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DynaSim is an open-source MATLAB/GNUOctave toolbox for rapid prototyping of neural

models and batch simulation management. It is designed to speed up and simplify

the process of generating, sharing, and exploring network models of neurons with one

or more compartments. Models can be specified by equations directly (similar to XPP

or the Brian simulator) or by lists of predefined or custom model components. The

higher-level specification supports arbitrarily complex population models and networks

of interconnected populations. DynaSim also includes a large set of features that simplify

exploring model dynamics over parameter spaces, running simulations in parallel using

both multicore processors and high-performance computer clusters, and analyzing and

plotting large numbers of simulated data sets in parallel. It also includes a graphical

user interface (DynaSim GUI) that supports full functionality without requiring user

programming. The software has been implemented in MATLAB to enable advanced

neural modeling using MATLAB, given its popularity and a growing interest in modeling

neural systems. The design of DynaSim incorporates a novel schema for model

specification to facilitate future interoperability with other specifications (e.g., NeuroML,

SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g.,

Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org.

This tool promises to reduce barriers for investigating dynamics in large neural models,

facilitate collaborative modeling, and complement other tools being developed in the

neuroinformatics community.

Keywords: dynamical systems, neural models, GNU octave, neuroscience gateway, graphical user interface, code

generation, code:matlab

1. INTRODUCTION

DynaSim (http://dynasimtoolbox.org) is a MATLAB (MATLAB, 2017) and GNU Octave (Eaton
et al., 2016) toolbox developed for rapid prototyping of large neural models and batch simulation
management. It enables researchers to focus on model details instead of implementation, while
making it easy to share and explore models with the rest of the community. It facilitates rapid
prototyping of neural models by enabling networks of neurons with one or more compartments
to be specified by any combination of: (1) equations with conventional mathematical notation
(Figures 1, 2), similar to XPP (Ermentrout, 2002) and the Brian simulator (Goodman and Brette,
2008), (2) built-in MATLAB functions, and (3) predefined, mechanistically-meaningful model
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FIGURE 1 | Simulating a simple system of ordinary differential equations in DynaSim. (A) MATLAB code using the DynaSim toolbox. Simulation is achieved by passing

a model specification to the DynaSim dsSimulate function. Simulated data are returned in a DynaSim data structure. (B) (x,z) phase plane of Lorenz system.

FIGURE 2 | Simulating an ODE system with conditional reset and stochastic drive. (A) MATLAB code using the DynaSim toolbox. The model is specified using a cell

array of strings, eqns, listing equations defining parameters, an input function I(t), ODEs with ICs, and a conditional reset. The stochastic input uses the built-in

MATLAB function rand. (B) Plot of the time-varying input and simulated output.

objects (Figures 3, 4), similar to objects in Brian, mechanisms in
NEURON (Hines and Carnevale, 1997), and nodes/connections
in NEST (Gewaltig and Diesmann, 2007). DynaSim’s higher-level
specification, described below, easily scales to arbitrarily complex
population models and networks of interconnected populations
(Figure 4), and does not require significant “boilerplate” code for
even very large networks.

In addition to neural modeling, it provides a simple,
general-purpose interface for numerically integrating all models
supported by MATLAB’s built-in solvers for ordinary differential
equations. Its compatibility with GNU Octave enables it to
be used for free by those without a MATLAB license. It
can also be used for free through a web browser using the
Neuroscience Gateway web portal (https://www.nsgportal.org).
DynaSim is most similar to the Brian simulator in spirit,
scope, and its ability to simulate models based on equations as
well as libraries of pre-existing model objects (Goodman and
Brette, 2009). However, DynaSim provides both script-based
and easy-to-use graphical interfaces as well as better support
for analyzing and exploring model dynamics over parameter
space than other neural simulators. The software has been

implemented in MATLAB because MATLAB lacks advanced
tools for neural modeling, despite its popularity, especially
among neuroscientists, and a growing interest inmodeling neural
systems. DynaSim incorporates the best features of existing
simulators to fill this niche in MATLAB, and it leverages
MATLAB’s extensive capabilities to provide features that are
lacking in other simulators.

DynaSim includes a large set of features to simplify the
processes of exploring model dynamics over parameter spaces
(Figure 5), running separate simulations in parallel on multicore
processors and computer clusters, as well as parallel analysis
and plotting of large numbers of simulated data sets. It
increases simulation speed, compared to common MATLAB
implementations, using a combination of optimized vector
computation, C compilation, and parallel simulation. It includes
a graphical user interface (DynaSim GUI) that supports full
functionality without requiring user programming (Figure 6).
The GUI is a useful aid for teaching about the dynamics of neural
systems and is more accessible to experimentalists and students
without a background in mathematics and programming. The

design of DynaSim incorporates a novel schema for model
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FIGURE 3 | Simulating a biophysically-detailed neuron model using mechanisms. (A) DynaSim model leveraging existing model objects for iNaF, iKDR, and iM

currents to simplify the specification of a detailed neuron model. (B) IB response to tonic current.

FIGURE 4 | Simulating weak PING rhythms using a model specification structure. (A) The conceptual object-based architecture of a biophysically-detailed network of

excitatory (blue) and inhibitory (red) cells. (B) Mapping the object-based architecture onto a DynaSim specification structure that contains all the high-level

information necessary to construct the complete system of equations for the full model using objects from a library of pre-existing ionic mechanisms.

specification to facilitate interoperability with other tools outside

MATLAB including simulator-independent specifications (e.g.,
NeuroML, Gleeson et al., 2010, SBML, Hucka et al., 2003),

simulators (e.g., NEURON, Hines and Carnevale, 1997, Brian,
Goodman and Brette, 2008, NEST, Gewaltig and Diesmann,
2007), model repositories (e.g., Open Source Brain, http://

www.opensourcebrain.org), and web-based applications (e.g.,

Geppetto, http://www.geppetto.org). This tool aims to simplify
the investigation of dynamics of complex neural network models,

facilitate collaborative modeling, and complement other tools
being developed in the neuroinformatics community.

This paper begins with Worked Examples demonstrating the
simplicity and power of DynaSim for rapid prototyping and
model exploration. Next, DynaSim’s Technical Details will be
described, followed by a comparison to other simulators. The
paper concludes with a discussion of future developments.

2. WORKED EXAMPLES

In DynaSim, users pass a model specification to the function
dsSimulate, which integrates the model equations and
returns a data structure containing the simulated data. Models
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FIGURE 5 | Searching parameter space using the DynaSim toolbox. (A) MATLAB code using the DynaSim dsSimulate function with the vary option to specify a

set of 9 simulations varying two parameters (Iapp in population E and tauD of the connection from I to E). (B) Raster plots produced by dsPlot with the

plot_type option given an array of DynaSim data structures containing results for all 9 simulations. (C) Plots produced by dsPlotFR showing how mean firing

rates for E and I populations change as a function of the two varied parameters.

can be specified using strings or a MATLAB structure, and large
models can be specified easily from combinations of existing
model components. The following examples will demonstrate
the specification of increasingly complex models and advanced
DynaSim capabilities provided by optional arguments in
dsSimulate.

2.1. Example 1: Lorenz Equations
Any system of ordinary differential equations (ODEs) can be
modeled in DynaSim by listing equations using conventional
mathematical notation. Equations can be listed in a single string
or a cell array of strings and may contain parameters, functions,

conditional statements, ODEs and their initial conditions (ICs).
To demonstrate the generality of this approach, the Lorenz
equations (Lorenz, 1963):

dx

dt
= s(y− x)

dy

dt
= rx− y− xz (1)

dz

dt
= −bz + xy
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FIGURE 6 | DynaSim Graphical User Interface showing the weak PING model.

are defined in the cell array eqns in Figure 1A, and the system
is numerically integrated by passing this user specification (i.e.,
eqns) to the DynaSim function dsSimulate. Integration in
DynaSim is described in the Technical Details. The results are
plotted in Figure 1B. The same approach can be applied to
simulate ODE-based rate models of neural systems.

2.2. Example 2: Izhikevich Spiking Neuron
Model
The Izhikevich neuron (Izhikevich, 2003) is a system of
differential equations with a conditional update:

dv

dt
= .01(.7(v− vr)(v+ 40)− u+ I(t))

du

dt
= a(b(v− vr)− u) (2)

if v > vpeak, then v = c, u = u+ d.

Figure 2A demonstrates the specification of an Izhikevich
model using a cell array of strings and a noisy time-
varying input function that leverages the built-in MATLAB
function rand. Input and simulated output are plotted in
Figure 2B. Conditional updates are incorporated using the
notation: if(condition)(actions), where condition

is a MATLAB expression that evaluates to true or false and
actions is a semicolon-delimited list of statements to execute
when condition is true. Conditionals are evaluated on every
time step after the model state is updated according to the
differential equations. They can be used to update state variables
or parameters when their prescribed conditions are satisfied.

2.3. Example 3: Hodgkin-Huxley-Type
Spiking Neuron Models
The construction of large models with many equations can
be greatly simplified by utilizing components from a library
of pre-existing model objects. For instance, conductance-based
neuron models often include component ion currents (i.e.,
ionic mechanisms) that may be used in models of different
neuron types. A regular spiking (RS) neuron includes fast spike-
generating sodium (e.g., iNaF) and potassium (e.g., iKDR)
currents, while an intrinsically bursting (IB) neuron possesses the
same spike-generating currents plus a slower potassium current
(e.g., iM) providing a second time scale separating bursts of
spikes. Both models rely on the same iNaF and iKDR currents
while the IB model incorporates an additional iM current.

DynaSim expedites the construction of such models by
leveraging pre-existing model objects (e.g., iNaF,iKDR,iM).
Models incorporate reusable objects by including in their
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equations: (1) placeholders with an “@” sign for terms that
rely on external model objects; and (2) a list of the external
model objects (e.g., ionic mechanisms) defining the terms
to be inserted wherever the appropriate placeholders appear.
Figure 3A demonstrates the specification of a biophysically-
detailed IB neuron using a placeholder, @current, in the
voltage dynamics, dV/dt, and a list of ionic mechanisms,
{iNaF,iKDR,iM}, defining currents that affect the voltage
dynamics. Figure 3B plots the simulated response to a tonic
injected current. The IB neuron could be rapidly converted
into a RS neuron simply by reducing the list of mechanisms
to {iNaF,iKDR}. Alternatively, the neuron model could be
made arbitrarily more complex by adding as many ion currents
as desired to the mechanism list. DynaSim comes pre-packaged
with a variety of commonly used model objects (see Table 1 for
a representative list). This feature is described further in the
Technical Details section below.

2.4. Example 4: Weak PING Spiking
Network Model
The construction of large networkmodels (see the Benchmarking
section for limits on network size) is greatly simplified
by introducing an additional model object: the population.
Connections between populations and dynamics of population
constituents depend on lower-level mechanisms. Figure 4A

demonstrates an object-based network architecture with two
populations, named E and I, each with dynamics determined
by ionic mechanisms. Voltage dynamics of the E population
are shaped by intrinsic ion currents, named ina and ik, and
an inhibitory synaptic current, named iGABAa, that depends
on the state of the presynaptic I population. Similarly, the I
population has voltage dynamics shaped by the same intrinsic
currents (ina, ik) and an excitatory synaptic current (iAMPA)
that depends on the E population. Due to the kinetics of the
predefined ionic mechanisms and the parameters used in this
example, the network generates a weak pyramidal-interneuron
network gamma (PING) rhythm (Börgers and Kopell, 2005).

DynaSim expedites the process of specifying object-based
network models using a DynaSim specification structure
that organizes information about the population-level equations
and the mechanisms on which they depend. To facilitate the
computational implementation of an object-based conceptual
network model (Figure 4A), information is organized into two
fields of the specification structure: populations and
connections. Each population has its own equations

subfield, which can link to external model objects, as well as
subfields specifying the name and size of the population.
When populations have more than a single neuron, initial
conditions (e.g., initial voltages) and model parameters (e.g.,
maximal synaptic conductances) can be made heterogeneous
across the population by setting their values using arrays with
one element per neuron. Connections between populations
are made by connection mechanisms (e.g., synaptic currents)
specified in the connections field. See the Technical Details
section below for further information on the specification
structure. Tutorials on using the specification to construct

TABLE 1 | Representative list of model objects packaged with the default library.

Object Description

Input mechanisms

poisson Non-homogeneous poisson process

noise Source of gaussian noise

stim Source of tonic stimulation

Intrinsic mechanisms

iNa Fast sodium current (Hodgkin and Huxley, 1952)

iK Fast potassium current (Hodgkin and Huxley, 1952)

iM Slow, M-type potassium current (Traub et al., 2003)

iCaT T-type calcium current (Ching et al., 2010)

iKCa Calcium-dependent potassium current (Durstewitz et al., 2000)

iNaP Persistent sodium current (Durstewitz et al., 2000)

iH Hyperpolarization-activated cation h current (Ching et al., 2010)

CaBuffer Calcium buffer (Durstewitz)

Connection mechanisms

iAMPA AMPA synapse: sigmoid threshold with excitatory parameters

(Kopell et al., 2000)

iGABAa GABAA synapse: sigmoid threshold with inhibitory parameters

(Kopell et al., 2000)

iGABAb GABAB synapse (Ching et al., 2010)

iNMDA NMDA synapse (Koch and Segev, 1998)

iGAP Ohmic gap junction

iCOM Axial current for connecting two compartments

Populations

LIF Leaky integrate-and-fire neurons

Izh Izhikevich neurons (Izhikevich, 2003)

ML Morris-Lecar neurons (Morris and Lecar, 1981)

FHN FitzHugh-Nagumo neurons (FitzHugh, 1955)

HH Hodgkin-Huxley neurons with iNa and iK currents (Hodgkin and

Huxley, 1952)

RS Cortical Regular Spiking neurons (Kramer et al., 2008)

IB Cortical Intrinsically Bursting neurons (Kramer et al., 2008)

FS Cortical Fast Spiking interneurons (Kramer et al., 2008)

LTS Cortical Low Threshold Spiking interneurons (Kramer et al., 2008)

and combine large networks of multicompartment neurons
as well as examples demonstrating the construction of large
cortical and thalamic models can be found in the online
documentation.

Patterns of connectivity between source and target
populations are specified using connectivity matrices that appear
in the equations of their connection mechanisms. Optionally,
connectivity matrices can be defined in an external function or
the same MATLAB script as the specification structure
and stored as a parameter for the appropriate mechanism (see
the dsDemos script included with DynaSim and the online
“Getting started” tutorial for examples). Figure 4B demonstrates
the DynaSim specification of the weak PING model shown in
Figure 4A, as well as raster plots and an overlay of voltage traces
showing a 40 Hz network oscillation in response to a tonic
drive. This example uses the default all-to-all connectivity of
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the iAMPA and iGABAa mechanisms in the default DynaSim
library. An extended example specifying custom connectivity in
the PING model can be found online in the “Getting started”
tutorial. Connectivity matrices can be made sparse by setting
sparse_flag to 1 in the call to dsSimulate. Similar to
the mechanism-based specification of the IB neuron in Example
3, the network model can be rapidly adjusted and made as
complex as desired by simply updating mechanism lists for
each population and for the connections between populations.
Additionally, a configurable buffer of spike times, determined by
upward threshold crossings, can be accessed using the reserved
variables tspike_pre and tspike_post, for computing
spike-timing dependent functions (e.g., for spike-timing-
dependent plasticity, STDP); see the examples in the DynaSim
toolbox and the online documentation for more information.
It is worth noting that any network model specified using a
specification structure can be equivalently specified using
the method of explicitly listing all equations as described in
Examples 1–2. However, this is least preferred, since it is more
tedious, time-consuming, and error-prone than using predefined
model objects.

2.5. Example 5: Script-Based Modeling
Without Writing Equations
Predefined populations can be combined and remixed with
predefined mechanisms using the specification structure
to construct neural models without writing any equations.
This approach enables experimentalists and students without
mathematical proficiency to easily explore neural dynamics and
dependence on various stimulation protocols and biophysical
details. For instance, a population of 100 noise-driven neurons
with Hodgkin-Huxley (HH) kinetics can be specified and
simulated using the following script:

% Specify predefined HH neuron model

s.populations(1).equations=’HH’;

s.populations(1).size=100;

% Add Gaussian noise

s.populations(1).mechanism_list={’noise’};

% Specify noise amplitude

s.populations(1).parameters

={’noise_amp’,1e3};

% Run simulation

data = dsSimulate(s);

See Table 1 for a list of predefined neuron models that can be
used without requiring the user to enter any equations. The
example population can be converted into a model of leaky
integrate-and-fire neurons, or any other population in Table 1,
by simply changing the predefined neuron model specified in the
equations field. See the online documentation for examples
swapping out predefined models, including neurons with
parameterized refractory periods. Furthermore, newmechanisms
can be added to predefined neuron models by simply adding
them to the mechanism list. The specification can be

expanded to include any number of additional populations and
network-forming connections between them (see Example 4).

Thus, DynaSim offers a range of model specification methods
from writing detailed equations (for computational scientists,
engineers, andmathematicians) to simply listing objects from the
model library, enabling specification of complex models without
writing equations (for experimentalists and students).

2.6. Example 6: Exploring Parameter Space
of the Weak PING Model
One of the strengths of DynaSim is its support for exploring
how system behavior changes as a model is systematically
varied. In the simplest case, exploration involves simulating a
model with varying sets of parameters followed by analysis and
visualization of the results over the parameter space. This can
easily be performed in DynaSim by setting the vary option of
dsSimulate using a compact specification of the parameter
space to explore. For instance, the space can be specified using a
set of triplets (as in Figure 5A) with each element indicating the
values to use for parameters of populations and/or connections;
the space to explore is then constructed from the Cartesian
product of the parameter values from the set of triplets. Aside
from Cartesian products, DynaSim offers multiple forms of
specification to accommodate different patterns in parameter
space.

Exploring the weak PING model is demonstrated in
Figure 5A where 9 simulations are specified with three values
for each of two parameters: the amplitude of the current
injected into cells of the E population (Iapp) and the inhibition
time constant of the inhibitory synapse onto E cells (tauD).
DynaSim provides multiple functions for visualizing results
over parameter space. For instance, Figure 5B shows raster
plots produced by the DynaSim dsPlot function called
in Figure 5A, while Figure 5C, produced by the DynaSim
dsPlotFR function, shows the dependence of average firing
rates on varied parameters.

The DynaSim dsSimulate function offers three important
options for increasing the speed of simulation. The benchmarks
described below show that the speed of most simulations can be
increased by up to a factor of 10x by setting the compile_flag
option to 1:

data = dsSimulate(s,’vary’,vary,

’compile_flag’,1);

which directs dsSimulate to compile the simulation into
C code (i.e., MATLAB MEX compilation) before numerical
integration. Furthermore, the time required to run a set of
simulations can be decreased by running multiple simulations
simultaneously in parallel either on the user’s local machine or
on a computer cluster. Simulations can be run in parallel on the
user’s machine using the parfor function from the MATLAB
Parallel Computing Toolbox; this feature can be activated by
setting the parfor_flag option to 1:

data = dsSimulate(s,’vary’,vary,

’parfor_flag’,1);
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Additionally, a cluster can be used to parallelize a set of
simulations. Clusters have “login nodes” that users can access,
and “compute nodes” that jobs access. Typically, users submit
jobs to a batch queueing system from the login node, and
the queueing system controls the execution of the code on
compute nodes. As described in the Technical Details section,
DynaSim automates the creation and submission of jobs that
run simulations, perform analyses, and plot results on compute
nodes of a cluster with the Sun Grid Engine queueing system.
This feature can be activated on a login node by setting the
cluster_flag option to 1, the study_dir option to a
directory where jobs should save outputs, and then using the
DynaSim dsImport function to load all simulated data:

D = pwd; % where to save data

dsSimulate(s,’vary’,vary,

’cluster_flag’,1,

’study_dir’,D);

data = dsImport(D);

All three options (compile_flag, parfor_flag, and
cluster_flag) can be used in combination to achieve
multiplicative benefits. With minimal setup, these capabilities
can facilitate utilization of extremely powerful compute cluster
resources for the user. These options are described further in the
Technical Details section.

2.7. Example 7: Batch Analysis and
Visualization of Simulated Data
The DynaSim simulator returns simulated data that can be
manipulated directly by the user using any built-in capabilities
of MATLAB. Beyond that, DynaSim provides post-simulation
hooks that enable the same analysis and/or plotting function
to be applied serially or in parallel to all output data sets
(e.g., from a parameter sweep). At present, DynaSim provides
analysis functions for computing firing rates, power spectra,
and coherence; it provides plotting functions for generating
state variable traces, raster plots, and power plots. See the
online documentation for details. DynaSim also supports custom
analysis and plotting functions. Custom functions must take
a DynaSim data structure as their first argument and return
results in a structure; they may have any number of additional
arguments:

function results = my_analysis(data)

% do something

% return output in structure ’results’

end

Analysis functions are specified as function handles using
the analysis_functions option in dsSimulate,
and plotting functions are specified similarly using the
plot_functions option. For instance, simulations varying
model parameters (see the vary option in Figure 5A) can
be run and analyzed using the ‘my_analysis’ function in
parallel on different nodes of a cluster by executing the following

code from a login node (see Example 6 for details on cluster
computing):

D = pwd; % where to save results

dsSimulate(s,’analysis_functions’,

@my_analysis,’vary’,vary,

’cluster_flag’,1,’study_dir’,D);

results = dsImportResults(D,@my_analysis);

Analysis results are saved to study_dir and can be
loaded using the dsImportResults function. For a
single simulation, results will contain the output from
‘my_analysis.’ For a set of simulations, results is an
array of structures with each element containing the output
from ‘my_analysis’ for one simulation in the batch.
Multiple analysis functions can be applied to each simulated
data set by passing a cell array of function handles using the
analysis_functions option. Post-simulation hooks work
the same when simulations are run serially or in parallel on the
local machine. These approaches can be used to apply a complex
and possibly custom set of analyses to each simulated data set
with options to store only analysis results (i.e., minimize disk
space requirements) and to run analyses in parallel on different
nodes of a compute cluster or different cores of a given machine.

Alternatively, multiple simulated data sets can be analyzed
after all simulations are complete and data sets are loaded in
memory using the dsAnalyze function:

results = dsAnalyze(data,@my_analysis);

This DynaSim function supports parallel processing using the
parfor_flag option:

results = dsAnalyze(data,@my_analysis,

’parfor_flag’,1);

The combination of built-in support for common as well
as custom analysis and visualization functions provided by
DynaSim is designed to meet all needs of modelers and
experimentalists seeking to explore model dynamics.

2.8. Example 8: Exploring the Weak PING
Model in DynaSim GUI
In addition to the DynaSim functions available for script-based
model building and simulation, DynaSim provides a unique
graphical user interface (DynaSim GUI) that enables users to
access all of DynaSim’s features without MATLAB programming.
The DynaSim GUI provides a highly flexible and dynamic
environment for interactive, real-time exploration of how model
functions and dynamics vary with parameters, as well as how
varying model architecture changes the system behavior. Any
model can be explored using the GUI by passing its specification
to the function dynasim. For instance, the GUI can be used to
explore the weak PING model defined in Figure 4 by executing:
dynasim(s). Figure 6 shows how the weak PING model
appears in DynaSim GUI. Alternatively, the model could be built
from scratch using the graphical interface.
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A special feature of the DynaSim GUI is the ability to
interactively modify a model during ongoing simulation and to
observe the effects without needing to restart the simulation.
This feature is useful for interactively exploring models and
manually tuning model parameters. This feature is offered by few
simulators.

The DynaSim GUI is especially useful as a teaching tool and
for researchers without programming experience. Researchers
who prefer writing code may still find it useful for prototyping
and model exploration before choosing a model to investigate
further in MATLAB scripts using functions of the DynaSim
toolbox.

3. TECHNICAL DETAILS

3.1. Modeling
Models can be specified by the user with a cell array of
strings (Examples 1–2), a single string (Example 3), or a
specification structure (Examples 4–5), based on a
combination of master equations (using standard mathematical
notation and built-in MATLAB functions) and optional model
objects from an existing library (Examples 3–5). This provides
the user with multiple ways of specifying a model depending
on the complexity of the model and the level of mathematical
detail the user wishes to provide. Internally, DynaSim converts
user-supplied information into a standardized high-level
specification structure, which is subsequently converted
into a lower-level model structure. The model structure is then
used to automatically generate a suitable implementation (m-file,
mex-file, or function handle) based on the desired simulation
method. The results of simulation are returned in a DynaSim
data structure. Simulation in DynaSim always involves
sequential processing of the following DynaSim structures:

3.1.1. Model Objects for Populations and

Mechanisms
Equations define parameters, variables, functions, and ODEs.
Model objects are ways of grouping equations to facilitate the
rapid construction of larger models. There are two types of
objects: populations and mechanisms. Populations represent
discrete systems of interest like populations of cells, individual
cells, or compartments (e.g., soma, dendrite). Mechanisms
represent smaller-scale components that affect the dynamics
of populations (e.g., ion currents); they are called intrinsic
mechanisms when they depend only on the state of the
population they affect (e.g., sodium and potassium currents),
and they are called connection mechanisms when they depend
additionally on the state of other populations (e.g., synaptic
currents). DynaSim comes prepackaged with a library of
common model objects (see Table 1 for a representative list).
Each object is assigned a unique name to enable the duplication of
parameter, variable, and function names in different objects. The
same intrinsic mechanism can be reused in different populations,

and the same connection mechanism can be reused to connect
different pairs of populations. Thus, mechanism objects enable
equations to be specified once and reused an arbitrary number
of times, and both types of objects enable equations to be
specified without requiring the tedious assignment of unique
variable/function names each time the same equations appear in
a model.

3.1.2. DynaSim Structures for Higher-Level

Specification, Lower-Level Model Definition, and

Simulated Data
Specifiers for the higher-level, more abstract model
specification structure are grouped into populations
(each including a name, size, master equations, optional
intrinsic mechanism list, and parameters) and
connections between populations (each including
a direction, connection mechanism list, and
parameters) (Figure 7A). Connectivity between populations
is specified using connectivity matrices defined in connection
mechanisms between presynaptic source and postsynaptic
target populations. Models specified by the user with strings are
always associated internally with a population (named “pop1” by
default). Model specification is divided into populations and
connections to facilitate network modeling. A population
of multi-compartment neurons can be implemented by
specifying different compartments using the compartments
field in exactly the same way different populations of point
neurons are specified using the populations field. Two
compartments of the same neuron can be connected by
specifying connections, for instance, using the ohmic axial
current mechanism (iCOM in Table 1) from the DynaSim library
(see DynaSim demos for examples with explicit compartmental
dimensions); other forms of inter-compartmental connectivity
can be implemented using custom connection mechanisms.
More details on modeling multicompartment neurons can be
found in the online tutorials.

The lower-level, more detailed model definition structure
includes a single set of model elements: parameters (scalars,
strings),fixed variables (matrices and scalar expressions),
functions (of time and state variables), and ODEs/ICs
describing system dynamics (i.e., the evolution of state variables
over time) (Figure 7B). It is derived automatically from the
DynaSim specification and all associated model objects.
Model elements are always assigned unique names in the
lower-level model structure by adding an object-specific
namespace identifier (e.g., “pop1_” for population object “pop1”;
“pop1_Na_” for mechanism object “Na” in population “pop1”) to
the reusable names given in the object definition (e.g., “pop1_”
for state variable “V” in population “pop1”; “pop1_Na_m” for
state variable “m” in mechanism “Na”). The same unique state
variable and function names are used in the output data
structure storing the results of simulation.

3.1.3. Linking Equations Across Model Objects
Once namespace identifiers are used to assign unique names
to all parameters, variables, and functions, then the equations
from lower-level mechanisms need to be combined with the
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FIGURE 7 | Object-based architecture, standardized specification, and DynaSim models. (A) Object-based architecture and standardized specification. Discrete

model objects (populations and mechanisms) are shown in bold; any object can be stored independently in the library and reused as components of larger models.

There is no limit on the number of objects in a DynaSim model. Fields of the standardized specification structure are underlined. Each population can have a list of

intrinsic mechanisms; each directed pair of source and target populations can have a list of connection mechanisms. Optional objects are enclosed in parentheses.

A string-based specification will be internally associated with a default population “pop1” in the standardized specification structure. (B) The standardized specification

structure and model objects are parsed to generate a single set of equations describing the full model given the separate sets of equations for each object.

equations from higher-level populations and other lower-level

mechanisms belonging to the same population. ODEs can be
directly combined, but something extra is required to indicate
how mechanism functions affect the dynamics of population

state variables defined outside the mechanism; for instance, how
the sodium current “INa,” defined in mechanism “Na,” affects
the voltage “V” of population “pop1.” Linking objects can be

a difficult concept to grasp at first, but understanding it is not
necessary to use DynaSim.

Linking mechanism elements (functions or variables) to
equations defined in other objects is achieved by performing
substitution guided by “linkers” (Figure 8). A linker is a string

that appears in two objects; in one object (e.g., population
“pop1”) it is a placeholder indicating the location in an equation

(e.g., ODE “dV/dt”) where an element of a different object (e.g.,
function “INa”) should be inserted; in the second object (e.g.,

mechanism “Na”) it indicates the element (e.g., function
“INa”) to be inserted into the first object. For instance, the
linker “@current” can be used in population-level dynamics
“dV/dt=@current" along with the mechanism-level linker

statement “@current += INa” to direct DynaSim to perform
addition assignment, after adding namespace identifiers,
resulting in “d(pop1_V)/dt=@current+pop1_Na_INa.”
Compound assignment operators (e.g., “+=” and “–=”) enable

the same linker to be used in multiple mechanisms; for instance,
“@current+=INa” in mechanism “Na” and “@current+=”IK” in
mechanism “K” would produce “d(pop1_V)/dt=@current+pop1
_Na_INa +pop1_K_IK.” All linkers are removed from the
resulting ODE system before simulation; e.g., producing the
desired final ODE “d(pop1_V)/dt=pop1_Na_INa+pop1_K_IK.”
The online documentation explains how to achieve greater
modularization for linking objects with different linker names.

Linking objects is themost unconventional aspect of modeling
in DynaSim; it enables the flexible, modular construction of

arbitrary dynamical systems, not only neural models. In practice,
it is not necessary to understand linkers to build models in
DynaSim when working with existing objects from the library.
For instance, “@current+=” is used in all prepackaged ionic
mechanisms; thus, for conductance-based neural models, users
only need to list the ionic mechanisms they wish to include in
a population or connection between populations with suitable
dynamics. Additional mechanisms can be flexibly added or
removed simply by updating the appropriate mechanism list
without being concerned with linkers. This frees the modeler to
focus on the mechanisms that are most relevant for their models
and the parameters of those mechanisms.

3.1.4. Simulation Batches
Simulation batches are sets of simulations that systematically
vary some aspect of a base model; each simulation in a batch
involves some set of modifications to the base model. More
precisely, modifications are ways of modifying specifiers
(most commonly parameter values) in the base model’s high-
level specification. Simulation batches are specified using
the dsSimulate vary option, which is expanded into a set
of modifications for each simulation (see Example 4 for
additional details). A “study” in DynaSim is a processing chain
that includes a simulation batch plus downstream analysis and
visualization.

3.2. Simulation
Models are simulated in DynaSim by passing the user’s model
specification to the dsSimulate function along with options
specifying details of the simulation. dsSimulate provides
options to control the solver and machine(s) used for numerical
integration, the location of outputs, and the details of batch
simulation. Depending on the options specified, dsSimulate
automates the construction of the full system of equations, as
described above, and the generation of MATLAB functions that
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FIGURE 8 | Linking equations across population and mechanism objects. Mechanism linker statements with addition assignment (e.g., @current+=IK) direct DynaSim

to substitute functions INa and IK into population-level dynamics “dv/dt,” where the linker appears (i.e., @current). In this example, intrinsic mechanisms are defined in

script and added to specification structure in a mechanisms field.

perform the numerical integration. DynaSim supports custom
fixed-step integration (Euler, 2nd-order Runge-Kutta, and 4th-
order Runge-Kutta) as well as MATLAB’s built-in variable-
step solvers (e.g., ode23, ode45). The integration method is
specified by the solver option. When fixed-step simulation is
desired, DynaSim generates and executes a standalone m-file that
explicitly integrates the system of equations using the desired
method. When built-in solvers are used, DynaSim automatically
generates an m-file with the appropriate format and passes it
as a function handle to the desired built-in MATLAB function;
consequently, dsSimulate can serve as a simpler interface

for using MATLAB’s advanced numerical methods. All m-files
generated are saved by default and available for examination
and re-use. By default, all time points for all state variables are
recorded. The number of time points recorded can be decreased
by setting thedownsample_factor option to an integer value
greater than 1. Functions and spike times can be recorded as
well using the monitor keyword, as described in the online
“Getting started” tutorial. See Figure 9 for additional details
on the internal processing performed by DynaSim during each
simulation. DynaSim GUI provides an additional interactive
interface for real-time simulation using the Euler method with
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FIGURE 9 | Single simulation workflow. From the user perspective, the functional interface to DynaSim involves specifying a model using strings or a DynaSim

specification structure, passing it to dsSimulate, and obtaining a DynaSim data structure with the results of simulation. Internally, dsSimulate standardizes

the supplied specification using the dsCheckSpecification function. The standardized specification structure is converted into a DynaSim model structure

(Figure 7) using the dsGenerateModel function, which adds object-specific namespace identifiers and links variables and functions across model objects

(Figure 8). A solve_file for numerical integration is automatically generated from the model structure by dsGetSolveFile according to simulator options.

Simulated data is then obtained by evaluating the solve_file. DynaSim structures are shown in bold. Functions are followed by “().” Simulator options are enclosed

in parentheses.

a model stored in an updatable anonymous function that is
evaluated at each time step.

A common criticism of simulating computationally intensive
models in MATLAB is the time required for simulation. An
important method of increasing the simulation speed is available
for users with the MATLAB Coder toolbox. When available, the
compile_flag option can be used to instruct dsSimulate
to compile the automatically-generated m-file into a mex-file
with C code. As discussed in the Benchmarking section below,
depending on model details, simulating models using compiled
C code can reduce simulation time by a factor of 10x.

3.3. Batch Management
One advantage of DynaSim over other neural simulators is
its extensive support for processing sets of simulations (i.e.,
simulation batches). In practice, one is often interested in how
behavior changes as some aspect of a model is varied. To facilitate
model exploration, DynaSim offers (1) a compact specification of
the parameter space to explore, (2) the ability to performmultiple
simulations in parallel on different cores of a single machine
(using the Parallel Computing toolbox) and different nodes
of a high performance computer cluster (using automated job
creation and the qsub command), (3) functions for analysis and
visualization of how behavior varies over parameter space, and
(4) automatedmanagement of large sets of simulation results. See
online documentation and Example 6 for details.

3.4. Benchmarks
We implemented, adapted, and ran benchmarks taken from a
review of simulator tools (Brette et al., 2007). We compared
DynaSim with and without C compilation to the Brian 2
simulator with and without C++ compilation (Stimberg et al.,
2014). We built our code from the original codebase for
the review, available in ModelDB (McDougal et al., 2017) at
http://modeldb.yale.edu/83319, including adapting Brian version
1 code for Brian 2. Both our benchmark code and data
are available online on GitHub at http://github.com/asoplata/
dynasim-benchmark-brette-2007. Two neuronmodel types were
considered: one using integrate-and-fire (IF) type neurons

(CUBA) and one using Hodgkin-Huxley (HH) type neurons
(COBAHH). Network size was varied across simulations to
include 20, 21, ..., 27, 250 × 20, 250 × 21, ..., 250 × 27 cells. In all
cases, 0.5 s of model dynamics was simulated.

We began by running benchmarks to investigate performance
when cells were not connected via synapses, as in Goodman and
Brette (2008), in order to evaluate the core simulation speed of
intrinsic neuron properties alone.We first ran CUBA simulations
(Figure 10A), where cells consist solely of a single leakage current
and a thresholded voltage reset. Here, for small networks, both
DynaSim and compiled Brian 2 take ∼0.1 s to complete the
simulation while uncompiled Brian 2 takes∼4 s, owing largely to
startup costs. Beyond networks of 1,000 cells, however, DynaSim
takes ∼50% longer than uncompiled Brian 2 and ∼100% longer
than compiled Brian 2. Next, we ran COBAHH simulations
lacking synapses (Figure 10B). These cells consisted of typical
Hodgkin-Huxley sodium, potassium, and leakage currents. As in
the CUBA comparison, DynaSim and compiled Brian 2 are faster
for smaller networks; however, uncompiled and compiled Brian 2
take less time than DynaSim for networks of more than 100 cells.

Next, we compared the COBAHH model between DynaSim
and Brian 2 using synapses with either low (2%) connection
densities (Figure 10C) or high (90%) densities (Figure 10D).
We used synapses that were more complex than in the original
benchmarks (Brette et al., 2007) in two ways: our synapses
used “clock-driven,” continuous equations so that they would be
updated for all time points instead of just events, and, therefore,
the synaptic updates were not uniform, requiring them to be
calculated individually. Similarly to the previous synapse-less
benchmarks, we chose this method to test the raw synapse
simulation speed, since many models require more synaptic
history than just the time of a presynaptic event. DynaSim builds
a matrix the size of all synapses for all cells and computes the
synaptic activity using matrix multiplication at every time step;
this implies that DynaSim simulation speed is independent of
the connection density. In contrast, Brian 2 uses a synaptic
data structure that only contains synapses between neurons
with non-zero connection weights. This means that the time
taken to simulate a high-density network in Brian 2 can be
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FIGURE 10 | Benchmarks. Time to simulate vs. network size for all benchmarks run; network sizes were 1, 2, 4, 8, 16, 32, 64, 128, 250, 500, 1,000, 2,000, 4,000,

8,000, 16,000, or 32,000 cells. Red lines indicate uncompiled Brian 2 simulation time for given network type and size, green lines indicate time for equivalent C++

compiled Brian 2 simulation, blue lines indicate time for equivalent DynaSim simulation without using MEX compilation, and black lines indicate time for equivalent

DynaSim simulation using MEX compilation. (A) Benchmarks for simple “current-based” (CUBA) simulations consisting of cells containing just leakage currents and no

synapses. (B) Benchmarks for Hodgkin-Huxley conductance-based (COBAHH) simulations of cells containing Na, K, and leakage currents and no synapses. (C)

Benchmarks for COBAHH simulations, but with AMPA and GABA-A synaptic connections at a low density of 2% connection probability. (D) Benchmarks for

COBAHH simulations, but with AMPA and GABA-A synaptic connections at a high density of 90% connection probability. Note that we could not simulate the

highest-sized network (32,000 cells) using compilation under DynaSim, as the resulting data structures were found to be too large to be computed by MATLAB’s

compiling framework. DynaSim simulations using compilation worked successfully using network sizes of 16,000 cells, and those without compilation could

successfully simulate 32,000 cells.

much longer than that of a low-density network, as one can see
when comparing Figure 10C to Figure 10D. With low-density
(2%) synaptic connections as in Figure 10C and >100 cells,
both uncompiled and compiled Brian 2 perform simulations
consistently faster than DynaSim. However, given the same
network with a high-density (90%) of synaptic connections in
Figure 10D and more than 100 cells, both uncompiled and
compiled Brian 2 can take >10x longer than DynaSim. For
instance, when running a simulation of 32,000 cells at 90%
synaptic connection density, DynaSim took ∼3 days to run the
simulation, while uncompiled Brian 2 estimated it would take
40 days with comparable “clock-driven" synapses (see below for
discussion of “event-driven" synapses), and compiled Brian 2
would still take an estimated 2 weeks.

In every benchmarking scenario, we tested DynaSim with
and without C compilation. In all common scenarios, DynaSim
with compilation was 1–10x faster than DynaSim without

compilation. The benefit of compilation was most significant for
networks with fewer than 100 cells, and compiled simulations
failed when networks had 32,000 cells (Figure 10). We found
an exception for the unusual case of modeling hundreds of
completely isolated neurons (i.e., without synaptic connections);
understanding the reason for this is complicated by the
proprietary nature of the MATLAB Coder. Similarly, Brian 2
compilation was almost always either as fast or faster than
uncompiled Brian 2, particularly due to the loss of a startup time.
Brian 2 compilation speed converged to the speed of uncompiled
simulations, except for the most intensive simulations using
large populations connected with a high density, shown in
Figure 10D; here, compilation brought back strong gains (30%
faster), implying a speedup in total simulation time of weeks.
For Brian 2 compilation, we used the GCC compiler with
the highly optimizing options “-w,” “-O3,” “-ffast-math,” and
“-march=native” since we wanted to push Brian 2 to its speed
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limits, and could fairly benchmark DynaSim at its fastest against
these numbers.

These benchmarks illustrate a frequent answer to the question
“which simulator should I use?": it depends. For networks
consisting of hundreds of cells, both Brian 2 and DynaSim
typically have simulation speeds almost within an order of
magnitude of each other. DynaSim excels at larger networks
with high synaptic interconnectivity when synaptic dynamics
depend on more than spike arrival times (e.g., subthreshold
dynamics) and thus require clock-driven computation (i.e.,
updating synapses at every time step). However, when synaptic
dynamics depend only on spike arrival times (i.e., event-driven
synapses are acceptable), Brian 2 is able to simulate larger
networks orders of magnitude faster (not shown).

3.5. Summary of Advantages, Limitations,
and Future Directions
In this age of incredible computing power, performance is no
longer the “one true metric" by which all programs are compared
(Rudolph and Destexhe, 2007). With so many competing neural
simulators, the choice also depends on ease of use, time to
onboard, reproducibility, documentation quality, cross-platform
usability, amount of programming knowledge required, etc.
Similar to most popular neural simulators, DynaSim supports the
Linux, macOS, and Windows operating systems, and it provides
the most comprehensive MATLAB-based solution to neural
modeling. In contrast, comprehensive python-based solutions
have been developed and promoted by NeuralEnsemble (http://
neuralensemble.org) and the Human Brain Project (Markram
et al., 2011). Compared to many existing neural simulators
(e.g., Brian 2, NEURON, NEST, XPP), DynaSim offers better
support for batch analysis and visualization (Example 7) and
more options for varying model elements across large sets
of simulations that can be easily parallelized on multicore
processors and computer clusters (Example 6). It also provides
a uniquely-powerful graphical interface (Example 8) that enables
the exploration of complex neural models by users without
programming experience or mathematical expertise. For users
with mathematical proficiency, DynaSim offers a “purely”
equation-based model specification, similar to Brian 2 and
XPP, but lacking in NEURON and NEST. For users desiring
to build larger models from existing components, DynaSim
offers a modular, object-based specification, similar to Brian
2, NEURON, and NEST, but lacking in XPP. DynaSim also
benefits from supporting MATLAB’s built-in functions in models
and leveraging MATLAB’s powerful tools for analyzing and
visualizing simulated data; its compatibility with GNU Octave
and availability on the Neuroscience Gateway provide many
of the same benefits for free to users without a MATLAB
license.

At present, DynaSim has several limitations compared to
other simulators: (1) it computes synaptic currents at every time
step (i.e., synaptic computation is “clock-driven”) rather than
only computing when triggered by a synaptic event, (2) it does
not manage physical units, thus making users responsible for
ensuring consistency, and (3) it does not provide an explicit

spatial representation for model objects, although workarounds
exist. DynaSim has been tested on MATLAB versions 2013a
through 2017b as well as on the latest stable version of GNU
Octave (4.2.1). Several features are not currently supported
by GNU Octave including the DynaSim GUI, MATLAB
Coder for MEX compilation, and parallel simulations using
parfor. Despite these limitations, we believe DynaSim offers a
competitive mixture of both ease of use and simulating power,
especially owing to the built-in parallelization capabilities and its
user-friendliness for computational neuroscience novices.

Finally, DynaSim is an open-source project with a growing
community of active developers. Progress has already been
made at adding support for event-driven synapses, wrappers
for popular neuroscience analysis and visualization toolboxes
in MATLAB (e.g., FieldTrip, Oostenveld et al., 2011, EEGLAB,
Delorme and Makeig, 2004, and Chronux, Bokil et al.,
2010), data-driven optimization for parameter estimation (e.g.,
particle filtering, Meng et al., 2014), and code conversion for
interoperability with other simulators via NeuroML (Gleeson
et al., 2010). For the latest features and documentation on
DynaSim, see http://dynasimtoolbox.org.
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