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Resting state networks (RSNs) in the human brain were recently detected using high-
density electroencephalography (hdEEG). This was done by using an advanced analysis
workflow to estimate neural signals in the cortex and to assess functional connectivity
(FC) between distant cortical regions. FC analyses were conducted either using temporal
(tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained
with sICA were very similar to RSNs retrieved with sICA from functional magnetic
resonance imaging data. It still remains to be clarified, however, what technological
aspects of hdEEG acquisition and analysis primarily influence this correspondence.
Here we examined to what extent the detection of EEG-RSN maps by sICA depends
on the electrode density, the accuracy of the head model, and the source localization
algorithm employed. Our analyses revealed that the collection of EEG data using a high-
density montage is crucial for RSN detection by sICA, but also the use of appropriate
methods for head modeling and source localization have a substantial effect on RSN
reconstruction. Overall, our results confirm the potential of hdEEG for mapping the
functional architecture of the human brain, and highlight at the same time the interplay
between acquisition technology and innovative solutions in data analysis.

Keywords: electroencephalography, high-density montage, realistic head model, resting state network,
functional connectivity, neuronal communication, brain imaging

INTRODUCTION

Functional interactions within large-scale networks of neuronal assemblies can be quantified by
functional connectivity (FC) methods, which estimate the statistical dependence between dynamic
activity recorded from distinct brain areas (Friston, 2011). FC is most commonly measured from
functional magnetic resonance imaging (fMRI) data, which have spatial resolution of the order
of some millimeters and permit to reliably map large-scale functional networks across the brain
(Fox and Raichle, 2007; Gillebert and Mantini, 2013). FC analysis of fMRI signals has seen a
tremendous rise of popularity during the last years, as it provides an effective and easy-to-apply tool
for studying both healthy and diseased brains (van den Heuvel and Hulshoff Pol, 2010; Gillebert
and Mantini, 2013). Electroencephalography (EEG) or magnetoencephalography (MEG) may be
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utilized in alternative to fMRI to examine functional interactions
within large-scale brain networks (Ganzetti and Mantini, 2013;
Marzetti et al., 2013; Brookes et al., 2014, 2016; Florin and Baillet,
2015; Tewarie et al., 2016). Despite a number of technical issues
primarily due to the fact that these techniques yield signals
measured from outside the head, they are potentially more suited
than fMRI to investigate long-range neuronal communication at
higher temporal resolution (de Pasquale et al., 2010, 2012, 2016,
2017; Baker et al., 2014; Vidaurre et al., 2016; O’Neill et al., 2017).

Notably, the applications of EEG in the context of FC are
potentially superior compared to MEG, mainly because the
EEG equipment is portable, has low maintenance costs and
can be used in combination with other brain imaging and
stimulation techniques (Michel and Murray, 2012). However, it
should be considered that source localization with EEG is often
more challenging than with MEG. In fact, EEG-based source
localization requires the use of precise, realistic biophysical
models that incorporate the exact positions of the sensors as well
as the conductivity properties of the head tissues. Furthermore,
source estimation with EEG, but also with MEG, is underspecified
in nature yielding a blurred image of the true activity at the
voxel level, due to the ill-posedness of inverse solutions (Grech
et al., 2008). This issue is partially addressed by constraining the
sources into the volume conductor. However, given the fact that
brain activity is estimated from a finite number of recordings,
spurious correlations between reconstructed timecourses of
neighboring voxels are present (Hillebrand et al., 2012). Such
an effect is referred to as “signal leakage” (Brookes et al., 2012;
Hipp et al., 2012; Colclough et al., 2015). In the case of EEG,
the signal leakage problem is largely dependent on the spatial
sampling density and coverage of the electrode montage (Slutzky
et al., 2010; Song et al., 2015). From this standpoint, the use
of high-density EEG (hdEEG) which provides both high spatial
sampling density and large head coverage, may facilitate brain
activity reconstruction (Lantz et al., 2003) and FC analyses (Liu
et al., 2017).

To mitigate the effect of signal leakage in the identification of
EEG networks, we have recently proposed the use of independent
component analysis (ICA) (Liu et al., 2017). ICA performs a blind
decomposition of a given number of spatio-temporal patterns
that are mixed in the data, assuming that these patterns are
mutually and statistically independent in time (temporal ICA,
tICA) or space [spatial ICA, spatial independent component
analysis (sICA)]. It yields a number of independent components
(ICs), each of which consists of a spatial map and an associated
time-course (Calhoun et al., 2001). The IC spatial map reveals
brain regions that have a similar response pattern, and are
therefore considered to be functionally connected (Mantini et al.,
2007; Brookes et al., 2011). For resting state fMRI studies, sICA
has been widely used as it permits to map multiple resting
state networks (RSNs) in a data-driven fashion, whereas the
applications of tICA in the context of fMRI remain limited
(McKeown et al., 1998; Smith et al., 2012). In our previous work,
we have shown that both tICA and sICA permit the detection of
RSNs from hdEEG data. Interestingly, the EEG-RSNs obtained
with sICA were remarkably similar to fMRI-RSNs derived using
the same connectivity approach. This finding supports the idea

that hdEEG can be a novel tool for mapping the functional
architecture of the human brain in health and disease. Before
exploiting the utility of hdEEG in the context of brain network
analysis, however, it is important to clarify what technological
aspects of hdEEG acquisition and analysis primarily influence
the accurate detection of EEG-RSNs by sICA. In this study, we
examine to what extent the reconstruction of EEG-RSN maps
depends on the electrode density and coverage, the accuracy of
the head model, and the source localization algorithm employed.

MATERIALS AND METHODS

Subjects and Data
Data used in this study comprise resting-state hdEEG signals,
electrode positions and individual whole-head anatomy MRI,
which were collected in 19 healthy right-handed subjects
(age 28 ± 5.9 years, 5 males and 14 females) following
experimental procedures approved by the local Institutional
Ethics Committee of ETH Zürich. In short, high-density EEG
(hdEEG) signals were recorded for 5 min at 1000 Hz by using
a 256-channel system from Electrical Geodesics (EGI, Eugene,
OR, United States). Horizontal and vertical electrooculographic
(hEOG/vEOG) and electromyographic signals (EMG) were
recorded as well. During data collection, participants were
fixating a black cross in the center of a white screen. Prior to
EEG acquisition, sensors position coordinates were obtained by
using a Geodesic Photogrammetry System (GPS) (Russell et al.,
2005). A T1-weighted whole-head MR image of each subject was
acquired in a separate experimental session using a Philips 3T
Ingenia scanner with a turbo field echo sequence. The scanning
parameters were: TR= 8.25 ms, TE= 3.8 ms, flip angle= 8◦, 160
sagittal slices, matrix size = 240 × 240, voxel size = 1 mm3. The
total acquisition time was around 6 min.

Workflow for EEG Network Detection
Our analysis workflow for EEG-RSN detection using sICA was
introduced in our previous work (Liu et al., 2017). Four main
analysis steps are involved (see Figure 1): (1) Signal preprocessing,
to attenuate noise and artifacts that are mixed in the EEG data;
(2) Volume conduction modeling, to establish how brain sources
can generate specific distributions of EEG potentials; (3) Brain
activity reconstruction, to estimate -based on the clean EEG data
and the volume conduction model- the distribution of active
brain sources that most likely generates the EEG potentials; (4)
Connectivity analysis, to obtain RSN maps by using sICA on
source-space power envelopes.

Signal Preprocessing
First, we used an automated procedure to detect channels with
low signal quality based on the minimum Pearson correlation of
the signal against all the signals from the other channels, as well as
on the noise variance. The number of detected channels with low
signal quality ranged between 1 and 8, depending on the specific
dataset. The signals from those channels were interpolated based
on signals from the neighboring channels, using the FieldTrip
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FIGURE 1 | Workflow for the spatial independent component analysis
(sICA)-based network analysis using high-density electroencephalography
(hdEEG) data. The main analysis steps include: (1) Signal preprocessing, to
attenuate noise and artifacts that are mixed in the EEG data; (2) Volume
conduction modeling, to establish how brain sources can generate specific
distributions of EEG potentials; (3) Brain activity reconstruction, to estimate
-based on the clean EEG data and the volume conduction model- the
distribution of active brain sources that most likely generates the EEG
potentials; (4) Connectivity analysis, to obtain RSN maps by using sICA on
source-space power envelopes.

toolbox1. Accordingly, all EEG datasets later used for source
localization had the same number of signals. Subsequently, we
band-pass filtered the EEG data in the frequency range 1–
80 Hz and we decomposed them into ICs by using the fast
fixed-point ICA (FastICA) algorithm2, to identify and remove
artifacts of biological origin (Mantini et al., 2008). Artifactual
ICs were automatically identified by using information from the
signal kurtosis, the power spectrum and the correlation with
horizontal and vertical electrooculogram (hEOG and vEOG) and
electromyogram (EMG). Finally, we re-referenced the cleaned
EEG signals using the average reference approach (Liu et al.,
2015).

Volume Conduction Modeling
First of all, we performed a segmentation of the individual
head in the MR image in 12 different tissue classes (skin,
eyes, muscle, fat, spongy bone, compact bone, cortical gray
matter, cerebellar gray matter, cortical white matter, cerebellar
white matter, cerebrospinal fluid and brain stem) by means of
SPM123. This segmentation was based on template tissue classes
from the MIDA model (Iacono et al., 2015). We then spatially
coregistered the EEG electrodes to the skin compartment in
the MR space using the Iterative Closest Point registration
algorithm (Besl and Mckay, 1992) implemented in SPM12. After
associating each tissue class with a representative conductivity

1http://www.fieldtriptoolbox.org
2http://research.ics.aalto.fi/ica/fastica
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12

value (Haueisen et al., 1997) (see Supplementary Table S1),
we used the SimBio finite element method (FEM) integrated
in FieldTrip for the numerical approximation of the volume
conduction model (Wolters et al., 2004). Alternatively to the
SimBio-FEM, a boundary element method (BEM) solution can
be used in our analysis workflow for the creation of the volume
conduction model. When using BEM, the tissue classes need
to be encapsulated, and their number is typically restricted to
three or four (Gencer and Acar, 2004). The dipoles corresponding
to potential brain sources were placed on a regular 6-mm
grid spanning the cortical gray matter and cerebellar gray
matter. The number of dipoles ranged between 2877 and 3354,
depending on the specific dataset. The orientation of the dipoles
was free, to possibly account for the relatively large volume
covered by the dipole itself. Finally, a leadfield matrix expressing
the scalp potentials corresponding to each single-dipole source
configuration was generated based on the volume conduction
model.

Brain Activity Reconstruction
For the reconstruction of brain activity, we integrated the
information from the artifact-free hdEEG recordings and the
leadfield matrix. We implemented several source localization
algorithms in our analysis workflow, among which the minimum
norm estimator (MNE), the linear constraint minimum
variance beamformer (LCMV), the standardized low-resolution
brain electromagnetic tomography (sLORETA) and the
exact low-resolution brain electromagnetic tomography
(eLORETA) algorithms (Pascual-Marqui et al., 2011). In the
MNE implementation, noise prewhitening of the leadfield
matrix was applied using the noise covariance matrix, with
regularization parameter λ = 0.1. In addition, the signal to noise
ratio was set equal to 5 and the depth weighting to 0.5. In the
LCMV implementation, the Tikhonov approach was used to
set the regularization parameter. As for sLORETA, the signal
to noise ratio was set equal to 5 and no depth weighting was
applied.

Based on previous tests, eLORETA was chosen as the default
source localization algorithm in our analysis pipeline. After
reconstructing neuronal activity at each cortical voxel, we
calculated power time-courses on the whole frequency band
under investigation (1–80 Hz). We used a moving window with
1-s duration to enhance detection of co-modulations across
distant brain regions, as done in previous MEG and EEG studies
(de Pasquale et al., 2010; Liu et al., 2017).

Connectivity Analysis
The detection of RSNs based on the reconstructed power
timecourses was performed using sICA (Bartels and Zeki, 2005).
The number of ICs was estimated by using the minimum
description length (MDL) criterion (Li et al., 2007). This number
ranged between 34 and 58, depending on the specific EEG dataset.
ICA decomposition was performed using the FastICA algorithm,
which was run 10 times using a deflation approach and hyperbolic
tangent as contrast function4 (Himberg and Hyvarinen, 2003).

4http://research.ics.aalto.fi/ica/icasso
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FIGURE 2 | Comparison between EEG-RSN and fMRI-RSN maps. EEG-RSN maps were obtained by applying sICA on 5-min source-space power envelopes
(N = 19, threshold: p < 0.01, TFCE corrected). They were spatially compared with RSNs maps obtained by applying sICA on 10-min fMRI data (N = 24, threshold:
p < 0.01, TFCE corrected). DMN, default mode network; DAN, dorsal attention network; DSN, dorsal somatomotor network; VFN, visual foveal network; AN,
auditory network; MPN, medial prefrontal network.

EEG-RSNs of interest were selected by using a template-matching
procedure. Specifically, the templates were warped to individual
MR space. Then, the Pearson correlation was used to estimate
the similarity in the spatial distribution of the EEG-ICs and the
template RSN maps. The best match of EEG-IC for each template
map was extracted iteratively, labeled as a specific EEG-RSN, and
removed from the pool of EEG-ICs. This impeded that the same
IC was associated with two different templates.

Assessment of EEG-RSN Detection
Performance
We assessed EEG-RSN detection performance on the basis
of fMRI-RSN maps derived from data used in one of our
previous studies (Mantini et al., 2013). Ethical approval was
granted by the Ethics Committee of Chieti University. The
experiment was performed in accordance with the relevant
guidelines and regulations, and informed consent was obtained
from all participants. The fMRI data, which were collected in 24
healthy young subjects at rest for 10 min. Brain networks were
detected using sICA from each individual fMRI dataset, as done
for hdEEG data. Group-level IC maps were obtained using the
self organized clustering ICA (sog-ICA) method (Mantini et al.,
2013). fMRI-RSN were extracted from the set of group-level ICs,
on the basis of their spatial map. Our investigations were focused
on six core brain networks that were robustly found in previous
fMRI studies (Bartels and Zeki, 2005; Mantini et al., 2007):
default mode network (DMN), dorsal attention network (DAN),

FIGURE 3 | Spatial correspondence between EEG-RSN and fMRI-RSN
maps. We calculated a cross-correlation matrix, showing the spatial similarity
between any pair of EEG- and fMRI-RSN. DMN, default mode network; DAN,
dorsal attention network; DSN, dorsal somatomotor network; VFN, visual
foveal network; AN, auditory network; MPN, medial prefrontal network.

visual foveal network (VFN), auditory network (AN), dorsal
somatomotor network (DSN), and medial prefrontal network
(MPN). We used 5000 permutations for the across-subject
fMRI-RSN analysis, and we set the significance threshold to
p < 0.01 corrected for multiple comparisons by using the
threshold-free cluster enhancement (TFCE) method (Smith and
Nichols, 2009).
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FIGURE 4 | Split-half analysis of EEG-RSNs. We split the hdEEG recordings into two segments: the first 2 min and 30 s (EEG segment 1) and the last 2 min and
30 s (EEG segment 2). RSN maps obtained from the two EEG segments were directly compared (threshold: p < 0.01, TFCE corrected). (A) DMN, default mode
network; (B) DAN, dorsal attention network; (C) DSN, dorsal somatomotor network; (D) VFN, visual foveal network; (E) AN, auditory network; (F) MPN, medial
prefrontal network.

We performed EEG-RSN detection on each hdEEG datasets,
following our default analysis strategy and using the fMRI
maps as templates (see Supplementary Figure S1). For each
EEG-RSN, we transformed the individual maps to common
space using SPM and derived a group-level RSN map by
using the same statistical approach applied to fMRI data. The
spatial correspondence of the EEG networks with the fMRI
networks was quantified using the Pearson correlation between
maps. To verify that the detected EEG-RSNs were selectively
associated with a specific fMRI-RSN, we calculated a matrix
of cross-correlations between EEG-RSN and fMRI-RSN maps.
Moreover, we tested the robustness of EEG-RSN spatial patterns
obtained by sICA by performing a split-half analysis. Specifically,
we split the 5-min recording into two segments of equal duration.
We independently obtained EEG-RSNs from each of these two
data segments, and we calculated the Pearson correlation between
them.

As a further analysis step, we investigated the impact of
the number of EEG channels, the accuracy of the head model
and source localization algorithm on EEG-RSN detection by
sICA. To investigate the RSNs with lower montage density,
we spatially subsampled each set of 256-channel recordings
and derived 32-channel, 64-channel and 128-channel recordings
with electrodes positioned according to standard EEG montages.
The effect of using a less accurate head model was tested by
running RSN detection on source data reconstructed using
a 5-layer realistic FEM, and a 3-layer BEM based either on
an individual or a template MR image. In line with previous
literature (Ramon et al., 2006; Wolters et al., 2006; Cho et al.,
2015), the 5-layer FEM model comprised gray matter (cortical
and cerebellar), white matter (cortical and cerebellar) plus
brainstem, cerebrospinal fluid, skull (compact and spongy) and
all remaining soft tissues (skin, eyes, muscles, and fat). In turn,
the 3-layer BEM models included brain, skull and all other
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tissues. We obtained the conductivity values for 5- and 3-layer
models by pooling together different tissues and averaging the
conductivity values used for the 12-layer head model. Finally,
we examined whether it was possible to detect EEG-RSNs using
different source localization methods for the reconstruction of
brain activity in the source space. To this end, we tested the
RSN results obtained using eLORETA against those obtained
with sLORETA, MNE, and LCMV. EEG-RSN reconstruction
performance with different number of EEG channels, head model
and source localization algorithm was quantified by calculating
the spatial correlation with the EEG-RSNs that were obtained
following our default analysis settings (i.e., 256-channel montage,
12-layer FEM, eLORETA source localization), as well as the fMRI
RSNs. Significant effects of electrode montage, head modeling
and source localization, respectively, were assessed by means of
a repeated-measure analysis of variance (ANOVA), calculated on
Fisher-transformed correlation values.

RESULTS

Comparison Between EEG-RSNs and
fMRI-RSNs
After obtaining EEG-RSNs using our analysis workflow, we
compared them with the corresponding RSNs detected from
fMRI data (Figures 2, 3). This comparison revealed that a
complete network topology could be reconstructed by using
hdEEG data for DMN, VFN, AN, DSN, MPN, but not DAN.
For this latter RSN, the spatial map did not include frontal
eye field areas, which were below the statistical threshold.
Overall, the EEG-RSNs were found to be remarkably similar
to the corresponding fMRI-RSNs. Specifically, the correlations
between group-level EEG- and fMRI-RSNs were remarkable
(0.39≤ r≤ 0.67, r̄ = 0.57). The robustness of EEG-RSN detection
was confirmed by the split-half analysis (Figure 4). In particular,
the RSN maps obtained from two different segments of hdEEG
data were largely matching (0.62 ≤ r ≤ 0.79, r̄ = 0.70).

Impact of Montage Density, Head
Modeling and Source Localization
We conducted more detailed analyses to better understand
to what extent the sICA results depended on specific hdEEG
analysis aspects. To this end, we analyzed the impact of montage
density, head modeling and source localization (Figures 5–7 and
Supplementary Figures S2–S6). By using a repeated-measure
ANOVA, we revealed that all these three aspects are important
for EEG-RSN reconstruction, with montage density potentially
having the strongest effects (F = 29.26, p < 0.0001), followed by
head modeling (F = 11.12, p = 0.0029) and source localization
(F = 7.99, p = 0.0085). When we examined in detail the
influence of the montage density, we found that RSNs comprising
deeper brain regions, such as the DMN, were more affected
by a reduced number of EEG channels (Figure 6). Conversely,
minimal differences were observed for the DSN with different
EEG montage density (Figure 7). Also, our analyses confirmed
the importance of using an accurate head model. For some

FIGURE 5 | Impact of EEG montage density, head modeling and source
localization on RSN reconstruction. We defined the EEG-RSNs obtained with
default settings as reference, and calculated their spatial correlation with the
corresponding RSNs calculated using different settings. (A) We examined the
impact of EEG montage density by comparing the maps obtained from
256-channel recordings with those obtained from 128-, 64-, and 32-channel
recordings. (B) We examined the impact of head modeling by comparing the
maps obtained by using a 12-layer FEM with those obtained by 5-layer
realistic FEM, 3-layer realistic BEM and 3-layer template BEM, respectively.
(C) We examined the impact of source localization by comparing the maps for
eLORETA with those obtained by sLORETA, LCMV, and MNE, respectively.
DMN, default mode network; DAN, dorsal attention network; DSN, dorsal
somatomotor network; VFN, visual foveal network; AN, auditory network;
MPN, medial prefrontal network.

networks, as for instance the DSN, it was relatively difficult to
appreciate differences between the results of a 12-layer FEM,
which was our default solution, with those of a 5-layer FEM
(Figure 7). Conversely, there was a substantial mismatch with
the RSNs obtained by using a 3-layer BEM, built either on
an individual or a template MR image (Figures 5B, 6, 7).
Also, we found that the RSNs with our default solution for
source localization, i.e., the eLORETA method, was only slightly
different from those obtained by using sLORETA. In contrast, the
reconstruction improvement as compared to MNE and LCMV
methods was remarkable (Figures 5C, 6, 7).

DISCUSSION

In this study we sought to determine to what extent EEG-RSNs
that spatially correspond to fMRI-RSNs can be reliably detected
by means of sICA, and how the accuracy of the EEG-RSN
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FIGURE 6 | Impact of EEG montage density, head modeling and source localization on DMN reconstruction. EEG-RSNs were obtained: (A) using 256-channel
recordings, 12-layer realistic FEM and eLORETA source localization. (B) Using 128-, 64-, and 32-channel recordings, respectively, with 12-layer realistic FEM and
eLORETA source localization. (C) Using 5-layer realistic FEM, 3-layer realistic BEM and 3-layer template BEM, respectively, with 256-channel recordings and
eLORETA source localization. (D) Using sLORETA, LCMV and MNE localization, respectively, with 256-channel recordings and 12-layer realistic FEM.

reconstructions is influenced by the EEG montage density, as well
as the specific solutions adopted for head modeling and source
localization. Importantly, our results confirmed the similarity of
EEG-RSNs with fMRI-RSNs obtained by means of sICA. Also,
they revealed that the collection of EEG data using a high-density
montage is crucial for RSN detection, and that the use of specific
methods for head modeling and source localization are also
important to ensure accurate network reconstructions.

In our recent work (Liu et al., 2015, 2017; Marino et al.,
2016), we have proposed technological solutions enabling the
use of hdEEG for the study of neuronal dynamics in the human
brain. Currently available hdEEG systems have at most 256
recording channels, which is a number comparable to that of
MEG systems (Brookes et al., 2011; Hipp et al., 2012). We
reasoned that the use of a 256-dimensional hdEEG dataset might
be theoretically sufficient to resolve the activity of functionally
different areas in the brain, which are thought to be around
200 (Glasser et al., 2016). In this study, we were particularly
interested in examining if EEG-RSNs could be detected using
sICA with 32-, 64-, and 128-channel EEG recordings, and
to what extent these networks were matching the ones
reconstructed with 256-channel EEG recordings. Overall, our
results strongly emphasized the importance of using high-density
montages for the EEG-RSN studies (Figures 5A, 6, 7). This
was especially the case for RSNs including distant brain
regions such as the DMN (Figure 6); however, RSNs with
a less distributed pattern, as for instance the DSN, could be

successfully reconstructed also with a low density EEG montage
(Figure 7).

Achieving an accurate reconstruction of neuronal activity
with hdEEG is undoubtedly more difficult than with MEG, as it
depends on the availability of precise biophysical models relating
the spatial configuration of currents in the cortex with potentials
measured over the scalp (Michel et al., 2004; Michel and Murray,
2012). The generation of a realistic head model is one of the
main challenges for hdEEG analyses at the source level, which
we addressed by integrating in our analysis workflow a 12-layer
FEM for volume conduction modeling. Surprisingly, the results
of our study suggested that the use of less precise head models
has a relatively smaller impact on EEG-RSN reconstruction than
poorer spatial sampling and coverage of EEG electrodes over the
scalp (Figures 5B, 6, 7). We noticed that more accurate EEG-RSN
maps could be reconstructed using a head model created with a
12-layer FEM as compared to 5-layer FEM. The improvement
was, however, much more marked compared to 3-layer BEMs,
in which white matter and gray matter belong to the same layer
and to which the same conductivity value is assigned (Gencer and
Acar, 2004).

In our analysis workflow, eLORETA is the standard source
localization algorithm for the reconstruction of ongoing brain
activity. It is worth noting that the performance of source
localization algorithms depends on the source depth, the noise
level, the number of recording electrodes and the head model
(Michel et al., 2004), and there is no general consensus about
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FIGURE 7 | Influence of EEG montage density, head modeling and source localization on DSN reconstruction. EEG-RSNs were obtained: (A) using 256-channel
recordings, 12-layer realistic FEM and eLORETA source localization. (B) Using 128-, 64-, and 32-channel recordings, respectively, with 12-layer realistic FEM and
eLORETA source localization. (C) Using 5-layer realistic FEM, 3-layer realistic BEM and 3-layer template BEM, respectively, with 256-channel recordings and
eLORETA source localization. (D) Using sLORETA, LCMV, and MNE localization, respectively, with 256-channel recordings and 12-layer realistic FEM.

which source localization method delivers best performance
for EEG (Michel et al., 2004). Our results confirmed the
suitability of eLORETA, but also sLORETA, for EEG connectivity
investigations (Figures 5C, 6, 7). On the other hand, the
RSNs reconstructed using MNE and LCMV were relatively less
similar to fMRI-RSNs. eLORETA has already been shown to
be particularly accurate in the presence of low-noise signals
(Pascual-Marqui et al., 2011) and has been already tested in
the context of EEG connectivity (Aoki et al., 2015; Bachinger
et al., 2017; Liu et al., 2017). Overall, our quantitative analyses
on the correspondence between EEG-RSNs and fMRI-RSNs
(Figures 2, 3) lend support to our choice in terms of head
modeling and source localization methods.

Our study disclosed important information concerning the
robustness of EEG-RSNs detected by sICA and their spatial
similarity to fMRI-RSNs. A number of limitations should,
however, be mentioned. First of all, EEG-RSN detection
performance was examined when using several methods for
head modeling and source localization, which were selected
among the most commonly used for EEG analysis. Testing
a larger number of head modeling and source localization
methods was not possible for computational reasons. It should
be mentioned that source localization methods are particularly
sensitive to their specific input parameters. We intentionally
used standard settings for these methods. It is, however,
conceivable that superior source localization performance, and
therefore better EEG-RSN reconstruction, could be achieved

by optimizing input parameters for any given method. Also,
hdEEG data were collected in each participant during a single
acquisition session. This means that we could only perform
split-half analyses to assess the reproducibility of EEG-RSN
detection, whereas we could not carry out test–retest analyses.
Furthermore, the EEG- and fMRI-RSN maps being compared
were obtained from different groups of participants. As such,
spatial similarities could be assessed only at the group level,
and not subject-by-subject. In the future, it would be interesting
to examine the spatial correspondence of EEG- and fMRI-
RSNs within the same subjects, possibly using simultaneous
EEG-fMRI recordings. Previous studies showed the potential of
simultaneous EEG-fMRI to elucidate the neural correlates of
FC in brain networks (Mantini et al., 2007; Lei et al., 2011,
2014).

In summary, we performed an extensive validation concerning
the use of sICA for the detection of RSNs using hdEEG
recordings. We observed a remarkable similarity of EEG-RSNs
with fMRI-RSNs. A split-half analysis confirmed the robustness
of EEG-RSN detection, even with short EEG recordings.
Also, we showed the sensitivity of EEG-RSN detection to
the use of different electrode montages, head models and
source localization methods. Ultimately, our results confirm the
potential of hdEEG for mapping the functional architecture of
the human brain, and highlight at the same time the interplay
between acquisition technology and innovative solutions in data
analysis.
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FIGURE S1 | Six fMRI-RSNs maps used as templates in the study. The maps
were obtained using sICA, by reanalyzing previously published resting state fMRI
data from 24 healthy subjects (Mantini et al., 2013).

FIGURE S2 | Impact of the number of EEG channels, the accuracy of the head
model and source localization algorithm on EEG-RSN detection. We defined the

fMRI-RSNs as reference, and calculated the spatial correlation with the
corresponding EEG-RSNs calculated using different settings. In each case, the
spatial correlation values were divided by those of EEG RSNs obtained using
default settings (i.e., 256-channel recordings, 12-layer FEM for head modeling and
eLORETA for source localization). (A) We examined the impact of EEG montage
density by comparing the maps obtained from 128-, 64-, and 32-channel
recordings, with respect to 256-channel recordings. (B) The impact of head
modeling by comparing the maps obtained by 5-layer realistic FEM, 3-layer
realistic boundary element model (BEM) and 3-layer template BEM, with
respect to a 12-layer FEM. (C) The impact of source localization by comparing
the maps obtained by sLORETA, LCMV, and MNE, with respect to
eLORETA.

FIGURE S3 | Influence of EEG montage density, head modeling and source
localization on DAN reconstruction. EEG-RSNs were obtained: (A) using
256-channel recordings, 12-layer realistic FEM and eLORETA source localization.
(B) Using 128-, 64-, and 32-channel recordings, respectively, with 12-layer
realistic FEM and eLORETA source localization. (C) Using 5-layer realistic FEM,
3-layer realistic BEM and 3-layer template BEM, respectively, with 256-channel
recordings and eLORETA source localization. (D) Using sLORETA, LCMV and
MNE localization, respectively, with 256-channel recordings and 12-layer realistic
FEM.

FIGURE S4 | Influence of EEG montage density, head modeling and source
localization on VFN reconstruction. EEG-RSNs were obtained: (A) using
256-channel recordings, 12-layer realistic FEM and eLORETA source localization.
(B) Using 128-, 64- and 32-channel recordings, respectively, with 12-layer realistic
FEM and eLORETA source localization. (C) Using 5-layer realistic FEM, 3-layer
realistic BEM and 3-layer template BEM, respectively, with 256-channel recordings
and eLORETA source localization. (D) Using sLORETA, LCMV, and MNE
localization, respectively, with 256-channel recordings and 12-layer realistic FEM.

FIGURE S5 | Influence of EEG montage density, head modeling and source
localization on AN reconstruction. EEG-RSNs were obtained: (A) using
256-channel recordings, 12-layer realistic FEM and eLORETA source localization.
(B) Using 128-, 64-, and 32-channel recordings, respectively, with 12-layer
realistic FEM and eLORETA source localization. (C) Using 5-layer realistic FEM,
3-layer realistic BEM and 3-layer template BEM, respectively, with 256-channel
recordings and eLORETA source localization. (D) Using sLORETA, LCMV, and
MNE localization, respectively, with 256-channel recordings and 12-layer realistic
FEM.

FIGURE S6 | Influence of EEG montage density, head modeling and source
localization on MPN reconstruction. EEG-RSNs were obtained: (A) using
256-channel recordings, 12-layer realistic FEM and eLORETA source localization.
(B) using 128-, 64-, and 32-channel recordings, respectively, with 12-layer realistic
FEM and eLORETA source localization. (C) Using 5-layer realistic FEM, 3-layer
realistic BEM and 3-layer template BEM, respectively, with 256-channel recordings
and eLORETA source localization. (D) Using sLORETA, LCMV and MNE
localization, respectively, with 256-channel recordings and 12-layer
realistic FEM.

TABLE S1 | Conductivity values of different tissues used for the calculation of the
head model. The conductivity values associated with the tissue classes were
extracted from relevant literature (Haueisen et al., 1997).
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