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Functional connectivity (FC) network has been becoming an increasingly useful tool for

understanding the cerebral working mechanism and mining sensitive biomarkers for

neural/mental disease diagnosis. Currently, Pearson’s Correlation (PC) is the simplest

and most commonly used scheme in FC estimation. Despite its empirical effectiveness,

PC only encodes the low-order (i.e., second-order) statistics by calculating the pairwise

correlations between network nodes (brain regions), which fails to capture the high-order

information involved in FC (e.g., the correlations among different edges in a network). To

address this issue, we propose a novel FC estimation method based on Matrix Variate

Normal Distribution (MVND), which can capture both low- and high-order correlations

simultaneously with a clear mathematical interpretability. Specifically, we first generate

a set of BOLD subseries by the sliding window scheme, and for each subseries we

construct a temporal FC network by PC. Then, we employ the constructed FC networks

as samples to estimate the final low- and high-order FC networks by maximizing the

likelihood of MVND. To illustrate the effectiveness of the proposed method, we conduct

experiments to identify subjects with Mild Cognitive Impairment (MCI) from Normal

Controls (NCs). Experimental results show that the fusion of low- and high-order FCs

can generally help to improve the final classification performance, even though the

high-order FC may contain less discriminative information than its low-order counterpart.

Importantly, the proposed method for simultaneous estimation of low- and high-order

FCs can achieve better classification performance than the two baseline methods, i.e.,

the original PC method and a recent high-order FC estimation method.

Keywords: functional connectivity, high-order network, matrix variate normal distribution, mild cognitive

impairment, disease diagnosis

INTRODUCTION

Functional connectivity (FC) network, calculated by resting-state functional magnetic resonance
imaging (rs-fMRI) (Liu et al., 2008), has become an increasingly useful tool for understanding
the working mechanism of the brain and providing informative biomarkers for diagnosing some
neural/mental disorders, such as autism spectrum disorder (Wee et al., 2016b; Li et al., 2017),
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major depressive disorder (Greicius et al., 2007; He et al.,
2016), obsessive compulsive disorder (Admon et al., 2012),
schizophrenia (Zhou et al., 2007; Ganella et al., 2016), social
anxiety disorder (Liu et al., 2015a,b), Alzheimer’s disease (Zhu
et al., 2015; Wang et al., 2017), and its early stage, i.e., mild
cognitive impairment (MCI) (Wee et al., 2012; Yu et al., 2017).

In view of its great potential, how to construct high-quality FC
networks comes to a key issue. Theoretically, we can treat the FC
network as a graph, where the nodes correspond to different brain
regions or, more generally, the regions-of-interest (ROIs), while
the edges correspond to the pairwise FCs between these nodes.
In other words, FC network can be seen as a combination of the
node set and the edge set. Currently, researchers have proposed
a series of FC network modeling methods (Smith et al., 2011,
2013), among which Pearson’s Correlation (PC) is the simplest
and the most popular way. Although it has been successfully
applied in FC estimation, PC can only capture the low-order (or
second-order) statistical information by calculating the pairwise
correlations between the network nodes (e.g., ROIs in this paper).

In practice, some high-order statistics (e.g., the correlations
among different edges) may also offer additional and useful
information for FC analysis (Plis et al., 2014; Chen et al., 2016;
Zhang et al., 2016). To make this easy to understand, we consider
the traffic network as an analogy, where the cities are regarded
as nodes, the roads are edges between the city nodes, and the
traffic flow can be used as a measure of the dynamic weight on
each edge. In this example, the road (or traffic flow) provides
the low-order connection information of the network. On the
other hand, however, there may exist some relationships among
different roads/edges. For instance, a traffic jam on one road
tends to affect the traffic flow on another road. Compared to
the edges that measuring the relationship between nodes, the
relationship between edges is expected to provide some high-
order connection information for a network system.

Recently, some high-order methods have been developed for
estimating FCs (Plis et al., 2014; Chen et al., 2016, 2017; Zhang
et al., 2016). For example, Plis et al. used mutual information to
investigate the nonlinear interactions among brain regions (Plis
et al., 2014); Zhang et al. proposed a high-order FC network
estimation method based on the topographical information and
applied it to MCI detection (Zhang et al., 2016); Chen et al.
proposed a scheme for estimating high-order FCs based on
sliding windows, and empirically verified that it can achieve
better accuracy than the low-order counterparts for early MCI
identification (Chen et al., 2016). However, modeling such a high-
order FC in Chen et al. (2016) involves a consistent amount
of parameters, thus easily leading to an over-fitting problem
given limited training data. In addition, the work of Chen et al.
(2016) is heuristic without support from mathematical models,
and thus cannot make it clear where the high-order relationship
(i.e., correlation’s correlation) is theoretically derived from.

To address these problems, in this paper we put forward
a novel high-order FC network estimation method based on
Matrix Variate Normal Distribution (MVND) (Gupta and Nagar,
2000). MVND not only provides a clear theoretical explanation
for high-order FC networks, but also achieves both low- and
high-order networks simultaneously in a unified framework. In

particular, a sliding window approach is first used to generate
a sequence of overlapping time subseries. For each subseries,
the traditional low-order FC network is constructed by PC.
Then, the so-constructed FC networks are used as samples
to estimate the final low- and high-order FC networks by
maximizing the likelihood function of MVND. Especially, we
adopt Kronecker product as a novel way to reduce the number
of parameters (see section The Proposed Method for details). To
validate the effectiveness of the proposed method, we perform
experiments to identify MCI subjects from Normal Controls
(NCs), based on the estimated low- and high-order FC networks.
The experimental results illustrate that the proposed approach
can achieve better performance than the baseline method, and
both low- and high-order information are generally helpful
for classification. Both preprocessed data and codes can be
downloaded in https://github.com/Zhouyy92/high-order-based-
on-MVND/. More specifically, the main contributions of our
work can be summarized as follows:

1) To our best knowledge, this is the first work that adopts
MVND for estimating high-order FC networks. MVND not
only provides a clear mathematical definition of high-order
network, but also can simultaneously estimate low- and high-
order FC networks in a single model.

2) A new finding of this paper is that the low-order FC tends to
contain more discriminative information than its high-order
counterpart, which is exactly the opposite conclusion of Chen
et al. (2016). However, similar to Chen et al.’s work, we also
note that the fusion of low- and high-order FCs can generally
improve the identification accuracy to some extent, indicating
that there is some useful information in the high-order FCs for
discrimination.

The rest of this paper is organized as follows. In section Materials
and Methods, we introduce the materials and propose our
method. In section Results, we evaluate the proposed method in
identifying MCI subjects from NCs. In section Discussion, we
discuss our findings based on the experimental results. In section
Conclusion, we conclude the whole paper.

MATERIALS AND METHODS

Data Acquisitions and Processing
Totally, 137 participants, including 68 MCI patients and 69
NCs from Alzheimer’s Disease Neuroimaging Initiative (ADNI)1

dataset (Jack et al., 2008), are used in this study. The observed
rs-fMRI images were scanned by 3.0T Philips scanners with the
following parameters: TR/TE is 3,000/30mm, flip angle is 80◦ ,
imaging matrix size is 64 × 64 with 48 slices and 140 volumes,
and voxel thickness is 3.3mm.

The acquired rs-fMRI data was processed by SPM82 toolbox
based on the well-accepted pipeline. The first three volumes
of each subject were removed for signal stabilization. Then,
the remaining 137 volumes were corrected for different slice
acquisition timing and head motion (Poldrack et al., 2011).

1http://adni.loni.ucla.edu
2http://www.fil.ion.ucl.ac.uk/spm/
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To further reduce the influences of nuisance signals, regression
of ventricle and white matter signals as well as six head-motion
profiles were conducted. Based on the Automated Anatomical
Labeling (AAL) template atlas (Tzourio-Mazoyer et al., 2002),
the pre-processed Blood Oxygen Level Dependent (BOLD) time
series signals were partitioned into 116 ROIs. Prior to FC
estimation, the mean rs-fMRI time series of each ROI was band-
pass filtered from 0.01 to 0.08Hz. Finally, the mean time series
was put into a data matrix X ∈ R137×116, which will be used for
FC network estimation.

Functional Connectivity Network
Estimation
Baseline Method

According to a recent review (Smith et al., 2013), PC is the most
widely-used method for estimating FC networks. Therefore, in
this paper, we select PC as the baseline and building block for
developing our method, even though the idea can in principle
be used in any correlation-based FC construction methods. The
PC-based FC is defined as follows:

W
(PC)
ij =

(xi − x̄i)
T(xj − x̄j)

√

(xi − x̄i)
T(xi − x̄i)

√

(xj − x̄j)
T(xj − x̄j)

(1)

where xi ∈ RV (i = 1, 2, · · · , P) is the time series associated
with the ith ROI, V = 137 is the total number of temporal
image volumes, P = 116 is the number of ROIs, and x̄i ∈ RV is
the corresponding mean vector of xi. Without loss of generality,
in this paper we suppose that xi is centralized by xi − x̄i and

normalized by
√

(xi − x̄i)
T(xi − x̄i). Then, PC can be simply

expressed asW(PC)
ij = xi

Txj, or, an equivalent matrix form,

WPC
= XTX (2)

where X = [x1, x2, · · · , xP] ∈ RV×P is the data matrix.
Given the fact that the BOLD time series signals commonly

contain noises, the original PC-based FC network tends to
be dense (Fornito et al., 2016). To alleviate this problem, the
thresholding operation is generally employed to filter out the
noisy or weak connections. Please refer to, for example, section
3.2.1 in Fornito et al. (2016) for a detailed discussion on different
thresholding schemes.

The Proposed Method

In this section, we introduce the new FC estimation scheme
based on MVND that can encode both low- and the high-order
correlations in a single framework. As a result, we can model FC
from two different views.

In particular, we suppose the low-order FC between the
ith and jth ROIs is a random variable wij that follows the
normal distribution, and thus the corresponding FC network is
a randommatrixW = (wij)P×P that has the multivariate normal
distribution. That is,

W ∼ N(M,6) (3)

where M ∈ RP×P is the population mean or mathematical

expectation of W, and 6 ∈ RP
2×P2 is the population covariance

matrix ofW. Note that the entries inMmeasure the relationship
between the network nodes (i.e., ROIs), still corresponding to the
low-order FC; while the entries in 6 describe the relationship
between the edges, corresponding to the higher-order FC, as
shown in Figure 1.

Although the 6 in Equation (3) gives a clear definition of the
high-order FC, the estimation of a P2 × P2 matrix is challenging,
since it contains a consistent amount of parameters. For example,
P = 116 in this study can result in P2×

(

P2 − 1
)

/2 ≈ 9×107 free
parameters. In Chen et al. (2016), they first reduce the number of
the edges by clustering them into some groups, and then consider
these groups as new “nodes” for constructing the high-order FC
network. However, such a scheme has no clear mathematical
explanation or principled way to determine the cluster size.

Therefore, in this paper we propose a new strategy to eliminate
the difficulty of estimating 6 by assuming that it has a form of
Kronecker product decomposition (Gupta and Nagar, 2000), i.e.,
6 = �1 ⊗ �2. In other words, the random network matrix W

follows the MVND:

W ∼ N(M,�1 ⊗ �2) (4)

More specifically, the probability density function of MVND is
defined (Gupta and Nagar, 2000) as follows:

f (W) = (2π)
−P2

2 det(�1)
−P
2 det(�2)

−P
2

× e
−tr

(

1
2�1

−1(W−M)�2
−1(W−M)

T
)

(5)

where �1,�2 ∈ RP×P are positive semi-definite, indicating
the column and row covariance matrices of W, respectively.
The det(·) and tr(·) denote the determinant and trace operators
of a matrix, respectively. In section Discussion, we will give a

FIGURE 1 | An intuitive explanation for the low- and high-order FC. Note that

the low-order FC measures the traditional correlation between nodes, while

the high-order FC measures the correlation between edges (i.e., the

correlation’s correlation).
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further discussion on the meaning of the Kronecker product
decomposition in MVND by comparing with clustering scheme
in Chen et al. (2016).

In this study, we mainly focus on the undirected FC network,
meaning that the edge weight matrix W is symmetric, and
therefore the corresponding column covariance matrix is equal
to the row covariance matrix, i.e., �1 = �2. Without loss
of generality, we let � = �1 = �2 for simplifying the
mathematical expression. Since the � has the size of P ×
P, the number of the parameters need to be estimated in 6

reduces from P2 ×
(

P2 − 1
)

/2 to P × (P − 1) /2, and the �

includes all information for tracking back 6 under the MVND
assumption. In what follows, we develop a two-step scheme for
estimating the parametric matricesM (corresponding to the low-
order FC network) and � (corresponding to the high-order
FC network).

Steps 1 Sampling: Construct FC network series by sliding

windows
In order to estimate M and �, we first use the sliding window
approach to generate samples, as shown in the top two panels of
Figure 2. In particular, we suppose N is the width of the sliding
windows and s is the step size of two adjacent windows, and
thus we can obtain K = [(V − N)/s] + 1 windows, where
V is the number of image volumes. Based on the subseries
in each window, we calculate the FC networks via PC. More
rigorously, we define xki ∈ RN , (k = 1, · · · ,K), to denote the
kth subseries associated with the ith ROI. Then, we concatenate

xki together to obtain a data matrix X(k) =

[

xk1, x
k
2, · · · , x

k
P

]

∈

RN×P corresponding to the kth window. Similar to PC defined in
Equation (2) with centralized and normalized procedures, the kth
temporal FC networkW(k) is constructed as follows:

W(k)
= (X(k))TX(k) (6)

As a result, we can get K samples for estimatingM and �.

Steps 2 MLE: Estimate M and � for low- and high-order FC

networks
Based on the K temporal FC networks as samples, we estimate
the low- and high-order FC networks (corresponding to M and
�, respectively) by the maximum likelihood estimation (MLE)
theory of MVND (Dutilleul, 1999; Zhang and Schneider, 2010).
More specifically, the MLE of the meanM is

M =
1

K

∑K

k=1
W(k) (7)

and the MLE of � can be achieved by the following iteration
formula,

� =
1

KP

∑K

k=1
(W(k) −M)�−1(W(k) −M)

T
(8)

Note that, however, the estimation of� represents the covariance
matrix rather than the correlation matrix, and therefore we
employ the normalized � as the high-order FC network in our
study. As such, the algorithm for solving Equations (7, 8) is
summarized in Table 1.

FC Network Evaluation
In order to verify the performance of the estimated FCs, we
utilize the low-order FC network M (LoM), high-order FC
network� (HiO), and their fusion (FuMO), respectively, to train
classifiers for MCI diagnosis. Of note, FuMO is fused by a linear
combination of LoM and HiO. Since it is hard to determine
the combination coefficient in practice, in this paper, we simply
fuse them by 0.5 × (M + �). In addition, we select the original
PC and recent high-order method called HON in Chen et al.
(2016), as baseline methods to make a comparison. Based on the
estimated FC networks from different methods, we employ the
t-test (p < 0.05) for feature selection, and the linear Support
VectorMachine (SVM) (Chang and Lin, 2011) with defaultC= 1
for classification.

FIGURE 2 | The two-step framework for estimating low- and high-order FC networks.
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TABLE 1 | Algorithm of MVND-based low- and high-order FC estimation.

Input: X //observed data

Output: M and � //low- and high-order FC

Apply sliding windows to obtain more samples X(k) and PC to construct temporal

low-order FC W(k) = (X(k))TX(k);

M =
1

K

∑K

k=1
W (k)

Initialize � = I // identity matrix

while not converge

�←
1

KP

∑K

k=1
(W(k)

−M)�−1(W(k)
−M)T

end

Due to the limited subjects, in this paper, we use the
nested leave-one-out cross validation (LOOCV) to estimate the
classification performance, in which only one participant is left
out for testing while the others are adopted for training a
classifier and obtaining the optimal parameters. In terms of the
thresholding parameter of FC networks, we empirically employ
11 sparsity levels ranging in [1%, 10%, · · · , 90%, 100%] for all the
methods. For instance, 10%means that 90% of the weak edges are
filtered out from the FC networks, while 100%means all the edges
are reserved. We determine the optimal thresholding parametric
value using an inner LOOCV procedure on the training dataset.

RESULTS

Classification Performance
In our experiments, we adopt accuracy, sensitivity and specificity
(Sokolova et al., 2006) as performance metrics to evaluate
different FC estimation methods. Their mathematical definitions
are given as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

where TP, TN, FP, and FN indicate true positive, true negative,
false positive and false negative, respectively.

In Table 2, we first report the best results for MCI
identification with specific parametric values, and then, in the
next section Sensitivity to Network Modeling Parameters, we
discuss the influence of different parametric values on the
final classification performance. To be specific, for PC, no free
parameter is involved; for the proposed method, the width of
the sliding window is N = 50, and the step size is s = 8; for
HON method, N = 110, s = 1, and the cluster size is 300.
As can be seen from Table 2, the proposed method significantly
outperforms the two baseline methods.

TABLE 2 | Comparison on MCI classification performance with different methods.

Method Accuracy Sensitivity Specificity

PC 0.7956 0.7647 0.8261

HON (Chen et al., 2016) 0.8207 0.8194 0.8377

LoM 0.9051 0.9118 0.8986

HiO 0.8394 0.8235 0.8551

FuMO 0.8905 0.8676 0.9130

Sensitivity to Network Modeling
Parameters
In general, the free parameters involved in the FC network
estimation methods have a big influence on the ultimate
classification performance. In the proposed framework, there are
two free parameters, including the width of sliding windows (N)
and the step size (s). To evaluate the sensitivity of the proposed
framework with respect to N and s, we repeat MCI identification
experiments based on different combinations of window width
(N = 50, 70, 90, 110) and step size (s = 1, 2, 4, 8, 10). Figure 3
reports the accuracy, sensitivity and specificity of each involved
method with regard to different combinations of N and s shown
on the horizontal axis. For example, the “50, 1” denotes that the
window width is 50, and the step size is 1.

In Figure 3, we observe that the proposedmethod consistently
outperforms the two baseline methods on most of the parameter
combinations. Additionally, compared with conclusion of Chen
et al. (2016) that high-order FC networks work better than low-
order FC networks, we actually have an opposite finding that
low-order FC networks are instead more discriminating than the
high-order counterparts under most cases. In the next section, we
will further discuss the possible reasons for this new finding.

DISCUSSION

In this paper, we propose a new FC network estimation
framework based on MVND that can simultaneously capture
low- and high-order correlation information in data. The
proposed method is validated on ADNI dataset by an MCI
identification task. According to the experimental results, we
have the following discussions:

1) In general, the performance of the proposed method
outperforms the baseline methods, including the original
PC method and the recently proposed high-order method
(HON) in Chen et al. (2016). Compared with PC, the
proposed method encodes the temporal information by
the sliding window scheme, and integrates the information
based on MVND. Since the brain has an inherent dynamic
property, an effective modeling of the dynamic temporal
information in FC network is expected to improve the final
performance (Marusak et al., 2016; Wee et al., 2016a; Liu
et al., 2017; Park et al., 2017). In this paper, we simply employ
the sliding windows, the most popular method (Hutchison
et al., 2013; Preti et al., 2017), to capture dynamic temporal
information. However, signals in the sliding windows can
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FIGURE 3 | The (A) accuracy, (B) sensitivity, and (C) specificity of each involved method with respect to different combinations of window width and step size.

be easily influenced by some non-stationary noise, thus
resulting in sudden changes of FC across the brain regions
(Hutchison et al., 2013); on the other hand, it is a dilemma
to choose an appropriate window width or step size, since the
window width should be short enough to capture short-term
fluctuations while long enough to allow robust FC estimation
(Sakoglu et al., 2010). Especially, in terms of short windows,
it may contain less cycles of lower frequency, resulting in
less stable measures (Wang et al., 2018). Therefore, in our
experiments, we investigate different window sizes in a large
range, and empirically found that most methods are sensitive
to this parameter. In practice, we need to select window width
carefully toward better understanding of dynamics in brains.

2) Interestingly, we find that the proposed low-order FC
is generally more discriminative than its high-order
counterpart, which is contrary to the conclusion in Chen
et al. (2016). We argue that our result is relatively reasonable,
since the low-order FC (corresponding to the mean of the
random variables) determine the main tendency of the data,

while the high-order FC (corresponding to the covariance
of the random variables) only capture the spread of the data
and could be more noisy as well. Of course, the high-order
FCs tend to include some informative structures for MCI
identification, because, as reported in Table 2 and Figure 3,
HiO generally performs better than PC. In addition, the
simple combination of low- and high-order FC networks (i.e.,
FuMO) can achieve better performance than a single-view
network. More specifically, as shown in Figure 3, it has 60%
possibility for FuMO to obtain the best accuracy, while 55 and
60% possibilities for sensitivity and specificity, respectively.

3) From the experimental results, we also find that the estimated
FC networks (including the low-order, high-order, and
their combination) consistently outperform HON in Chen
et al. (2016). In what follows, we discuss the similarities
and differences between HON and our method, aiming to
help understand why their method does not work well. In
particular, the two methods share the same sliding window
step for generating network samples. For the high-order FC
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network estimation step, however, HON method applied the
clustering algorithm to divide the edges of a network into
different groups for reducing the computation/estimation
cost. Such a scheme actually destroys the original structure of
the network, and also introduces a new free parameter (i.e.,
cluster size) that can cause over-fitting problem. Additionally,
HON is heuristic without a support of mathematical theory,
and thus cannot provide a clear definition of the high-order
correlation. In contrast, based on theMVND assumption, our
proposed method actually takes the edges linked to the same
node (i.e., ROI) as a cluster, i.e., 116 clusters in this study,
which not only keep the natural structure of the network, but
also avoid the issue of selecting cluster size.

CONCLUSION

In this paper, we develop a novel PC-based FC estimation
framework with the assumption that the network edge weights
follow the MVND. The proposed method is simple, has a
rigorous mathematical model, and can capture both low- and
high-order FCs of the brain network simultaneously. The
experiments on MCI identification show that our proposed
method outperforms the original PC method and a recent

high-order FC estimation method. On the other hand, although
we design our method based on PC, the idea can be used in
any correlation-based FC estimation methods. In the future,
we plan to generalize the MVND-based scheme to the partial
correlation-based FC estimation problem.
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