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A brain–computer interface (BCI) is a channel of communication that transforms brain

activity into specific commands for manipulating a personal computer or other home

or electrical devices. In other words, a BCI is an alternative way of interacting with the

environment by using brain activity instead of muscles and nerves. For that reason, BCI

systems are of high clinical value for targeted populations suffering from neurological

disorders. In this paper, we present a new processing approach in three publicly

available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual

Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects;

(b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a

steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system.

Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5–4Hz), θ: (4–8Hz)]

phase-to-amplitude coupling (PAC) within sensor and across experimental time, we

succeeded in achieving high classification accuracy and Information Transfer Rates (ITR)

in the three data sets. Our approach outperformed the originally presented ITR on the

three data sets. The bit rates obtained for both the disabled and able-bodied subjects

reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally,

our approach outperformed alternative signal features such as the relative power (29.73

bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit

rates of 10–25 bits/min. In the second data set, we succeeded in achieving an average

ITR of 124.40 ± 11.68 for the slow 60Hz and an average ITR of 233.99 ± 15.75 for the

fast 120Hz. In the third data set, we succeeded in achieving an average ITR of 106.44

± 8.94. Current methodology outperforms any previous methodologies applied to each

of the three free available BCI datasets.

Keywords: brain–computer interface, c-VEP, SSVEP, disabled subjects, cross-frequency coupling, accuracy,

phase-to-amplitude coupling, performance
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INTRODUCTION

From the very first work of Farwell and Donchin (Farwell and
Donchin, 1988), the majority of P300-based brain–computer
interface (BCI) systems focused on creating new applications
(Polikoff et al., 1995; Bayliss, 2003), and on constructing and
testing new algorithms for the reliable detection of the P300
waveform from noisy data sets (Xu et al., 2003; Kaper et al., 2004;
Rakotomamonjy et al., 2005; Thulasidas et al., 2006; Hoffmann
et al., 2008). For a review of P300, an interested person can
read the following: Reza et al. (2012), Farwell et al. (2013), and
Piccione et al. (2006).

The majority of BCI systems are based on three major types
of brain signals: the event-related resynchronization which is
associated with the P300, the motor-imagery and the steady-state
visual evoked potentials (SSVEP) (Wolpaw et al., 2002). P300
could give very good results, for example in a spelling device
(Guger et al., 2009), but for continuous control in a daily scenario
like steering a wheelchair in many different directions, SSVPE
performed better (Lin and Kuo, 2016).

Other approaches to the traditional BCI systems are based on
visual evoked potentials (VEPs) paradigms. VEPs are alternative
brain signals that can be used in a BCI system. Frequently, the
two methods are mostly employed to distinguish various visual
targets, the phase and frequency coding (Wang et al., 2008).
These VEPs are usually observed in the occipital area in response
to a repetitive visual stimulus, and they encode the undergoing
visual information processing in the brain. In the context of BCIs,
a subject is focused (fixated) into a flashing image (target). Each
target is coded differently and thus, is presented by a unique
stimulus sequence. These results are unique visual responses
easily identified in the brain activity. BCI VEP-based systems
can be organized into three distinct categories depending on
the design: time (t), frequency (f), and (c) code modulated. The
reader is invited to consult review works such as Riechmann
et al. (2016) for more details. In this work, we will focus on a
c-VEP system in which pseudorandom sequences are used for
presenting the stimuli.

The most common domain where BCI c-VEPs are employed
is the matrix spellers. It has been previously shown that they
outperform the traditional BCIs regarding ITR performance
(Mohebbi et al., 2015; Riechmann et al., 2016) with classification
accuracies also being comparable.

c-VEPs are just starting to gain popularity in another domain;
that is the control of virtual or physical devices. In Mohebbi
et al. (2015), the authors built a system in which a 12-target
virtual agent was simulated in a 3D environment (accuracy
around 80%). Their paradigm closely follows those using the
classic matrix design, but they replaced the letters with navigation
and interaction symbols accordingly. A real-world scenario is
developed in Kapeller et al. (2013a) where users can control
(in real time) a remote robot with reported accuracies up
to 98.18%; though only four navigational symbols (left, right,
forward, backward) were used. In the same spirit, an application
was developed to control a wheelchair model in four directions
(Mohebbi et al., 2015). Their subject-specific study reported an
average of 97% accuracy when controlling the wheelchair.

A novel c-VEP study has proposed a high presentation rate of
coding sequence up to 120Hz compared to the traditional 60Hz.
This is a very significant study since the interface was based
on 32 circular white targets following a sequence stimulation
paradigm. Apart from the frequency of the coding sequence, they
also introduced a novel decoding algorithm based on spatio-
temporal beamforming. Wittevrongel et al. (2017) reported that
the median ITR was 172.87 bits/min.

The core of BCI-SSVEP systems is based on oscillatory
responses elicited when a light source flashes at a specific
frequency (e.g., 60Hz). These frequency-dependent responses
are spatially oriented over the parieto-occipital cortex. The design
of a BCI-SSVEP system is multi-targeted where each one flashes
on a different frequency (Müller-Putz et al., 2005) or on the same
frequency (Maye et al., 2017). The subject has to focus on one
of the targets that are presented simultaneously. The outcome
of the SSVEP response is the translation of the subject’s decision
tailored to the design of the BCI system like a speller (Chen et al.,
2015; Maye et al., 2017).

The bibliography suggests that the dominant methodology
in c-VEP studies (Kapeller et al., 2013a,b; Mohebbi et al.,
2015; Riechmann et al., 2016) is the usage of spatial filters
through Canonical Correlation Analysis (CCA) combined with
a classification algorithm (most notably SVMs Farwell and
Donchin, 1988; Spuller et al., 2012a or LDA Polikoff et al.,
1995). Briefly, CCA finds projections of the original EEG signal
to increase the distinct activity among EEG sensors and it is
used as a common spatial filter (Kapeller et al., 2013a). A
recent retinotopic multi-target SSVEP study adopted CCA as
spatial filters of amplitude and phase domain of the single trials,
achieving very high classification accuracy (Maye et al., 2017).

Thus, researchers are experimenting with modifying the
protocol to achieve optimal results. For instance, in Bin et al.
(2009), they experimented with different EEG buffer lengths
(in seconds) to produce the CCA templates. The authors
reported an improved accuracy score up to 99.21%; however,
this configuration has a direct impact on the latency of the
BCI system. Another more sophisticated approach is explored in
(Spuller et al., 2012b), where the authors incorporated the Error-
related Potentials to initially calibrate the system online; thus,
directing the classifier to the correct class. This approach achieved
a grand average accuracy of 96.18%.

Hoffmann et al. demonstrated a six-choice P300 paradigm
which was tested in a group of five disabled and four able-bodied
subjects. The experimental paradigmwas six flashing images with
the content of a home device (Hoffmann et al., 2008). They tested
how the electrode configuration can influence the accuracy in
order to detect the best channel selection. They finally succeeded
in achieving increased communication rates and classification
accuracies compared to previous studies (Piccione et al., 2006;
Sellers and Donchin, 2006; McCane et al., 2015).1

Multiple feature extraction techniques have been used in BCI
systems including the analysis of raw time series, the estimation
of signal power, connectivity analysis and so on. The most

1The data sets in Hoffmann et al. can be freely downloaded from the website of the

EPFL BCI group (http://bci.epfl.ch/p300).
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famous algorithms include the fast fourier transform (Resalat
and Saba, 2016), the Auto-Regressive Model (Pineda et al., 2003),
the short-time fourier transform, and the wavelet decomposition
(Nguyen et al., 2015). Compared to the past, brain connectivity
attracts much attention for BCI systems (Kabbara et al., 2016).
However, cross-frequency coupling (CFC) has not yet explored
its potentiality to BCI systems and especially to c-VEP and SSVEP
BCI systems.

In the present study, we used the data set from Hoffmann
et al. to demonstrate an alternative algorithmic approach with
the main scope of improving the bit rates up to the limits.
Our study focused on the c-VEP subcomponent of the brain
signals generated by the flashing images. The basic hypothesis
is to decode the features from the brain activity that are directly
related to the content of the flashing image. For that occasion, we
adopted a CFC estimator, namely phase-to-amplitude coupling
(PAC), to quantify how the phase of the lower frequency brain
rhythms modulates the amplitude of the higher oscillations. The
whole approach was followed on a trial basis and within sensors
located over the parieto-occipital brain areas. PAC proved to
be a valuable estimator in many applications like the design of
a biomarker: for amnestic mild cognitive impairment subjects
during an auditory oddball paradigm (Dimitriadis et al., 2015),
for dyslexia (Dimitriadis et al., 2016) and formild traumatic brain
injury (Antonakakis et al., 2016). Our main goal is to improve the
performance and the bit rates focusing on the c-VEP component
of the brain activity.

To further enhance the proposedmethodology based on CFC-
PAC estimates, we also report the results from two freely available
BCI data sets. The first data set is a c-VEP multi-target (32
targets) gaze BCI system with slow (60Hz) and fast (120Hz)
stimulus representation (Wittevrongel et al., 2017). The second
data set is a SSVEP and is associated with flickering stimuli at
different frequencies (5 frequencies−5 targets) with the main
scope of predicting the gaze direction (Georgiadis et al., 2018).

To the best of our knowledge, this work is the only one
suggesting CFC features for a BCI system and especially for
c-VEP and SSVEP.

The layout of the paper is as follows. In section Materials
and Methods, we briefly describe the three EEG data sets, the
subject population, the experimental set-up, the methods used
for data preprocessing steps of the proposed pipeline and the
classification procedure. The results are presented in section
Results. The discussion is addressed in section Discussion.

MATERIALS AND METHODS

c-VEP Flashing Images Data Set
Experimental Set-Up
Six targeted flashed images are illustrated in Figure 1. The images
show: a television, a telephone, a lamp, a door, a window, and
a radio. The images were flashed for 100ms and during the
following 300ms, none of the images was flashed, i.e., the inter-
stimulus-interval was 400ms.

The EEG was recorded at a 2048Hz sampling rate from
32 EEG sensors placed at the standard positions of the 10–20

FIGURE 1 | The six flashing images.

international system. For further details see the original paper
(Hoffmann et al., 2008).

Subjects
The system was tested with five disabled and four healthy
subjects. The disabled subjects were all wheelchair-bound but had
varying communication and limb muscle control abilities (see
Table 1). Subjects 1–4 are the disabled group where in Table 1

one can see their description. Subjects 6–9 were Ph.D. students
recruited from EPFL BCI group’s laboratory (all males, age 30 ±
2.3 years). None of subjects 6–9 had known neurological deficits.
Communication with Subject 5 was very difficult due to a severe
hypophony and large fluctuations in the level of alertness.

Experimental Schedule
Each subject recruited to participate in this study completed four
recording sessions, two sessions on 1 day and the remaining two
sessions on a second day, with amaximumof 2 weeks between the
two recording days. Each recording session consisted of a total
number of six runs, one run per targeted image (Figure 1).

The duration of each run was 1min and of the recording
session was around 30min. One session included on average
810 trials, while the whole data for each subject consisted of, on
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TABLE 1 | Subjects from which data were recorded in the study of the

environment control system (Hoffmann et al., 2008).

S1 S2 S3 S4

Diagnosis Cerebral

palsy

Multiple

sclerosis

Late-stage

amyotrophic

lateral

sclerosis

Traumatic

brain

and spinal-

cord injury,

C4

level

Age 56 51 47 33

Age at illness onset 0 (perinatal) 37 39 27

Sex M M M F

Speech production Mild

dysarthria

Mild

dysarthria

Severe

dysarthria

Mild

dysarthria

Limb muscle control Weak Weak Very Weak Weak

Respiration control Normal Normal Weak Normal

Voluntary eye

movement

Normal Mild

nystagmus

Normal Normal

average, 3,240 trials. For further details about the protocol see
Hoffmann et al. (2008).

Preprocessing of Single Trials
The impact of different single-sensor recordings on classification
accuracy was tested in an offline procedure.

Before learning a classification function and cross-validation
scheme, several preprocessing operations were applied to the
data.

The preprocessing steps applied to the data set in this study
are presented in the following steps:

(i) Referencing.We re-referenced single trials using the average
signal from the two mastoid electrodes.

(ii) Filtering. A third-order zero phase Butterworth bandpass
filter was used to filter the data. The MATLAB function
butter was used to compute the filter coefficients and
the function filtfilt was used for filtering. The predefined
frequencies were: δ {0.5–4 Hz}, θ {4–8 Hz}, α1 {8–10 Hz},
α2 {10–13 Hz}, β1 {13–20 Hz}, β2 {20–30 Hz}, and γ1
{30–45 Hz}.

(iii) Downsampling. The EEG was downsampled from 2,048 to
512Hz.

(iv) Single trial extraction. Single trials have a duration of
1,000ms from the stimulus onset up to 1,000ms after the
stimulus onset.

(v) Electrode selection. We applied our analysis to recordings
from single-sensor activity and mainly, PZ, OZ, P3, P4, P7,
and P8.

(vi) Feature vector construction. As an appropriate feature for
each trial, we used PAC which has already shown its
potentiality in building reliable biomarkers (Dimitriadis
et al., 2015, 2016). PAC was estimated for each frequency
pair (see ii). The description of PAC is given in the next
section. As a complementary feature that can separate
the counted stimuli from the non-counted stimuli, α

relative signal powers have been estimated. Alpha power
level can give us a valuable and objective criterion
when a subject attends or does not attend the stimulus.
Our idea is to create an initial binary classifier that
will cut-off the attended from the non-attended stimuli
for each subject prior to entering the main multi-class
classifier.

CFC metric computation
CFC quantifies the strength of interactions between a time
series of different frequency content. It can be estimated both
within and also between sensors (Buzsáki, 2010; Canolty and
Knight, 2010; Buzsáki et al., 2013). CFC can be estimated
between power—power, amplitude—amplitude, and amplitude-
phase representations of two time series with different frequency
content. These representations can be derived by filtering twice
one (within) or once two time series (between). The most
common type of CFC interaction is PAC and it is the most
common in the literature (Voytek et al., 2010). The PAC
algorithm for a single EEG sensor is described below.

Let x(isensor, t), be the EEG time series at the isensor-th
recording site, and t = 1, 2,.... T the sample points. Given
a bandpassed filtered signal x(isensor,t), CFC is quantified
under the notion that the phase of the lower frequency (LF)
oscillations modulate the amplitude of the higher frequency
(HF) oscillations. The following equations described the complex
representations of both LF zLF(t) and HF oscillations zHF(t)
produced via the Hilbert transform (HT):

zLF(t) = HT[xLF(t)] =
∣

∣zLF(t)
∣

∣ ei ϕLF(t) = ALF(t) e
i ϕLF(t),

zHF(t) = HT[xHF(t)] =
∣

∣zHF(t)
∣

∣ ei ϕHF(t) = AHF(t) e
i ϕHF(t)

The next step of the PAC algorithm is the estimation of the
envelope of the HF oscillation AHF(t) which is then bandpass-
filtered within the frequency range of LF oscillations. Afterward,
the resulting time series is again Hilbert transformed in order to
get its phase time series that describe phase dynamics φ’(t):

z′(t) = HT[AHF,LF(t)] =
∣

∣z′(t)
∣

∣ eiϕ
′
HF(t)

=
∣

∣z′(t)
∣

∣ eiϕLF→HF(t)

The aforementioned complex equation describes analytically the
modulation of the amplitude of HF oscillation by the phase of LF
oscillation.

The phase consistency between those two time series can be
measured by the original phase-locking value (PLV) estimator
(Lachaux et al., 1999) but also from its imaginary portion of
PLV. The imaginary part of PLV (iPLV) can be used as an
synchronization index that quantifies the strength of CFC-PAC
coupling.

PLV is defined as follows:

PLV =
1

T
∗

T
∑

t=1

et(φLF(t)−φHF(t)) (1)
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and the iPLV as follows:

ImPLV =
1

T
∗

∣

∣

∣

∣

∣

Im

(

T
∑

t=1

ei(φLF(t)−φHF(t))

)∣

∣

∣

∣

∣

(2)

The iPLV is an estimator that is less affected compared
to PLV from the volume conduction effect. Using iPLV for
quantifying the strength of CFC interactions is an advantage
over volume conduction. The iPLV is more sensitive to non-
zero phase lag and for that reason is more resistant to any self-
interactions that are directly linked to volume conductions (Nolte
et al., 2004). For further details and applications, an interested
reader can read our previous work Dimitriadis et al. (2015,
2016).

In the present study, as already mentioned, we used seven
frequency bands which means that PAC is estimated for 7∗6/2
= 21 cross-frequency pairs e.g., δφ-θA, δφ-αA1 where φ and A
denote the phase and amplitude of each frequency band. Figure 2
demonstrates the preprocessing steps of the PAC estimator for a
trial of Subject 6 at Target Image 6.

For comparison purposes, we estimated the CFC phase-to-
amplitude estimates via two alternative approaches: (1) In the
first one, we followed the same analytic pathway as the one
described above but instead of the imaginary part of PLV,
PLV was estimated and (2) in the second approach, Canolty’s
et al. (2006) definitions were adopted based on mean vector
length (MVL) and the complex estimation of modulation of
the phase of slower rhythm to the amplitude of the higher
oscillation. Hereafter, we will use the terms of PACiPLV, PACPLV

and PACMVL to describe the CFC-PAC-based estimates with the
three approaches.

We estimated the three different CFC estimates (PACiPLV,
PACPLV and PACMVL) and relative signal power (RSP) for the
first 32 samples (60ms) increasing the window up to 500ms (256
samples) with a step of 12 samples (5ms).

Signal power
We estimated the relative power of each bandpass frequency
signal segment with the following equations:

SP(fr) =

T
∑

t=1

filtered (t)2 (3)

RSP
(

fr
)

=
SP
(

fr
)

∑frequencies

fr=1
SP
(

fr
)

(4)

The first equation quantifies the signal power (SP) of each
frequency as the sum of the filtered signal squared per sample
(Equation 3) while Equation (4) divides the SP by the sum of
the SP from all the frequencies which gives the RSP. The whole
approach was repeated for every trial, sessions and subject. For
the RSP estimation, we used the same predefined frequencies as
for CFC-PAC estimates.

Machine learning and classification
The training data set includes on average 405/2025 target/non-
target trials and the validation data sets consisted of 135/675
target/non-target trials.

Adopting, we used an unsupervised multi-class feature
selection algorithm (Cai et al., 2010) to detect the characteristic
cross-frequency pair via PAC value that gives the highest
discrimination of each target image compared to the rest based
on the training data set. Additionally, we used a sequential feature

FIGURE 2 | The algorithmic steps for PAC estimation. Using the first single-trial signal from session 1 and flashing image 1 (A), from the P300 of an able subject

(subject 6), we demonstrate the detection of coupling between θ and β1 rhythm. To estimate θ-β1 PAC, the raw signal was band-pass filtered into both a

(B) low-frequency θ (4–8Hz) component where its envelope is extracted as well as (C) a high-frequency β1 (13–20Hz) component where its instantaneous phase is

extracted. (D) We then extracted the amplitude and the instantaneous phase of the band-passed β1 (13–20Hz) and filtered this amplitude time series at the same

frequency as θ (4–8Hz), giving us the θ modulation in lower β amplitude. (E) We then extracted the instantaneous phase of both the θ-filtered signal and the θ-filtered

lower-β amplitude and computed the phase-locking between these two signals. The latency depended differences (F), will be used in estimating the phase-locking

(iPLV) that will reflect the PAC-interaction between the two involved brain rhythms. This phase-locking represents the degree to which the lower β (β1) amplitude is

co-modulated with the θ phase.
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selection algorithm to detect the RSP that separate the counted
flashing images from the non-counted images.

We trained a multi-class SVM classifier based on the
selected PAC estimate from specific cross-frequency pairs and
then we tested the classifier to the validation data to get
the response tailored to each target image (Joachims, 1999).
The training test consisted of the first session while the
remaining three sessions were used for validating the whole
analytic scheme. A k-nearest neighbor (k-NN) classifier was
applied to differentiate the attended from the non-attended
flashing images prior to a multi-class SVM classifier based
on α RSP.

c-VEP Slow/Fast Stimulus Presentation
Experimental Set-Up
The time course of one trial of the experiment can be seen in
Figure 1 in Wittevrongel et al. (2017). The design of the interface
consisted of 32 circular white targets following an m-sequence
stimulation paradigm (see further) and that were overlaid with
static (i.e., non-flickering) gray letters or numbers arranged in a
matrix of 4 (row)× 8 (columns).

The followingm-sequence of a length of 63 was used to encode
the targets:

000100001011001010100100111100.00011011100110001110

1011111101101

where targets were lagged by integer multiples of two frames.
A trial started with the presentation of a target cue. Subjects

were instructed to redirect their gaze to the cued target and
then to press a button to start the trial/stimulation. After that,
all targets were hidden but the characters were still shown in
gray for 1 s, followed by the stimulation phase during which all
targets adopted their unique lagged m-sequence and repeated
this sequence either five or ten times for slow and fast stimulus
representation, respectively.

The EEG was recorded at a 250Hz sampling rate from 32
EEG sensors placed at the standard positions of the 10–20
international system. For further details see the original paper
(see Figure 2 in Wittevrongel et al., 2017).

Subjects
Seventeen subjects with normal or corrected-to-normal vision
participated in the experiment (14 female, 13 right handed, aged
22.35± 2.9, ranging from 18 to 30 years old). The data set and the
preprocessing steps followed on from the original papers which
are publicly available.2

Experimental Schedule
Every subject performed 5/10m-sequence repetitions per trial for
a 60/120Hz stimulation rate. The total duration of a trial was
5.25 s.

The original goal of this study was dual. First, to assess the
performance of the spatio-temporal beamforming algorithm
for target identification when using cVEP-based encoding, and

2https://kuleuven.app.box.com/v/CVEP

secondly to compare the performance for both slow-traditional
(60Hz) and high-speed (120Hz) stimulus presentations
(Wittevrongel et al., 2017).

Preprocessing of Single Trials
The impact of different single-sensor recordings on classification
accuracy was tested in an offline procedure.

Before learning a classification function and cross-validation
scheme, several preprocessing operations were applied to the
data.

The preprocessing steps applied to the data set in this study
are presented in the following steps:

(i) Referencing.We re-referenced single trials using the average
reference signal instead of using the average signal from the
mastoid as in the original data set.

(ii) Filtering. A third-order zero phase Butterworth bandpass
filter was used to filter the data. The MATLAB function
butter was used to compute the filter coefficients and
the function filtfilt was used for filtering. The predefined
frequencies were: δ {0.5–4 Hz}, θ {4–8 Hz}, α1 {8–10 Hz}, α2
{10–13 Hz}, β1 {13–20 Hz}, β2 {20–30 Hz}, and γ1 {30–45
Hz}.

(iii) Single trial extraction. Single trials have a duration of
5250ms (5.25 s) from the stimulus onset up.

(iv) Electrode selection. We applied our analysis to recordings
from single-sensor activity using the whole set of 32 EEG
recording channels.

(v) Beamforming. We adopted the same strategy as in the
original paper by building beamformers based on the
training epochs for each subject. Beamformers act as
spatial filterers and have shown their potentiality in
event-related potential (ERP) studies (van Vliet et al.,
2016). The activation patterns and the target and
frequency specific beamformers were calculated from
the training data Ttraining ∈ Rm×t×t where m is the
number of channels, t is the number of samples and
l is the number of epochs, as follows. For each epoch
in training, a maximal number of t-second consecutive
non-overlapping segments were extracted, where t
represents the time needed to display one complete
m-sequence.
The whole procedure was followed independently for each
subject, target and frequency.
An LCMV beamformer was finally estimated for each
target and frequency based on the testing data set. In
the original paper, they applied the proposed beamformer
within 4–31Hz. For further details, see the original
paper.
Our goal was not to use beamformers as a classifier but
to diminish the effect of spurious activity among the EEG
sensor channels.

(vi) Feature vector construction. As an appropriate feature for
each trial, we used PAC which already has shown its
potentiality in building reliable biomarkers (Dimitriadis
et al., 2015, 2016). PAC was estimated for each frequency
pair (see ii). We used a sliding-window of 100ms (25
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FIGURE 3 | Subject 6 (able bodied). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACiPLV patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

samples) that moved every 0.004 s (one sample). This
approach leads to a PAC time series (PACts) of 501 samples
long. Finally, for every subject and for each target, we have
estimated a matrix with the following dimensions: trials x
sensors (32) × CFC-pairs (21) x PACts (501). Trials refer
to the testing data set following a five-fold cross-validation
procedure.

Preprocessing steps have been applied independently to slow and
fast stimulus representation.

Machine Learning and Classification
For each subject and at every five-fold of the cross-validation
procedure, we thoroughly searched for the optimal set of channel
selection, CFC-pairs and the time needed (length of PACts) to
reach a plateau of classification performance or 100% absolute
accuracy. Apart from the classification performance, time is
an important parameter that further increases the optimal
information transfer rate (ITR).

At every fold, we encoded the single trial PACts in the training
set via a symbolisation procedure based on the neural-gas
algorithm (Martinetz et al., 1993). This approach has already been
used in single trial responses in a BCI-SSVEP system (Georgiadis
et al., 2018) and also for transforming dynamic functional brain
networks into functional connectivity microstates (Dimitriadis
et al., 2013). Practically, for each PACts and for each sensor, we

designed encoded prototypical code waves for the training data
set.

To access the recognition accuracy of each channel and each
PACts across the CFC-pairs and across time t (samples of the
PACts), we employed the Wald-Wolfowitz (WW) test as a
similarity index between training prototypical PACts and PACts

from every single trial of the testing set. For further details
regarding the WW-test, see section 2 in the Supplementary
Material. The time window across the PACts was moved per
sample in order to detect the best classification accuracy in a
shorter time.

SSVEP Multi-Target Data Set
Experimental Set-Up
The visual stimulation included five violet squares, located as
a cross (Figure 6 in Georgiadis et al., 2018) and flickering
simultaneously at five different frequencies (6.66, 7.50, 8.57,
10.00, and 12.00Hz).

The brain activity was recorded using a high-density EEG
scanner with 256 electrodes [an EGI 300 Geodesic EEG System
(GES 300)]. The sampling frequency was 250Hz and the
impedance for all electrodes was kept below 10 KΩ . During the
recordings, an online bandpass filter (0.1 Hz−70Hz) was applied
to suppress noise and a 50Hz notch filter to eliminate the power
line interference (Georgiadis et al., 2018).
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FIGURE 4 | Subject 6 (able bodied). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACPLV patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

Subjects
Eleven healthy volunteers (8 males and 3 females mean± SD age
= 30.36 ± 5.20 years) participated in this study. The data set is
publicly available.3

Experimental Schedule
Each subject participated in five sessions with 25 flickering
windows per session leading to 125 trials of 5 s in total and 25
trials per target frequency. The order of the flickering targets
(gaze directions) was randomly chosen.

The original goal of this study was to access the recognition
accuracy of the SSVEP BCI system using multi-targets flickering
at different frequencies (Wittevrongel et al., 2017). The selection
of the frequencies focused on avoiding frequencies that are
multiples of another frequency.

Preprocessing of Single Trials
The impact of different single-sensor recordings on classification
accuracy was tested in an offline procedure.

Before learning a classification function and cross-validation
scheme, several preprocessing operations were applied to the
data.

The preprocessing steps applied to the data set in this study
are presented in the following steps:

3https://physionet.org/physiobank/database/mssvepdb/

(i) Referencing.We re-referenced single trials using the average
reference signal.

(ii) Filtering. A third-order zero phase Butterworth bandpass
filter was used to filter the data. The MATLAB function
butter was used to compute the filter coefficients and
the function filtfilt was used for filtering. The predefined
frequencies were: δ {0.5–4 Hz}, θ {4–8 Hz}, α1 {8–10 Hz},
α2 {10–13 Hz}, β1 {13–20 Hz}, β2 {20–30 Hz} and γ1
{30–45 Hz}.

(iii) Single trial extraction. Single trials have a duration of
5000ms (5 s) from the stimulus onset up.

(iv) Electrode selection. We applied our analysis to recordings
from single-sensor activity using the whole set of 52
parieto-occipital EEG recording channels (see Figure 6 in
Oikonomou et al., 2016).

(v) Beamforming. We adopted the same strategy as in the
second data set using the beamformers. Beamformers act
as spatial filterers and have shown their potentiality in
ERP studies (van Vliet et al., 2016). The activation patterns
and the target and frequency specific beamformers were
calculated from the training dataTtraining ∈ Rm×t×t , where
m is the number of channels, t is the number of samples
and l is the number of epochs, as follows. For each epoch in
training, a maximal number of t-second consecutive non-
overlapping segments were extracted, where t represents the
time needed to display one complete m-sequence.
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FIGURE 5 | Subject 6 (able bodied). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACMVL patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

The whole procedure was followed independently for
each subject, target and frequency.

An LCMV beamformer was finally estimated for each
target and frequency based on the testing data set. For
further details, see the original paper.

Our goal was not to use beamformers as a classifier but
to diminish the effect of spurious activity among the EEG
sensor channels.

(vi) Feature vector construction. As an appropriate feature for
each trial, we used PAC, which has already shown its
potentiality in building reliable biomarkers (Dimitriadis
et al., 2015, 2016). PAC was estimated for each frequency
pair (see ii). We used a sliding-window of 100ms (25
samples) that moved every 0.004 s (one sample). This
approach leads to a PAC time series (PACts) of 501 samples
long. Finally, for every subject and for each target, we have
estimated a matrix with the following dimensions: trials ×
sensors (25) × CFC-pairs (21) × PACts (501). Trials refer
to the testing data set following a five-fold cross-validation
procedure.

Preprocessing steps have been applied independently to slow
and fast stimulus representation.

Machine Learning and Classification
For each subject and at every five-fold of the cross-validation
procedure, we thoroughly searched for the optimal set of channel

selection, CFC-pairs and the time needed (length of PACts) to
reach a plateau of classification performance or 100% absolute
accuracy. Apart from the classification performance, time is an
important parameter that further increases the optimal ITR.

At every fold, we encoded the single trial PACts in the training
set via a symbolisation procedure based on the neural-gas
algorithm (Martinetz et al., 1993). This approach has already been
used in single trial responses in a BCI-SSVEP system (Georgiadis
et al., 2018) and also for transforming dynamic functional brain
networks into functional connectivity microstates (Dimitriadis
et al., 2013). Practically, for each PACts and for each sensor,
we designed encoded prototypical code waves for the training
data set.

To access the recognition accuracy of each channel and
each PACts across the CFC-pairs and across time t (samples
of the PACts), we employed the WW-test as a similarity index
between training prototypical PACts and PACts from every
single trial of the testing set. For further details regarding
the WW-test, see section 2 in the Supplementary Material.
The time window across the PACts was moved per sample
in order to detect the best classification accuracy in a
shorter time.

Performance Evaluation
Classification accuracy and ITR were estimated for the offline
experiments. We estimated ITR (in bits per second) with the

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2018 | Volume 12 | Article 19

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Dimitriadis and Marimpis PAC Improves Bit-Rates in BCI Systems

FIGURE 6 | Subject 1(disabled). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACiPLV patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

following Equation (5):

B = (log2(N)+ P ∗ log2(P)+ (1− P) ∗ log2((1− P)/(N − 1)))

ITR = B/(T/60) (5)

Where N is the number of classes/target images (i.e., six in
this study), P is the accuracy of identification of the targeted
image and t (seconds per selection) is the average time for a
selection. ITR expressed the bits/symbol divided by the average
time required to select a single symbol, T.

For data set 1, T= 0.4 s (300ms duration of the flashing image
+ optimal time window from the response due to the decision)
and N = 6 for both disabled and able-bodied subjects.

For data set 2, N = 32 and T was set to the optimal length
of PACts plus an additional 500ms to account for the time the
subject would need to switch their gaze to the next target.

For data set 3, N = 5 and T was set to the optimal length of
PACts plus an additional 5 s to account for the time the subject
would need to switch their gaze to the next target.

RESULTS

c-VEP Flashing Images Data Set
δ-θ PAC as a Valuable Feature for the BCI—c-VEP

System
We estimated both PAC and RSP for the first 32 samples (60ms)
increasing the window up to 500ms (256 samples) with a step

of 12 samples (5ms). The multi-class unsupervised algorithm
(Cai et al., 2010) detected only one PAC feature from the 21
possible cross-frequency pairs as the unique candidate feature to
separate the six classes of image stimuli. δφ-θA was the selected
feature for both disabled and able-bodied subjects for PACiPLV.
In contrast, the selected CFC features based on PACPLV and
PACMVL were completely random and different between and also
within subjects. Trial-averaged comodulograms of PAC values for
the three adapted estimators are demonstrated for two our of
eight subjects (see Figures 3–5, 6–8). For the rest of the subjects
see Supplementary Material.

The group-averaged classification performance was 99.96%±

0.03 for each sensor location using the first 100ms for both
able-bodied and disabled subjects. The errors were detected on
the trials where the subject missed the flashing image. The
classification performance with the use of a kNN-classifier prior
to the multi-class SVM was ∼100 % for every subject and for
all the pre-selected sensors namely PZ, OZ, P3, P4, P7, P8 EEG
sensors.

Table 2 summarizes the classification accuracy for every
subject and connectivity estimator with the related ITR based
on the Pz EEG sensor. The ITR obtained for both the disabled
and able-bodied subjects reached the fastest reported level
of 6.45 bits/s (or 387 bits/min) with the PACiPLV estimator
compared to 3.79 bits/s (or 227 bits/min) with the PACPLV

estimator and 3.80 bits/s (or 228 bits/min) with the PACMVL

estimator. Additionally, our approach outperformed alternative
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FIGURE 7 | Subject 1(disabled). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACPLV patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

signal features such as the RSP (1.09–1.37 bits/s) and raw
time series analysis (1.05–1.25 bits/s) and also the original
reported bit rates of 10–25 bits/min. The new preprocessing
approach was based on recordings from the single-sensor Pz,
while the classification accuracy was also tested for at the other
electrodes.

We detected a significant difference between ITRiPLV and ITR
original presented inHoffmann et al. (2008) (Wilcoxon rank-sum
test, p < 0.00001. Comparing ITRiPLV with ITRPLV and ITRMVL,
we also detected significant differences (Wilcoxon rank-sum test,
p < 0.00001). These results support the proposed iPLV estimator
over the rest two.

Figure 3 illustrates the trial-related (grand-averaged) PACiPLV

-connectivity patterns (comodulograms) from the first able-
bodied subject from target and non-target trials for each
flashing image. In contrast, Figures 4, 5 demonstrate, similarly to
Figure 3, the grand-averaged PACPLV-connectivity patterns and
the grand-averaged PACMVL-connectivity patterns, respectively
(Canolty’s et al., 2006).

Similarly, Figure 6 demonstrates the grand-averaged PAC-
connectivity patterns of from the first disabled subject using the
PACiPLV comodulograms. For comparison purposes, Figures 7,
8 are dedicated to the grand-averaged PACPLV-connectivity
patterns and the grand-averaged PACMVL -connectivity patterns,
respectively (Canolty’s et al., 2006).S.1–6 illustrate the grand-
averaged PAC-connectivity patterns for the remaining six
subjects of the data set (see Supplementary Material).

Comodulograms differed by contrasting target vs. non-target
within each subject and target image but also between the two
images. δφ −θA was the unique and consistent feature for both
disabled and able-bodied subjects based on the PACiPLV that can
clearly predict the target image for both groups. Comodulograms
derived from PACPLV and PACMVL are more random without
succeeding to differentiate the 21 cross-frequency pairs in both
conditions and across the flashing images. This observation
further supports the non-consistency of feature selection across
individuals for those two alternative PAC-CFC estimators.

Applying a Wilcoxon Rank Sum test of trial-based δφ −θA

between the able-bodied and disabled subjects, we detected
significant different values (p < 0.01). Group-averaged δφ −θA

were higher for able-bodied subjects compared to disabled in the
six-targeted images. However, the dataset is too small in order to
make any conclusion regarding the sensitivity of δφ −θA to detect
abnormal visual decoding activity.

Attention and Alpha Power
Prior to multi-class SVM, we applied a kNN-classifier based on
α1 SP which was selected as the feature that can discriminate
counted from non-counted flashing images. The kNN-classifier
performed 100% clear filtration of attended from non-attended
trials for each subject and further improved the performance of
multi-class SVM to 100%. We achieved this performance using
an α1 signal relative power estimated from the first 100ms for
both able-bodied and disabled subjects.
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FIGURE 8 | Subject 1(disabled). Demonstrating the level of CFC in c-VEP responses for each flashing image. Trial-Averaged PACMVL patterns from the c-VEP

responses for each target image and for both attended vs. non-attended images.

TABLE 2 | PAC-CFC: Single-subject classification and the related bit rates for the

disabled (Subjects 1–4) and able-bodied (Subjects 5–8) subjects based on the Pz

sensor and the three alternative CFC-PAC estimators.

Classification accuracy

(PACiPLV/PACPLV/PACMVL)

ITR

(PACiPLV/PACPLV/PACMVL)

Subject 1 99.91/83.03/82.44 385.87/230.08/226.03

Subject 2 99.92/82.35/82.55 386.05/225.417/226.78

Subject 3 99.96/82.35/82.45 386.84 /225.41/226.09

Subject 4 99.95/82.11/82.41 386.63/223.78/225.82

Subject 5 99.97/82.63/82.42 387.04/227.33/225.89

Subject 6 99.99/82.39/83.88 387.48/225.69/236.02

Subject 7 99.99/83.30/82.90 387.48/231.96/229.18

Subject 8 99.99/83.45/82.85 387.48/233.00/228.84

TABLE 3 | Group-averaged α1 signal relative power for attended and

non-attended images.

Attended Non-attended

Able-bodied 0.09 ± 0.02 0.06 ± 0.01

Disabled 0.10 ± 0.02 0.07 ± 0.01

The classification performance with the kNN-classifier was
∼100% for every subject and for all the pre-selected sensors
namely PZ, OZ, P3, P4, P7, P8 EEG sensors.

TABLE 4 | PAC-CFC: Single-subject classification and the related bit rates for the

disabled (Subjects 1–4) and able-bodied (Subjects 5–8) subjects based on the Pz

sensor and the three alternative CFC-PAC estimators.

Classification accuracy

(PACiPLV/PACPLV/PACMVL)

ITR (min)

(PACiPLV/PACPLV/PACMVL)

Subject 1 94.63/83.03/75.45 323.75/ 230.08/181.62

Subject 2 95.35/82.35/75.35 330.84/225.41 /181.03

Subject 3 95.15/82.35/75.15 328.85/225.41/179.86

Subject 4 96.62/82.11/75.61 344.00/223.78/182.57

Subject 5 94.12/82.63/75.32 318.86/227.33/180.86

Subject 6 92.51/82.39/76.09 304.06/225.69/185.43

Subject 7 93.20/83.30/75.80 310.29/231.96/183.70

Subject 8 95.45/83.45/75.44 331.85/233.00/181.57

Table 3 summarizes the group-averaged RSP of an α1
frequency band for attended vs .non-attended images.

Managing the Cross-Session Transfer Learning

Problem
In order to explore the effect on classification performance
of collecting the data on two different days, we performed
the same analysis using the trials derived from the second
set of two sessions as a training set and the trials of the
first set of two sessions as a testing set. Table 6, in complete
analogy with Table 4, summarizes the classification accuracy
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TABLE 5 | α1 Relative Power: Single-subject classification and the related bit

rates for the disabled (Subjects 1–4) and able-bodied (Subjects 5–8) subjects

based on the Pz sensor.

Classification accuracy ITR (min)

Subject 1 33.45 18.03

Subject 2 38.45 29.19

Subject 3 36.47 24.49

Subject 4 35.58 22.50

Subject 5 40.12 33.44

Subject 6 41.23 36.40

Subject 7 42.02 38.57

Subject 8 40.78 35.18

TABLE 6 | α1 Raw time series: Single-subject classification and the related bit

rates for the disabled (Subjects 1–4) and able-bodied (Subjects 5–8) subjects

based on the Pz sensor.

Classification accuracy ITR (min)

Subject 1 32.12 15.4734

Subject 2 33.37 17.8800

Subject 3 35.51 22.3516

Subject 4 34.69 20.5863

Subject 5 38.34 28.9280

Subject 6 39.21 31.0982

Subject 7 39.87 32.7903

Subject 8 38.91 30.3421

and the ITR for every subject and CFC-PAC-connectivity
estimator. The classification accuracy and bit rates diminished
for the three CFC-PAC estimators compared to the original
validation procedure (three sessions as a training set and
the fourth as a testing set). Bit rates were: 5.4 bits/s for

PACiPLV (Mean Classification Accuracy: 94.63), 3.02 bits/s for

PACPLV (Mean Classification Accuracy: 75.40) and 3.03 bits/s

for PACMVL (Mean Classification Accuracy: 75.52). Classification
performance was still higher for PACiPLV compared to the two
alternatives, while classification performance was still higher
than the two alternative estimators and too high to support our
approach as a key feature in the c-VEP BCI system.

δφ −θA was again the selected feature for both disabled and
able-bodied subjects for PACiPLV. In contrast, the selected CFC
features based on PACPLV and PACMVL were completely random
where in only two out of eight subjects, the selected feature was
δφ −θA.

We detected a significant difference between ITRiPLV and ITR
original presented inHoffmann et al. (2008) (Wilcoxon rank-sum
test, p < 0.00001. Comparing ITRiPLV with ITRPLV and ITRMVL,
we also detected significant differences (Wilcoxon rank-sum test,
p < 0.00001). These results support the proposed iPLV estimator
over the rest two.

PAC-CFC vs. Relative Power—Raw Time Series
To demonstrate the superiority of PAC-CFC to capture the local
multiplexity of the human brain activity linked to c-VEP, we

TABLE 7 | PAC-CFC: Single-subject classification and the related bit rates for the

17 subjects based on the c-VEP data set in both slow and fast stimulus

representation.

Classification accuracy

(60/120Hz)

ITR (min)

(60/120Hz)

Subject 1 99.15 ± 1.61/96.31 ± 1.56 136.38 ± 4.31/247.13 ± 6.45

Subject 2 95.67 ± 1.87/95.78 ± 1.43 128.15 ± 4.53/227.63 ± 5.61

Subject 3 99.14 ± 1.11/94.67 ± 1.21 136.99 ± 3.99/253.50 ± 5.12

Subject 4 98.75 ± 1.23/95.01 ± 1.31 133.85 ± 3.69/225.98 ± 5.43

Subject 5 96.54 ± 1.87/95.45 ± 1.47 129.90 ± 3.44/235.97 ± 5.42

Subject 6 95.12 ± 1.66/96.07 ± 1.66 120.45 ± 4.11/230.65 ± 5.37

Subject 7 96.41 ± 1.37/96.12 ± 1.40 132.02 ± 3.91/242.76 ± 5.61

Subject 8 94.37 ± 1.48/95.88 ± 1.33 112.55 ± 3.77/212.20 ± 6.01

Subject 9 93.14 ± 1.39/95.76 ± 1.41 97.34 ± 3.81/227.67 ± 5.14

Subject 10 94.51 ± 1.18/96.62 ± 1.37 108.27 ± 3.97/211.47 ± 5.62

Subject 11 93.27 ± 1.31/96.34 ± 1.45 111.96 ± 4.01/213.90 ± 5.09

Subject 12 92.18 ± 1.48/97.01 ± 1.43 122.22 ± 4.31/236.45 ± 6.11

Subject 13 97.81 ± 1.34/96.38 ± 1.20 134.13 ± 3.92/242.03 ± 6.34

Subject 14 96.54 ± 1.41/95.43 ± 1.57 114.81 ± 3.87/222.05 ± 6.71

Subject 15 97.78 ± 1.45/95.17 ± 1.67 128.58 ± 3.67/225.47 ± 6.89

Subject 16 94.19 ± 1.32/96.07 ± 1.46 131.11 ± 3.77/260.92 ± 5.91

Subject 17 96.67 ± 1.24/96.51 ± 1.57 136.01 ± 4.11/262.00 ± 6.72

analyzed α1 relative power and raw time series filtered in α1. For
comparison reasons, we used the first 100ms after the end of the
flashing images as we did with PAC-CFC. For the classification
performance, we adopted multi-class Support Vector machines
for both α1 relative power and α1 raw time series in order that
the results be comparable with those derived from the three
PAC-CFC estimators. Tables 5, 6 demonstrate the classification
performance and ITR for each subject using recordings from the
Pz sensor. Group-averaged bit rates for α1 relative power were
0.48 bits/s (29.73 bits/min) while for α1 raw time series were 0.41
bits/s (24.93 bits/min). Both alternative features extracted from
the EEG recordings supported bit rates 12 times lower compared
to the PACiPLV (5.4 bits/s or 324 bits/min). In general, PAC-CFC
outperformed both α1 relative power and α1 raw time series in
improving the bit rates further.

We detected a significant difference between ITRiPLV (Table 2)
and α signal power (Table 5) and α raw time series (Table 6;
Wilcoxon rank-sum test, p < 0.00001).

Performance Evaluation
In the present study, we succeeded ITR of 324.06 bits/min
[see Table 4; with N = 6, P = 94.63, and T = 0.4 s (300ms
duration of the flashing image + 100ms time window from the
response due to the stimulus)] for both disabled and able-bodied
subjects correspondingly for the Pz sensor location. The time
for estimation of PAC and testing the trial was 0.00001 s on a
Windows 7 Intel 7–8-core machine.

c-VEP Slow/Fast Stimulus Presentation
δ-θ PAC as a Valuable Feature for the BCI—c-VEP

System
The group-averaged classification performance was 95.96 ± 2.15
for the 60Hz and 95.91± 0.61 for the 120Hz.
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FIGURE 9 | Scalp plot illustrating how many times each channel contributed to the best performance across subjects. (A) For the slow stimulation representation

(60Hz) and (B) For the fast stimulation representation (120Hz).

TABLE 8 | PAC-CFC: Single-subject classification and the related bit rates for the

11 subjects based on the SSVEP Multi-Target Data set.

Classification accuracy ITR (min)

Subject 1 99.15 ± 1.45 128.86 ± 5.61

Subject 2 95.67 ± 1.31 103.10 ± 3.43

Subject 3 99.14 ± 1.12 101.41 ± 3.12

Subject 4 98.75 ± 1.44 109.39 ± 3.97

Subject 5 96.54 ± 1.61 102.56 ± 4.01

Subject 6 95.12 ± 1.56 97.38 ± 3.46

Subject 7 96.41 ± 1.47 103.47 ± 3.91

Subject 8 94.37 ± 1.78 113.79 ± 4.82

Subject 9 93.14 ± 1.85 98.67 ± 3.79

Subject 10 94.51 ± 1.45 110.04 ± 4.11

Subject 11 93.27 ± 1.32 102.13 ± 4.78

Table 7 summarizes the classification accuracy for every
subject, the related ITR, the number of selected EEG sensors and
the type of CFC-pairs. We succeeded an average ITR of 124.40±
11.68 for the slow 60Hz and an average ITR of 233.99± 15.75 for
the fast 120Hz.

Figure 9 illustrates the number of times each channel
was selected across subjects for the slow stimulation
representation (60Hz) and for the fast stimulation representation
(120Hz).

We detected a significant difference between ITRiPLV and
ITR original presented in Wittevrongel et al. (2017) (Wilcoxon
rank-sum test, p < 0.00001).

SSVEP Multi-Target Data Set
δ-θ PAC as a Valuable Feature for the BCI—c-VEP

System
The group-averaged classification performance was 94.25 ± 0.01
for the five targets.

Table 8 summarizes the classification accuracy for every
subject, the related ITR, the number of selected EEG sensors
and the type of CFC-pairs. We succeeded an average ITR of
106.44± 8.94.

Figure 10 illustrates the number of times each channel was
selected across subjects over the parieto-occipital brain areas.

FIGURE 10 | Scalp plot illustrating how many times each channel contributed

to the best performance across subjects.

We detected a significant difference between ITRiPLV and
ITR original presented in Georgiadis et al. (2018) (Wilcoxon
rank-sum test, p < 0.00001).

DISCUSSION

A novel approach of how to analyse single trials in a BCI system
was introduced based on the estimation of CFC and namely
PAC. PAC was estimated within EEG sensors from single trials
recorded during a visually evoked experimental paradigm. The
proposed analytic scheme is based on the extraction of unique
features from the CFC patterns on a single trial basis, namely the
δφ −θA coupling. To evaluate the proposed analytic scheme and
to further support the adaptation of CFC-PAC in BCI systems,
we analyzed and presented our findings in three free publicly
available EEG BCI data sets.

The first study referred to a well-known multi-class (N = 6)
c-VEP-based BCI system for able-bodied and disabled subjects.
Our experimentations showed a high classification rate (94.63%)
based on the proposed PACiPLV estimator. In contrast, the two
alternative PAC-CFC estimators succeeded in high classification
accuracy and bit rates, but the choice of CFC features was
random while the comodulograms were uniform across the
cross-frequency pairs for every subject and flashing image.

The bit rates obtained for both the disabled and able-bodied
subjects reached the fastest reported level of an ITR of 324

bits/min with the PACδ−θ estimator. Additionally, our approach
outperformed alternative signal features such as the relative
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power ITR = 9.73 bits/min and raw time series analysis ITR =

24.93 bits/min and also the originally reported ITR = 10–25

bits/min. Our results outperformed the results presented on the
original (324 bits/min vs 10–25 bits/min; Hoffmann et al., 2008).
Using a binary classifier trained with α1 RSP prior to the multi-
class SVM, we differentiated the attended from the non-attended
stimuli which further improved the classification performance up
to 100% in both groups.

The success of PACiPLV was further enhanced by the poorer
classification accuracy and bit rates of the two comparable
approaches (PACPLV, PACMVL). This further supported our
analytic signal processing for the estimation of PAC-CFC
estimates and the use of iPLV instead of PLV and also compared
to MVL. In our previous studies, using the PACiPLV, we built
a single-sensor and multi-sensor biomarker for mild cognitive
impairment and reading disabilities using electro and magneto-
encephalography recordings, respectively (Dimitriadis et al.,
2015, 2016).

To properly manipulate any cross-session transfer between
the two recording sessions, we repeated the whole classification
analysis using, as a training set, the recordings from the second
session and as a testing set, the recordings from the first session.
The bit rates and the overall classification accuracy was decreased
but the bit rates derived from the PACiPLV (5.4 bits/s) were still
higher than the remaining two alternative CFC-PAC estimates
and were kept at a very high level compared to other BCI studies.
Overall, CFC-PAC estimates outperformed SP and raw time
series analysis in α1 frequency further supporting the proposed
analytic scheme.

In previous studies, like that of Sellers and Donchin (2006),
the highest succeeded classification accuracy for the able-bodied
and ALS subjects was 85 and 72%, respectively. Hoffmann et al.
succeeded in absolute classification accuracy for both disabled
and able-bodied subjects for the first demonstration of the
current data set. However, they used a longer time series of
over 15–20 s by concatenating trials in order to better train the
classifier. Additionally, they used one classifier per image per each
of the 20 blocks and the final outcome derived as the majority
voting of the 20 classifiers.

The second BCI data set was a multi-class (N = 32) c-VEP
with slow and fast stimulus representation. We succeeded in an
average ITR = 124.40 ± 11.68 bits/min for the slow 60Hz and
an average ITR = 233.99 ± 15.75 bits/min for the fast 120Hz.
The major feature that contributes to this high classification
accuracy was the PACδ−θ. Our results outperformed the ITR
presented in the original paper (Wittevrongel et al., 2017),
while our results further supported the introduction of LCMV
beamformers in the BCI system (Wittevrongel and Van Hulle,
2016a; Wittevrongel et al., 2017).

The third BCI data set was a SSVEP multi-class (N = 5)
flickering BCI system where we succeeded in an average ITR

= 106.44 ± 8.94 bits/min. Like in the previous two data sets,
the major feature that contributes to this high classification
accuracy was the PACδ−θ. Our results outperformed the ITR
presented in the original paper (Georgiadis et al., 2018), where
they analyzed five out of 11 subjects based on broadband activity
after first encoding single trials via a symbolization approach.

Their analysis focused on the classification performance using
only one EEG sensor at a time and the highest accuracies were
achieved from sensors located over the parieto-occipital brain
area.

The core of the bibliography in c-VEP studies, Kapeller
et al. (2013a,b), Mohebbi et al. (2015) and Riechmann et al.
(2016) suggests that as a dominant methodology, the usage
of spatial filters through CCA combined with a classification
algorithm [most notably SVMs (Farwell and Donchin, 1988;
Spuller et al., 2012a) or LDA Polikoff et al., 1995] is considered.
Here, alternatively, we proposed the usage of CFC-PAC as a
descriptor that quantifies the local multiplexity of brain functions
as each one oscillates on a characteristic frequency. In a recent
retinotopic multi-class with single flickering frequency, they
proposed a CCA spatial filter of the EEG responses in both the
amplitude and phase domain (Maye et al., 2017). They achieved
a high classification accuracy even in the nine classes referring
to different visual angles across a visual circle. Additionally, in
recent years, many researchers have introduced the notion of
beamformers as spatial filters of scalp EEG activity (Wittevrongel
and Van Hulle, 2016b; Wittevrongel et al., 2017). The results
presented are comparable and even superior to SVM. In the
second and third data set, we estimated PAC time series after first
applying a LCMV beamformer.

The majority of BCI studies analyzed broadband signal while
they preferred to analyse the preprocessed broadband raw time
series using first a symbolization scheme Georgiadis et al. (2018),
a CCA spatial filter (Maye et al., 2017) and a beamformer
as a spatial filter (Wittevrongel et al., 2017). Even though the
results are still high, they suppressed the enriched frequency
information of EEG activity, the brain rhythms. Every frequency
can encode different cognitive functions related to a task,
while the CFC between two frequencies can bind two different
cognitive functions when it is demanded by the conditions of the
experiment.

This work is the only one suggesting CFC features and namely
PAC for both c-VEP (slow and fast) and SSVEP BCI systems.
The proposed analytic scheme has been validated on three
publicly available data sets with different designs and a different
number of classes. Additionally, our results outperformed the
ITR of the original data sets even by a factor of up to three
(data set 3).

According to Klimesch’s α theory, α ‘directs the information
flow toward to neural substrates that encodes information related
to the system’ (e.g., visual stimulus to visual system, voice/sound
to auditory system). The physiological main function of α is
linked to inhibition. Klimesch’s α theory hypothesizes that α

enables the storage of information via the inhibition of task-
irrelevant neuronal substrates and by synchronizing the brain
activity in task-relevant neural systems. Many research findings
have shown that both evoked α and phase-locking further
support the successful encoding of a global stimulus-based
feature within the post-interval of 0–150ms (Klimesch et al.,
2011).

Apart from the cross low-frequency-high-frequency coupling
(e.g., θ-γ), there is much evidence (Lakatos et al., 2005; Cohen,
2008; Isler et al., 2008; Voytek et al., 2010; Engel et al., 2013; Jirsa
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and Müller, 2013) that CFC can be observed between the lower
frequency bands (e.g., delta-theta, delta-alpha and theta-alpha).
Lakatos et al. (2005) made a hypothesis about the “hierarchy”
of EEG oscillations, suggesting that the amplitude of a lower
frequency band may be modulated by the phase of a higher
frequency. They revealed, in the primary auditory cortex of
macaque monkeys, that δ (1–4Hz) phase modulates θ (4–10Hz)
amplitude, and θ modulates γ (30–50Hz) (Lakatos et al., 2005).
This multiplexity of brain rhythms might reflect a general trend
in the organization of brain rhythms, a true evidence in both
humans and cats (Bragin et al., 1994 widespread basis including
the occipital brain areas in orienting acoustic responses where
novel sounds intermixed with frequent standard and infrequent
target (Isler et al., 2008).

Evidence from the human auditory cortex untangled that δ-
band modulates the amplitude of θ-band ICMs, whose phase
modulates the amplitude of γ-band ICMs (Schroeder et al.,
2008). This indirect enhanced effect employs the spontaneous
activity of local neural activity in the primary auditory cortex.
Their hypothesis supports the notion that neural oscillations
reflect rhythmic shifting of excitability states of neural substrates
between high and low levels. This hypothesis is further supported
by the fact that oscillations can be predicted by visual input such
that the auditory input arrives during a high excitability phase
and is finally amplified. In the present study, we demonstrated
that the δ (0.5–4Hz) phase modulates θ (4–8Hz) amplitude over
visual brain areas due to flickering images and their content and
was mainly observed on parieto-occipital EEG recording sites.

We should also mention that the reason why δφ −θA coupling
discriminates the flashing images can be directly linked to the
content of the images. Visual attention sample image stimuli
rhythmically demonstrate a peak of phase at 2Hz (Dugué
and VanRullen, 2014), while flashing images induce rhythmic
fluctuations at higher frequencies (6–10Hz) (Landau and Fries,
2012), here within the θ frequency range [4–8Hz]. Finally, the
work of Karakas et al. (2000) showed that the ERP represents an
interplay between δ and θ frequencies and is directly linked to
c-VEP (Demiralp et al., 2001).

δ-band oscillations long considered to be linked with deep
sleep (Steriade, 2006). However, there are evidence that they play
a key role in: (i) Controlling neuronal excitability, (ii) amplifying
sensory inputs, (iii) in controlling and utilizing the attention, and
(iv) unfolding the multiple operating modes responding to task
demands (Schroeder and Lakatos, 2009).

Our results are aligned with findings in primary auditory
cortex of macaque monkeys where δ (1–4Hz) phase modulates
θ (4–10Hz) (Lakatos et al., 2005).

Ding et al. (2006) explored how attention modulates SSVEP
power depending on the network triggered by the flickering
frequency. They explored attentional effect at flicker frequencies
within δ and α ranges. They found an occipital-frontal network
to be phase-locked to the flicker when the flicker frequencies
were within δ (2–4Hz) and in upper α (10–11Hz) when subject
attending to the flicker. At flicker frequencies in the lower
α (8–10Hz), parietal and posterior frontal cortex, has higher
amplitude when attention is directed away from the flicker. The
major message from this study was that SSVEP amplitude and

phase locking depends on which of two cortical networks, is
selected by the flicker frequencies that have distinct spatial and
dynamic properties.

There are strong evidence that slow-frequency ranges (δ, θ)
play a pivotal role in controlling neuronal excitability and sensory
processing and one would believe that play a key role also in
attentional selection and especially during SSVEP (Morgan et al.,
1996; Kim et al. (2007); Lakatos et al., 2008). There are findings
that low-frequency oscillatory activity is enhanced by attentional
demands during a task (Morgan et al., 1996; Kim et al. (2007);
Lakatos et al., 2008). The coupling of δ-θ increased near visual
stimulus onset during a visual attention task while it is decreased
near visual stimulus onset in the auditory attention task (Lakatos
et al., 2008). Finally, our results untangled that δφ −θA coupling
over parieto-occipital brain areas is a valuable feature for the
improvement of BCI performance and the related ITR.

CONCLUSION

In this work, an efficient algorithmic approach was presented
for two c-VEP-based BCI systems and a SSVE-BCI system with
classes ranging from N = 6 to N = 32. We have demonstrated
higher ITR in the three BCI systems outperforming the ITR
presented in the original manuscripts. The proposed analytic
scheme is based on CFC and namely PAC. Specifically, δ (0.5–
4Hz) phasemodulates θ (4–8Hz) amplitude and proved to be the
candidate feature from PAC estimates that supported the highest
classification accuracy, the fast ITR and the fast response time of
the multi-class BCI systems.

Future improvements to the work presented could be the
design of useful BCI-based application scenarios adapted to the
needs of disabled subjects (King et al., 2014). Also, it might be
useful to perform exploratory analysis on larger populations and
in real time to further validate the results of the present work.
Furthermore, many BCI systems based on c-VEP or SSVEP and
tailored to different target populations could benefit from the
current methodology to further improve ITRs (Lee et al., 2006).
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