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The performance of a brain-computer interface (BCI) can be enhanced by simultaneously

using two or more modalities to record brain activity, which is generally referred to as a

hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system

by combining electroencephalography (EEG) and functional near-infrared spectroscopy

(NIRS) to improve the overall accuracy of binary classification. However, since hybrid

EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to

ternary classification problems, paradigms and classification strategies appropriate for

ternary classification using hBCI are not well investigated. Here we propose the use

of an hBCI for the classification of three brain activation patterns elicited by mental

arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer

rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of

accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex,

and NIRS optodes were placed only on the forehead. The ternary classification problem

was decomposed into three binary classification problems using the “one-versus-one”

(OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG

data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant

analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI,

and hBCI when the meta-classification method was adopted to enhance classification

accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were

76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of

the proposed hBCI was thus significantly higher than those of the other BCIs (p< 0.005).

The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute,

which was 34.3% higher than that reported for a previous binary hBCI study.

Keywords: brain-computer interface, mental arithmetic, motor imagery, electroencephalography (EEG), near

infrared spectroscopy (NIRS), pattern recognition
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INTRODUCTION

Brain-computer interfaces (BCIs) have recently attracted great
attention as they have shown great potential as new modes of
communication for individuals who have lost the ability for
voluntary movements (Wolpaw et al., 2002; Allison et al., 2007;
van Erp et al., 2012; Wolpaw and Wolpaw, 2012; Blankertz
et al., 2016). BCIs can be implemented using a variety of neural
signal recording methods, such as electroencephalography
(EEG), magnetoencephalography, functional magnetic
resonance imaging, near-infrared spectroscopy (NIRS),
electrocorticography, and multiunit neural recording (Wolpaw
et al., 2002). Since each brain-imaging modality has its own
pros and cons, combining two or more neural signal recording
modalities, which is generally referred to as hybrid BCI, might
enhance the overall performance of BCI (Pfurtscheller et al.,
2010a; Dähne et al., 2015; Fazli et al., 2015). Until now, a number
of hybrid BCI studies have demonstrated the effectiveness of
the combinatory use of different modalities or paradigms, e.g.,
combined use of P300 and steady-state visually evoked potential
for EEG-BCI (Wang et al., 2015), hybrid EEG-electrooculogram
(EOG) BCI (Wang et al., 2014), and hybrid EEG-NIRS BCI
(hereafter denoted by hBCI) (Naseer and Hong, 2015).

Among the different methods, hBCI has been actively studied
because bothmodalities can be readily made portable and there is
no significant interference between the two signals. EEG records
electrophysiological signal and NIRS measures hemodynamic
variations in the brain. Since the origins of the two signals differ
from each other, the amount of available information that can
be used for BCI is increased, which in turn leads to enhanced
BCI performance. More importantly, the two modalities are
complementary to each other in that EEG has superior temporal
resolution to NIRS, but is more prone to contamination from
EOG and electromyogram artifacts than NIRS. Indeed, recent
studies reported successful application of NIRS-BCI for the
communication of patients in completely locked-in state (CLIS)
(Chaudhary et al., 2017); however, EEG-BCI has never been
successful for the patients in CLIS (De Massari et al., 2013;
Chaudhary et al., 2017). Therefore, the appropriate combination
of these two modalities has the potential to enhance the overall
BCI performance and it has been already verified in many
previous studies (Fazli et al., 2012; Koo et al., 2015; Yin et al.,
2015; Shin et al., 2016, 2017b). The recent release of an open-
access dataset for hBCI reflects the increasing attention that this
type of hBCI has garnered (Shin et al., 2017a).

The easiest way to increase the information transfer rate
(ITR) of a BCI system is to increase the number of classes, while
minimizing the loss of accuracy, because ITR is determined
by both classification accuracy and the number of available
commands; however, most hBCI studies have focused only
on enhancing the classification performance of binary BCI.
Until now, hBCI has been studied to improve the classification
performance of binary BCI (Shin et al., 2017b) or to simply
increase the number of available commands (Khan et al., 2014;
Khan and Hong, 2017). Khan et al. (2014, 2015) recorded EEG
and NIRS simultaneously but they used the two types of data
independently. Here we propose the use of a multi-class hBCI

that classifies three brain activation patterns recorded during
motor imagery (MI), mental arithmetic (MA), and idle state (IS:
staying relaxed without performing any cognitive task). MI has
been the most widely used mental task for EEG-BCI, while MA
has been frequently used as a popular BCI task for NIRS-BCI
(Power et al., 2011, 2012a,b). Brain activation elicited by MI can
be measured mainly around the central area, while that elicited
by MA can be measured primarily in the forehead covering
the prefrontal cortex (PFC). Therefore, we hypothesized that
ternary classification (MA vs. MI. vs. IS) would be suitable for
implementation of ternary hBCI. In contrast to EEG, which can
record brain activity from both the frontal and central areas
relatively easily, NIRS sometimes has difficulty in measuring
signals around the central areas due to the attenuation of light
intensity by hair, without applying a time-consuming hair
preparation process or using specially designed brush type
optodes (Khan et al., 2012). In this study, we implement an
hBCI using EEG signals recorded at both the frontal and central
areas and NIRS signals recorded only from the frontal area to
improve the practicality and usability of the system by avoiding
time-consuming (hair) preparatory work. The performance
of our hBCI was validated using experiments with 18 healthy
participants.

MATERIALS AND METHODS

Participants
Eighteen healthy participants (10men and 8 women, 23.8
± 2.5 years of age) voluntarily participated in this study.
None of the participants reported a history of neurological,
psychiatric, or other severe diseases that might have influenced
the experimental results. The experimental procedure was
fully explained to each participant before the experiment.
The participants signed written consent forms before the
experiment. After the experiment, monetary reimbursement was
provided. The experiment was conducted with approval from
the Institutional Review Board committee of Hanyang University
and according to the Declaration of Helsinki.

Apparatus
Figure 1 shows the placement of the EEG electrodes and
NIRS optodes. EEG data were recorded at a sampling rate of
2,048Hz using an Active-Two amplifier (Biosemi; Amsterdam,
the Netherlands) with 21 active electrodes placed on both frontal
[5 unlabeled (non-standard), Fz, F1, F2, F3, and F4] and central
(FC3, FC4, Cz, C1, C2, C3, C4, C5, C6, CP3, and CP4) areas.
The reference and ground electrodes were attached at the left
and right mastoids, respectively. Two additional electrodes were
located above and below the left eye to measure the vertical
EOG. NIRS data were collected using a portable NIRS system
(LIGHTNIRS; Shimadzu Corp.; Kyoto, Japan) at a sampling rate
of 13.3Hz. Six sources and six detectors were placed on the
forehead over the PFC. There were 16 NIRS channels in total.
Each of these channels consisted of a source and detector pair
placed 30mm away from each other. To synchronize the two
signals, trigger signals were delivered to both the EEG and NIRS
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FIGURE 1 | Placement of EEG electrodes (blue) and NIRS optodes (red: sources, green: detectors) on frontal (Left) and central (Right) areas.

systems simultaneously using StimTracker (Cedrus Corp.; San
Pedro, USA).

Experimental Paradigm
The participants were seated on a comfortable chair 70 cm
away from a 26-inch liquid crystal display monitor and
followed instructions appearing on the monitor. Figure 2 shows
the experimental paradigm. A single trial was composed of
instruction (−2 to 0 s), task (0–10 s), and inter-trial break (10
to 26–28 s) periods. In the introduction period, a right-hand MI,
MA, or IS was randomly selected. For the right-hand MI, a right
arrow was presented, and for the MA, “a three-digit number
minus a one-digit number (between 6 and 9)” was randomly
provided. For IS, a fixation cross was displayed at the center
of the monitor. In the task period, the participants performed
the designated task. For the right-hand MI, the participants
imagined complex finger tapping (tapping the second, third,
fourth, fifth, fourth, third, second, etc. fingers to the thumb)
at a rate of approximately 2Hz. For MA, the participants were
instructed to continuously subtract a one-digit number (between
6 and 9) from the result of a former calculation as fast as
possible (e.g., 789–7 = 782, 782–7 = 775, 775–7 = 768).
For IS, the participants stayed relaxed without performing any
specific mental imagery task. The participants performed the
three types of tasks 30 times each (90 times in total). Note
that a number of NIRS-BCI and hBCI studies have adopted
IS as one of the main BCI tasks (Power et al., 2011; Schudlo
et al., 2013; Schudlo and Chau, 2015). Before the experiment,
all participants were pre-trained to produce appropriate MI-
related brain activation patterns with the aid of a visual feedback
system. For the visual-feedback-based MI training, three EEG
electrodes (Cz, C3, and C4) were selected to monitor the motor-
related EEG signal changes. At first, task-related event-related
synchronization/desynchronization (ERS/ERD) changes at the
three electrodes were displayed on the monitor as simple bar
graphs, which were updated in real-time while participants
performed actual finger tapping. Once the participants got
used to the task, they performed kinesthetic MI, not visual

FIGURE 2 | Timing sequence of a single trial. A random task was assigned to

the participant in the Introduction section (−2 to 0 s). After the presentation of

a short beep, the participants continued performing the assigned task while

looking at a fixation cross during the task period (0–10 s). The participants

stopped performing the task after a second short beep was presented and a

“STOP” sign was displayed on the screen for 2 s. During the random-length

inter-trial break period (12 to 26–28 s), the participants relaxed without any

particular thoughts.

MI (Neuper et al., 2005), to make ERS/ERD patterns similar
to those generated during actual finger tapping. If they
could reproduce consistent task-related ERS/ERD patterns, data
recording commenced. The effectiveness of the MI training
(MI proficiency) was evaluated based on the elapsed training
time (good: < 5min, normal: < 20min, poor: < 30min). The
total training time was limited to at most 30min considering
participants’ attentional deterioration and fatigue, but most
participants of this study finished the MI training session within
20min (normal MI proficiency).

Preprocessing
All data processing was performed using MATLAB, 2013b
(MathWorks; Natick, MA). Functions implemented in EEGLAB
(https://sccn.ucsd.edu/eeglab/index.php) and BBCI1 toolbox
(https://github.com/bbci/bbci_public) were used for EEG and
NIRS data processing and classification (Delorme and Makeig,
2004; Blankertz et al., 2016). EEG data were downsampled to
200Hz to reduce the computational complexity and band-pass

1BBCI toolbox [Online]. Available: https://github.com/bbci/bbci_public/
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filtered with a passband of 0.1–50Hz to remove direct current
drift and 60Hz alternating current noise. The vertical EOG was
eliminated using an automatic ocular artifact rejection method
based on a blind source separation algorithm (Gomez-Herrero
et al., 2006). For NIRS, the detected optical densities (ODs) were
converted to hemodynamic variations (concentration change
in reduced hemoglobin 1HbR and concentration change in
oxidized hemoglobin 1HbO) using the following formula
(Matcher et al., 1995):

(

1HbR
1HbO

)

=

(

1.8545 −0.2394 −1.0947
−1.4887 0.5970 1.4847

)





1OD780

1OD805

1OD830



 (mM · cm)

In the equation above, 1OD is the change in the detected OD at
the wavelength provided in the subscript (780, 805, or 830 nm).
The converted 1HbR and 1HbO values were band-pass filtered
(6th-order Butterworth zero-phase filter) with a passband of
0.01–0.09Hz to remove physiological noise.

Classification
Figure 3 shows the procedure used for data processing and
classification. EEG data were segmented into epochs from
−5 to 25 s. To apply the filter-bank common spatial pattern
(FBCSP) filter, EEG data in the time period 0–10 s (i.e., task
period) were selected and a filter bank (6th-order zero-phase
Butterworth) with multiple passbands for the θ (4–8Hz), α

(8–13Hz), and β (13–30Hz) bands was applied to the selected
EEG data. EEG epochs were partitioned into training and test
sets. The ternary classification problem was decomposed into
three binary classification problems (i.e., MA vs. MI, MA vs. IS,
and MI vs. IS) in order to apply the “one-versus-one” (OVO)
classification strategy (Müller-Gerking et al., 1999; Dornhege
et al., 2004), in which the classification was performed for all
possible binary combinations of classes and the final estimate was
decided by majority voting (Lei et al., 2009). EEG feature vectors
{dimension: 18 × 60 [(number of CSP components × number
of passbands) × number of trials]} were constructed using the
log-variance of the first three and last three CSP components
selected using the typical eigenvalue score (Blankertz et al., 2008)
after FBCSP filtering.

NIRS data were segmented into epochs from −5 to 25 s.
Baseline correction was performed by subtracting the temporal
mean value between −1 and 0 s from each NIRS epoch. NIRS
feature vectors {dimension: 64 × 60 [(number of channels
× number of NIRS chromophores × number of temporal
windows) × number of trials]} were constructed using the
temporal mean values of HbR and HbO in the 5–10 and
10–15 s temporal windows in NIRS epochs from all channels,
considering the inherent hemodynamic delay. Note that we
also tried other feature candidates such as slope and variance
but the use of features other than the temporal mean values
did not improve the classification performance. In addition,
the two separated intervals (5–10 and 10–15 s) yielded higher
classification accuracy than a single interval (5–15 s). In the same

FIGURE 3 | Data processing flow. EEG and NIRS data were separately

processed at the unimodal stage and were combined at the hybrid stage.

OVO, FBCSP, and sLDA indicate “one-versus-one” strategy, filter-bank

common spatial pattern, and shrinkage linear discriminant analysis,

respectively. After OVO, the ternary classification problem was decomposed

into three binary classification problems.

manner as that described for EEG data above, NIRS epochs were
partitioned to training and test sets, and the OVO classification
strategy was applied. We adopted the OVO approach because
the OVO strategy makes CSP, known to yield high performance
in ERS/ERD-based BCI, be applied to the present ternary
classification problem.

A 10 × 10-fold cross-validation was performed using
shrinkage linear discriminant analysis (sLDA) for each of
the three binary classification problems. The sLDA can be
used to effectively mitigate the negative effect (degradation
of classification accuracy) resulting from the use of high-
dimensional feature vectors when compared to the number
of trials by replacing the empirical covariance matrix 6 with

(1− λ)6 + λI, where λ and I are the regularization parameter
and identity matrix, respectively (Friedman, 1989; Shin et al.,
2016, 2017a,b). The optimal λ was estimated based on the
literature (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005).
sLDA classifiers were trained by EEG and NIRS data separately
for three binary classification problems each, and the outputs of
EEG and NIRS classifiers were then combined to construct new
feature vectors for the meta-classifier (Fazli et al., 2012). The final
class was then estimated using majority voting for the results of
the three binary classification problems.

RESULTS

Figure 4 shows the results of the time-frequency analysis, which
is used to assess task-related EEG spectral power changes over the
frontal and central areas relative to the baseline value, which is
the average spectral power between −4 and −3 s. Red and blue
colors indicate increases and decreases in EEG spectral power,
respectively. The spectral power changes were averaged over the
frontal and central channels separately. A red dotted vertical line
in each graph indicates the task onset time (0 s). For MA, power
decreases in the δ- (1–4Hz) and low α-bands (8–10Hz) were
observed over frontal and central areas during the task period.
Power increases in the high α-band (10–13Hz) were commonly
seen in the early stages of the task period (0–5 s). Power decrease
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FIGURE 4 | Time-frequency analysis results for MA, MI, and IS on frontal and central areas (unit: dB). Red dashed lines represent the task onset. A color bar indicates

the range of the EEG spectral power variation in dB. Red (positive) and blue (negative) indicate, respectively, spectral power increases and decreases relative to the

baseline value (average spectral power between −4 and −3 s).

in the high β-band (20–30Hz) appeared more distinctly in the
frontal area than in the central area. For MI, prominent power
decreases in the δ- and θ-bands were observed over both frontal
and central areas during the task period. Similar spectral power
changes in the frontal area during MI was observed in previous
studies (Yamawaki et al., 2006; Ahn et al., 2013). In addition, a
power decrease in the high α-band was observed in the central
area. For IS, no distinct power change was observed during the
task period, except for a weak power increase around 10Hz,
which might have been due to the relaxation of the participants
(Lagopoulos et al., 2009). Regardless of the task type, power
increases commonly appeared throughout the frontal and central
areas after the end of the task period. The power increase in the
δ-band might be the remaining (not completely eliminated by
ICA) EOG components due to eye blinking right after the task
period. Note that this δ-band power increase did not affect the
BCI performance because frequency bands higher than θ-band
were used for the BCI classification. The ERS in the α frequency
band seems to be the post-stimulus ERS frequently observed after
performing a given task (Pfurtscheller et al., 2006; Solis-Escalante
et al., 2010; Shin et al., 2017b).

Figure 5 shows the grand average of hemodynamic variations

due to MA and MI over time. The left and right panels represent

data for HbR and HbO, respectively. Channels (Chs.) 3 and 14

are located in the middle of the forehead. For MA, the decrease

in HbR appeared at center-right channels (Chs. 7, 8, and 13)

5 s after task onset. After 10 s, an increase in HbR was observed
at the center-left-lower (Chs. 14 and 15) and rightmost (Ch. 6)
channels. At 15 s, the amount of increase in HbR was reduced.
For MI, minor variations in HbR were observed until 5 s after
task onset. After 10 s, an increase in HbR was observed in the

left lower channel (Ch. 15), but the variation was not prominent
when compared to that observed for MA. At 15 s, the amount of
increase in HbR was reduced. For both MA and MI, the trend
of HbO variation was opposite to that observed for HbR, and
the variation of HbO was greater than that of HbR. After 10 s,
a sudden drop of HbO was observed on the left-middle area (chs.
9, 14, 15), which might seem unusual; however, note that some
previous studies also reported similar phenomena during mental
arithmetic task (Pfurtscheller et al., 2010b; Shin et al., 2017a). The
grand averaged HbR and HbO waveforms at three different task
conditions can be found at https://doi.org/10.6084/m9.figshare.
5844813.v1.

Figure 6 shows the individual ternary classification accuracies
for EEG-BCI, NIRS-BCI, and hBCI (denoted by HYB in
Figure 6). A red dotted horizontal line denotes the theoretical
chance level (1/3= 0.333). As shown in the graph, we were able to
use the “HYB” to obtain the best classification accuracies for 14
out of the 18 participants. The average classification accuracies
for EEG, NIRS, and “HYB” were 76.1± 12.7, 64.1± 9.7, and 82.2
± 10.2% (mean ± standard deviation), respectively. The average
classification accuracy of hBCI was statistically significantly
higher than those of EEG-BCI and NIRS-BCI (Friedman test: p<

0.001; post-hoc: Wilcoxon signed rank sum test with Bonferroni
correction; EEG vs. HYB: corrected p = 0.0046 and NIRS vs.
HYB: corrected p= 0.0002).

DISCUSSION

The results of our study show, for the first time, the feasibility of
the combined use of EEG and NIRS to enhance the performance
of ternary BCI classification. The proposed ternary hBCI was
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FIGURE 5 | Grand average of hemodynamic variation in response to MA (Top), MI (Middle), and IS (Bottom) over time. The left and right panels present data for

HbR and HbO, respectively. The color bars below the figures indicate the range of the concentrations of HbR (left 3 panels) and HbO (right 3 panels) in mM·cm. Note

that the ranges of the concentrations are different.

used to classifyMA-,MI-, and IS-related brain activation patterns
successfully with higher classification accuracy than EEG-BCI
and NIRS-BCI. The MA-related brain activation and the MI-
related activation are mainly produced in different brain regions,
and thereby NIRS optodes and EEG electrodes were arranged on
the forehead over the PFC to record MA-related brain activation,
while additional EEG electrodes were placed on the central area
to record MI-related brain activation. It is noteworthy that the
ternary classification accuracy was even higher than the threshold
for effective binary BCI (>70% classification accuracy) (Blankertz
et al., 2009; Vidaurre and Blankertz, 2010).

The implementation of a multi-class NIRS-BCI is challenging.
No previous study has successfully implemented a multi-class
NIRS-BCI using only hemodynamic variations recorded from
the PFC. The accuracy of our ternary classification using NIRS
supports this argument. Although the average ternary NIRS

classification accuracy exceeded the theoretical chance level
(33.3%), a practically usable level was unreachable. To implement
ternary NIRS-BCI, Hong et al. (2015) and Schudlo and Chau
(2015) placed more NIRS optodes on central areas and the
parietal cortex, respectively, in addition to the PFC. However,
time-consuming preparation is generally inevitable to acquire
high-quality signals if optodes are attached onto hairy scalp
areas. On the other hand, although EEG-BCI resulted in a fairly
high classification accuracy exceeding 70%, the classification
accuracies for 9 out of the 18 participants were further improved
by more than 5% using the hybrid approach.

Successful implementation of a multi-class hBCI is beneficial
for improving the ITR given by 60/τ · [log2N + plog2(p)+ (1−
p)log2((1 − p)/(N − 1))] where τ , N, p and are trial length,
the number of classes, and classification accuracy, respectively
(Dornhege et al., 2007). According to a previous study (Hong
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FIGURE 6 | Individuation classification accuracy of EEG (blue), NIRS (red), and HYB (green), and the average for all participants. The horizontal dashed line indicates

the theoretical chance level (33.3%). Errorbars indicate the standard deviation. ***p < 0.005.

et al., 2015), an average ITR of 3.29 ± 0.72 bits/min could be
achieved using the ternary NIRS-BCI. The average ITR of 3.50
± 1.23 bits/min was achieved using the binary hBCI based on
MA (Shin et al., 2017a). We achieved an average ITR of 4.70 ±

1.92 bits/min, which reflects 42.9 and 34.3% improvements in
ITR when compared to a ternary NIRS-BCI (Hong et al., 2015)
and a binary hBCI (Shin et al., 2017a), respectively. Multi-class
classification may generally degrade classification accuracy when
compared to binary classification, although it can increase the
number of available commands. In this study, we demonstrated
that hBCI can mitigate the degradation of classification accuracy,
thereby further improving the ITR. Although it might be thought
that some EEG-BCI paradigms such as steady-state visual evoked
potential (SSVEP)-BCI and P300 BCI can provide higher ITR
(Ming et al., 2002; Hwang et al., 2012), they rely on exogenous
paradigms requiring external visual stimulus (Faller et al., 2010).
Therefore, they cannot be used for patients with oculomotor
impairment or those in CLIS.

We selected MI and MA as two mental tasks producing
distinct response, as they have been widely used in previous EEG-
BCI or NIRS-BCI studies (Zhang et al., 2017; Dutta et al., 2018).
However, in previous BCI studies, many other types of mental
tasks (e.g., word association, mental singing, three-dimensional
object rotation, mental navigation, and face imagery) were
considered in order to find an optimal combination of BCI tasks
(Friedrich et al., 2012; Hwang et al., 2014; Banville et al., 2017). It
is expected that larger ITRs would be achieved if the optimal task
combination and the optimal task length are established.

Themain drawback of the current hBCI is the high complexity
of the system, which might make it difficult to apply in practical

BCI applications. To reduce the system complexity, we attached
EEG electrodes only around frontal and central areas based
on a previous hBCI study that used the same mental tasks as
the present study (Shin et al., 2017a). Therefore, it is necessary
to minimize the system complexity using an optimal channel
selection method and by manufacturing a unified EEG-NIRS
recording system. No commercial hybrid recording system able
to collect EEG and NIRS data simultaneously in a single unit is
available (von Lühmann et al., 2017). Overcoming this drawback
would enable advancements in hBCI research in the future.
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