hemispheres. The 
goal is to identify superficial bundles present in most of the 
subjects, representing the connectivity of the human brain short 

fibers, without the use of anatomical information to guide the 
segmentation. Our method is fully automatic, avoiding a manual 
labeling step. Before clustering, the algorithm removes fibers that 
were portions of known DWM bundles in addition to filtering 
the fibers according to their length, thus allowing us to perform 
the clustering with a significantly smaller number of fibers and 
to automatically discard artifacts. Then, intersubject clustering 
is performed, identifying the representative bundles present in 
at least 75% of the population. This reproducibility criterion is 
very strict compared to those usually described in the literature. 
Subsequently, an anatomical labeling, based on cortical parcel-
lation, allows us to analyze the most probable connection, thus 
discarding more suspicious or non-reproducible bundles. Also, 
interhemispheric correspondence of the bundles is found and 
used to label common bundles between both hemispheres.

Finally, through intergroup comparison, bundles present in 
the two different groups are selected, keeping only reproducible 
bundles to create a robust atlas. The algorithm was first applied 
using both linear and non-linear registrations to two groups 
of 37 subjects. Non-linear registration produced better results 
when using a restrictive threshold of 7  mm as the maximum 
mean distance between bundles. With non-linear registration, we 
identified a greater number of similar bundles. In addition, the 
clusters are more dense and homogeneous, in comparison with 
those found through linear registration. Therefore, non-linear-
registration was selected for the method validation and creation 
of the final atlas.

A bagging strategy (bootstrap aggregating) was performed 
over 74 subjects. The robust atlas creation method was repeated 
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10 times, employing sets of 54 subjects sampled randomly from 
the database, split into two groups of 27 subjects. A final atlas 
was constructed by fusing the 10 SWM bundle atlases obtained 
for each hemisphere.

The final atlas is composed of 44 bundles in the left hemisphere 
and 49 in the right hemisphere, with a reproducibility ranging 
from 8/10 to 10/10. These values guarantee that the obtained 
bundles are representative of the population of subjects and also 
give a measure of reproducibility of the bundles. For instance, a 
subset of the most reproducible bundles could be used as first 
approach, for SWM studies on clinical data.

In general, previous works on short WM fibers have studied 
bundles connecting two different anatomical regions. Most of 
the bundles in the frontoparietal regions have been previously 
described, using both dMRI and postmortem dissection (Catani 
et al., 2012; Vergani et al., 2014). Since the bundle description 
presented by Catani et al. (2012) is very precise, we could perform 
a comparison between the resulting bundles. We can highlight 
very similar results corresponding to the bundles connecting 
the following gyri: regions of the superior frontal gyrus with 
opercularis region of the inferior frontal gyrus (which constitute 
the frontal aslant tract), regions of the superior frontal gyrus 
with the middle frontal gyrus, a region of the middle frontal 
and precentral gyri, several bundles connecting the precentral 
and postcentral gyrus, and bundles connecting the insula 
with neighboring regions (triangularis and precentral gyrus). 
In addition, this work also described some short fibers of the 
frontal superior longitudinal and frontal inferior longitudinal 
tracts, also present in the proposed atlas. From the study by 
Vergani et  al. (2014) results, we found the bundle connecting 
the supplementary motor area, located in the posterior part of 
the superior frontal gyrus, with the precentral gyrus. Another 
interesting tractography study is the one proposed by Zhang 
et al. (2010). Even though no detailed description of the short 
bundles was provided, the existence of fibers connecting two 
regions was reported for the whole brain. In addition to the 
bundles mentioned above, this analysis listed the presence of 
the bundles connecting the following gyri, also included in our 
atlas: middle frontal and inferior frontal gyrus, middle frontal 
and precentral gyrus, cuneus and lingual gyrus, supramarginal 
gyri and postcentral gyri, and superior temporal and middle 
temporal gyri. However, no postmortem validation has been 
performed for those bundles. Furthermore, our method could 
find a non-negligible number of bundles connecting the same 
gyri. One example are the connections within the precentral 
gyrus, which have been previously described in Magro et  al. 
(2014), using tractography and postmortem dissection.

This is the first work that proposes a method based on whole-
brain white matter fiber clustering for the study of short WM 
bundles. Even though several algorithms have been proposed for 
the clustering of white matter tracts, those have not been tested 
with short fibers. Our experience tells that algorithms that con-
sider a mean distance between fibers and those that transform the 
fibers to a low-dimensional space, like spectral clustering, could 
be less discriminative with small short fiber bundle differences. 
The main advantage of the proposed method is that it does not 

rely on automatic anatomical labeling for the main fiber analysis 
and uses a whole-brain clustering strategy. The method only iden-
tifies the most reproducible connections, indistinctly, between 
two regions or within a single region. In addition, this is, to the 
best of our knowledge, the first work that compares linear and 
non-linear registration results. This factor is especially important 
for superficial white matter, which is known to be more variable 
across subjects. Thanks to the use of non-linear registration, the 
proposed atlas contains more reproducible, homogeneous, and 
dense bundles. Compared to a recent SWM reproducibility study 
(Guevara et  al., 2017), our method could identify most of the 
stable connections and, as mentioned above, a large number of 
new bundles that mainly connect two areas of the same region. 
From computational efficiency point of view, our algorithms 
run on a standard workstation with reasonable execution times. 
Moreover, further optimizations such as the work described in 
the study by Labra et al. (2017) can be used to boost performance 
by exploiting the parallelism available in current and ubiquitous 
multicore processors and graphical processing units.

The proposed clustering method is limited by the total number 
of centroids that can be analyzed at the same time. We tested our 
algorithm with a maximum of 150,000 centroids. However, as 
we use preclustered data, the total number of fibers that can be 
analyzed is notably higher, considering that this preprocessing 
typically converts a data set of one million fibers into about 5,500 
centroids. Another potential limitation is the use of similar 
parameters for all the brain regions, but since we do not use the 
number of clusters as a parameter, the algorithm naturally finds 
more clusters in regions where more structured bundles can be 
identified. Also, it would be possible to normalize the similarity 
measure relative to the region where the fibers are from, but the 
criterion to be used could be difficult to define. Other limita-
tions are common to all neuroimaging analyzes, for example, 
the dependency to the registration strategy. As we have shown 
in this work, non-linear registration leads to better results, but 
further work is required to compare alternative registration 
strategies.

Other limitations stem directly from diffusion modeling and 
tractography techniques. Current tractography approaches strive 
to solve an ill-posed computational problem that can produce 
reproducible false-positive bundles (Maier-Hein et  al., 2016). 
Hence, some bundles found by our method could be artifacts. 
As described above, some short association bundles have already 
been validated by postmortem dissections, but in the future, 
other techniques could help to increase our knowledge of WM 
structure and organization. This information could also be used to 
improve tractography algorithms. The non-existence of a ground 
truth also limits the method optimizations and validations that 
can be performed.

A preliminary analysis was also performed, using the created 
atlas, for the automatic segmentation of 78 new subjects. We 
could confirm the reproducibility of the selected short bundles. 
Also, a lateralization analysis was executed, using the segmented 
bundle volume. No lateralization was found for most of the bun-
dles, with a few of them presenting a slight right lateralization. 
Further analyzes must be carried out in the future to extend and 
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aPPenDix a

additional sWM Bundle atlas Figures

FigUre a1 | Common bundles between hemispheres and their labels. Separated views.
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TaBle a1 | Comparison between our results and the LNAO-SWM79 atlas.
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