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The possibility to replicate and reproduce published research results is one of the biggest
challenges in all areas of science. In computational neuroscience, there are thousands
of models available. However, it is rarely possible to reimplement the models based on
the information in the original publication, let alone rerun the models just because the
model implementations have not been made publicly available. We evaluate and discuss
the comparability of a versatile choice of simulation tools: tools for biochemical reactions
and spiking neuronal networks, and relatively new tools for growth in cell cultures. The
replicability and reproducibility issues are considered for computational models that are
equally diverse, including the models for intracellular signal transduction of neurons and
glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples
of spiking neuronal networks. We also address the comparability of the simulation
results with one another to comprehend if the studied models can be used to answer
similar research questions. In addition to presenting the challenges in reproducibility
and replicability of published results in computational neuroscience, we highlight the
need for developing recommendations and good practices for publishing simulation
tools and computational models. Model validation and flexible model description
must be an integral part of the tool used to simulate and develop computational
models. Constant improvement on experimental techniques and recording protocols
leads to increasing knowledge about the biophysical mechanisms in neural systems.
This poses new challenges for computational neuroscience: extended or completely
new computational methods and models may be required. Careful evaluation and
categorization of the existing models and tools provide a foundation for these future
needs, for constructing multiscale models or extending the models to incorporate
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additional or more detailed biophysical mechanisms. Improving the quality of publications
in computational neuroscience, enabling progressive building of advanced computational
models and tools, can be achieved only through adopting publishing standards which
underline replicability and reproducibility of research results.

Keywords: astrocyte, computational model, glial cell, neuron, neuronal network, replicability, reproducibility,

subcellular structure

1. INTRODUCTION

All areas of science are facing problems with reproducibility
and replicability (Baker, 2016; Eglen et al., 2017; Munafo et al.,
2017; Rougier et al., 2017), and computational neuroscience is
no exception. We aim to contribute to the ongoing discussion
on reproducibility and replicability by presenting several efforts
to systematize and compare, rerun and replicate, as well as
reimplement, simulate, and reproduce models and knowledge
within our fields of expertise. By comparability, we mean
comparing either the simulation results of different simulation
tools when the same model has been implemented in them or
the simulation results of different models. By replicability, we
mean rerunning the publicly available code developed by the
authors of the study and replicating the original results from the
study. By reproducibility, we mean reimplementing the model
using the knowledge from the original study, often in a different
simulation tool or programming language from the one reported
in the study, and simulating it to verify the results from the
study. These definitions are consistent with the terminology on
replicability and reproducibility used in the literature (see also
Crook et al., 2013; McDougal et al., 2016). However, there is an
ongoing discussion on optimal use of terminology and several
alternatives have been proposed (see e.g., Goodman et al., 2016;
Rougier et al., 2017; Benureau and Rougier, 2018). The lack of
universally accepted terminology, solutions proposed in other
scientific disciplines, and possible solutions for computational
neuroscience are also discussed by Plesser (2018). In order to
focus on our findings and conclusions rather than terminology,
we will adopt the definitions described above without further
discussion about the alternatives.

There is an evident need to evaluate, compare, and
systematize tools and models. With the increasing number of
published models, it is becoming difficult to evaluate the unique
contribution in each of them or assess the scientific rigor. The
published articles might provide incomplete information, due
to accidental mistakes or limited space and publication format.
The original model implementations are not always available.
The overhead of model reimplementation and reproduction
of the results could be significant. More systematic model
description (Nordlie et al., 2009), publishing the code in addition
to the article (Eglen et al., 2017; Rougier et al, 2017), and
efforts on independent reproduction and replication of the
published models (Manninen et al., 2017; Rougier et al., 2017)
improve quality and reliability of results in computational
neuroscience. Better systematization and classification of the
models provide more straightforward recommendations for the

scientists initiating new projects or for the training of young
researchers entering the field (see also Akil et al., 2016; Amunts
et al., 2016; Nishi et al., 2016). All these can better support
the reuse and extension of the published models which is
often necessary when building models of complex phenomena.
The development of new experimental techniques and the
new experimental findings also pose new questions for the
computational neuroscience. The models that address these
questions are often built on top of the existing ones, and heavily
depend on the reusability and reliability of the published work.
These issues become even more important with the increasing
interest and current intensive development of multiscale models.
Multiscale models include fine details of all levels of physical
organization (molecular reaction networks, individual cells, local
neuronal networks, glial networks, large-scale networks, and
even complete functional brain systems), and naturally such
complex and demanding models must rely even more on the
existing knowledge and models. Furthermore, as the complexity
of the models increases it becomes more difficult to duplicate the
original work even if only one parameter value is mistyped, or
completely omitted.

The listed challenges have been extensively discussed
within the computational neuroscience and neuroinformatics
community. Several publications have proposed improvements
in model development and description recommending a
clear and compact tabular format for model description (see e.g.,
Nordlie et al., 2009; Topalidou et al., 2015; Manninen et al., 2017).
The issue of reproducibility in computational neuroscience has
been emphasized through development of model description
and simulation tools: the standardization of tools significantly
accelerates development of new models and reproduction of the
published models. An overview of the existing simulation tools,
their features and strengths, as well as a discussion on future
developments are presented in recent publications (Brette et al.,
2007; Crook et al.,, 2013; McDougal et al, 2016). In addition,
journals rarely explicitly state that they accept replicability and
reproducibility studies (Yeung, 2017). However, the ReScience
initiative was started to encourage researchers to reimplement
published models and reproduce the research results (Rougier
etal.,, 2017). During the review process in the ReScience Journal,
both the manuscript and the reimplementation of the model are
tested and checked by the reviewers, and both are made publicly
available for the scientific community. In our previous study
(Manninen et al., 2017), we addressed the reproducibility of a
small set of computational glial models. Based on this study, we
emphasize the necessity for giving out all information about the
models, such as the inputs, equations, parameters, and initial
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conditions, in a tabular format, in addition to making the model
code publicly available. Similar holds for complex network-level
models composed of many interacting neurons where every
small error might lead to a large deviation in the simulation
outcome.

Equally important concept that should be discussed in the
context of reproducibility and replicability is the development of
validation strategies for comparability of various computational
models. Better mathematical and computational tools are needed
to provide easy and user-friendly evaluation and comparison.
As can be seen from the reviews of previous modeling work in
the field (Manninen et al., 2010, 2018a,b), many new models
are built on top of pre-existing models, with some further
parameter estimation based on experimental data. Often the
validation against existing similar models is too tedious to do and,
consequently, is skipped. To facilitate the usability of models,
future computational neuroscience research should pay more
attention to the questions of reproducibility, replicability, and
validation of simulation results. As indicated, this issue becomes
even more important with the current trends toward developing
multiscale models.

In this study, we evaluate a number of computational models
describing a very diverse set of neural systems and phenomena,
as well as simulation tools dedicated to these models. We evaluate
and discuss a versatile choice of simulation tools, from simulation
tools of biochemical reactions, to relatively new simulation
tools of growth in cell cultures, to relatively mature and widely
adopted tools for modeling spiking neuronal networks. The
computational models are equally diverse, including the models
of intracellular signal transduction for neurons and glial cells,
in addition to single glial cells, neuron-glia interactions, and
neuronal networks. Although we take into account a range of
models, some classes of models are not considered in this study.
We omit single neuron models which are already well developed,
compared, and systematized in the literature (Izhikevich, 2004;
Sterratt et al., 2011). Furthermore, we do not intend to provide
any extensive evaluation of neuronal network models, which are
numerous in the literature, but instead discuss an illustrative
data-driven modeling example and specific reproducibility,
replicability, and comparability issues that emerge in this type
of studies. The models for glial networks and the larger models
of neuron-glia networks are also excluded from this work and
might be subject of future studies. Through the evaluation of
examples under consideration, we present the state-of-the-art
in reproducibility and replicability of computational models of
neuronal and glial systems, summarize our recent findings about
reproducibility in computational neuroscience, and propose
some good practices based on our present and previous work.

2. MATERIAL AND METHODS

2.1. Simulation Tools

In this section, we describe a range of simulation tools utilized to
simulate the spiking neuronal networks, biochemical reactions,
and neuronal growth. Simulation tools that allow constructing,
simulating, and analyzing whole-cell and neuronal circuit models
attracted the most attention in the past and are among the most

developed tools used in computational neuroscience. Typical
models range from multicompartmental neurons integrating
some level of morphological and physiological details of the
certain neuron type to the highly abstract models containing
large number of low-dimensional model neurons and statistical
description of connectivity rules. In computational systems
biology, the simulation tools developed for different kinds of
biological systems, such as gene regulatory networks, metabolic
networks, and signal transduction, have been the focus of
development. These tools are relatively mature, standardized, and
well-known in the research community. On the other hand, the
simulation tools for neurodevelopment are not so well-known,
and thus we give more details about these tools in the upcoming
sections. All the simulation tools tested and compared in this
work are listed in Table 1.

2.1.1. Simulation Tools for Biochemical Reactions
Mathematical modeling of biochemistry is important for
understanding complex biochemical processes that underlie
many neuronal, glial, and synaptic phenomena. Recent interest
in modeling biochemical networks in systems biology and in
neuroscience have provided several tools that can be used to
simulate time-series behavior of the networks (see e.g., Lemerle
et al,, 2005; Pettinen et al., 2005; Alves et al., 2006; Gilbert et al.,
2006; Strombick et al., 2006; Wierling et al., 2007; Bergmann
and Sauro, 2008; Blackwell, 2013; Schoneberg et al., 2014;
Bartocci and Lio, 2016; Olivier et al., 2016). In this study, we
used the following simulation tools: GENESIS/Kinetikit (Wilson
et al, 1989; Bower and Beeman, 1998; Bhalla and Iyengar,
1999; Bhalla, 2001, 2002), Gepasi (Mendes, 1993, 1997; Mendes
and Kell, 1998), Jarnac/JDesigner (Sauro, 2000, 2001), XPPAUT
(Ermentrout, 2002), SimTool (Aho, 2003), Dizzy (Ramsey et al.,
2005), Copasi (Hoops et al., 2006), NEURON (Carnevale and
Hines, 2006), Systems Biology Toolbox (Schmidt and Jirstrand,
2006), and Narrator (Mandel et al., 2007) (see Table 1). Here,
we do not provide any detailed overview of the simulation
tools, because the topic has been already extensively discussed
previously. However, we want to point out the differences in
these tools by providing information about the methods used for
modeling and simulation.

In the listed simulation tools, the model is often implemented
using chemical reactions presented by the law of mass
action and Michaelis-Menten kinetics. These reactions form
coupled ordinary differential equations (ODEs) presenting the
biochemical network, and these equations are then solved
numerically when simulating the model. However, for example,
in XPPAUT, the model is directly implemented using the ODEs
and not the chemical reactions. Several of the tools also provide
stochastic approaches to model and simulate the reactions (see
e.g., Manninen et al., 2006a; Gillespie, 2007), such as the discrete-
state Gillespie stochastic simulation algorithm (Gillespie, 1976,
1977) and t-leap method (Gillespie, 2001), as well as continuous-
state chemical Langevin equation (Gillespie, 2000) and several
other stochastic differential equations (SDEs, Manninen et al.,
2006a,b). Few simulation tools providing hybrid approaches
also exist. They combine either deterministic and stochastic
methods or different stochastic methods (see e.g., Salis et al,
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TABLE 1 | List of simulation tools and model repositories.

Tool/Repository Website References

SIMULATION TOOL

Brian http://brian2.readthedocs.io/en/stable/index.html Goodman and Brette, 2008

Copasi http://copasi.org/ Hoops et al., 2006

Cortex3D https://www.ini.uzh.ch/~amw/seco/cx3d/ Zubler and Douglas, 2009

Dizzy http://magnet.systemsbiology.net/software/Dizzy/ Ramsey et al., 2005

GENESIS/ Kinetikit http://genesis-sim.org/, https://www.ncbs.res.in/faculty/bhalla-kinetikit Wilson et al., 1989; Bower and Beeman, 1998;
Bhalla and lyengar, 1999; Bhalla, 2001, 2002

Gepasi http://www.gepasi.org/ Mendes, 19983, 1997; Mendes and Kell, 1998

Jarnac/JDesigner http://jdesigner.sourceforge.net/ Sauro, 2000, 2001

Narrator https://omictools.com/narrator-tool Mandel et al., 2007

NEST http://www.nest-simulator.org/ Eppler et al., 2015

NETMORPH http://www.netmorph.org/Home, http://www.scholarpedia.org/article/NETMORPH Koene et al., 2009

NEURON https://www.neuron.yale.edu/neuron/ Carnevale and Hines, 2006

PyNN http://neuralensemble.org/PyNN/ Davison et al., 2009

SimTool Request from the author Aho, 2003

Systems Biology Toolbox
XPPAUT

http://www.sbtoolbox.org/
http://www.math.pitt.edu/~bard/xpp/xpp.html

MODEL REPOSITORY

DOQCS http://dogcs.ncbs.res.in/

DRYAD http://datadryad.org/

ModelDB http://senselab.med.yale.edu/modeldb/

Schmidt and Jirstrand, 2006
Ermentrout, 2002

Sivakumaran et al., 2003

Migliore et al., 2003; Hines et al., 2004

This table lists the names of the simulation tools and model repositories as well as their websites and references.

2006; Lecca et al., 2017). The increased computing power has
recently made it possible also to take into account diffusion
processes. The reaction-diffusion simulation tools often use
combined Gillespie algorithm or 7-leap method for both reaction
and diffusion processes, such as STEPS (Wils and De Schutter,
2009; Hepburn et al., 2012) and NeuroRD (Oliveira et al., 2010),
or track each molecule individually in a certain volume with
Brownian dynamics combined with a Monte Carlo procedure
for reaction events, such as MCell (Stiles and Bartol, 2001; Kerr
et al.,, 2008) and Smoldyn (Andrews et al., 2010). Few studies
to compare different reaction-diffusion tools exist (Dobrzynski
et al., 2007; Oliveira et al., 2010; Schoneberg et al., 2014). In this
study, however, we were only interested in comparing simulation
tools with simple reaction models, and thus reaction-diffusion
tools and models were not tested. The more detailed testing of
reaction-diffusion tools remains for future work and will most
probably be accelerated once more models for reaction-diffusion
systems become available. The simulation tools for biochemical
reactions addressed in this work have been studied in detail in
our previous work (Pettinen et al., 2005; Manninen et al., 2006¢;
Mikiraatikka et al., 2007) and the here presented results are a
summary of our previous work. We recommend to consult the
earlier studies for more details.

2.1.2. Simulation Tools for Neurodevelopment

We examined relatively new and promising tools for modeling
neurodevelopment. They facilitate exploring through
computational means individual biophysical mechanisms
involved in development and growth of neuronal circuits and

analyzing the properties that arise from those mechanisms.
We examined two simulation tools, NETMORPH (Koene
et al., 2009) and Cortex3D (Zubler and Douglas, 2009), the full
references and links to these tools are given in Table 1. Because
these tools are newer, less known and used than the other
simulation tools presented in this study, we describe them with
additional details.

NETMORPH implements a phenomenological model of
neurite growth (in 2D or 3D) based on extensive statistical
characterization of dendritic morphology in developing circuits
conducted by the authors of the simulation tool (van Pelt and
Uylings, 2003; Koene et al., 2009). It can simulate formation
of synaptic contacts based on morphology and the proximity
between axonal and dendritic segments. The simulation tool
was developed in C++ under Unix/Linux and can be installed
straightforwardly under the same environment. In Windows, it
can be installed using Cygwin. The inputs are text files containing
a list of model components and the belonging parameters.
The components include description of neuronal population,
morphology for each neuron type, parameters determining
synapse formation, and a set of flags describing the format of
simulation outputs. Model equations are evaluated at fixed time
steps, and the output can be generated either at specified time
points or at the end of a simulation. Three types of outputs are
possible: visualization of neuronal morphologies and networks,
raw data containing the list of all generated model components,
and the statistics computed from the raw data.

Cortex3D is a simulation platform that supports modeling
biophysical and mechanistic details of neural development. As
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such it does not specify any particular model but rather a set
of underlying mechanisms that can be used to implement and
simulate user-defined models. The mechanisms embedded into
the simulation tool include discretization of space occupied
by a model, production, diffusion, degradation, and reactions
between chemical species, the effect of mechanical and chemical
forces between components of the model, and movement of
objects inside the model. The model is solved at a fixed time
grid. Parts of the model represented by dynamical equations are
solved using Euler method, but numerical integration is replaced
by analytical solution whenever possible to avoid overshoot
for large time steps. The simulation tool is organized into
layers of abstraction, with the discretization of space mapped
into the lowest layer, the physical properties of the objects
being specified one layer above, and the biological properties
mapped into the top two layers. Most of the user-defined model
properties can be specified in the top “cell” layer (Zubler and
Douglas, 2009). The simulation tool was implemented in Java
and is easy to install on any platform. A parallelized version
of the simulation tool is also available (Zubler et al., 2011,
2013). Recently, a new simulation tool capable of modeling
neuronal tissue development, inspired by Cortex3D and based
on the same computational principles, was proposed (https://
biodynamo.web.cern.ch/). To specify a model in Cortex3D, a user
should write Java module containing the description of model
components, interactions between the components, and model
parameters. The output of the simulation tool is an Extensible
Markup Language (XML) schema compatible with NeuroML
containing the details of the obtained model. The simulation
tool also integrates Java packages that allow visualization of the
simulation evolution. We tested and compared NETMORPH
and Cortex3D by implementing and running the same model
compatible with both tools and evaluating the simulated data. In
addition to tool evaluation, we were interested in promoting the
usefulness of these new and underutilized simulation tools.

2.1.3. Simulation Tools for Neuronal Networks

Computational studies of individual neurons and neuronal
circuits were the first attempts at computational modeling in
neuroscience, have the longest history, and are still the most
represented level of abstraction when addressing the function
and organization of neuronal systems. They originate from the
experimentally verified models of neurons, the ground truth
of neuron electrophysiology based on Hodgkin-Huxley (HH,
Hodgkin and Huxley, 1952) formalism and the mathematical
description of ion channel dynamics. Individual neurons can be
described either as single compartmental models representing
the somatic membrane potential or as multicompartmental
models including parts of dendritic and axonal arbors. In
addition, the simulation tools provide a number of simpler and
computationally less demanding neuron models based on an
integrate-and-fire (IF) modeling formalism. They also provide
mechanisms to construct networks of model neurons, from
generic random networks to specific brain circuits. Some of these
simulation tools also have a capacity to implement subcellular
models (NEURON, XPPAUT, and GENESIS). Consequently,
these simulation tools are widely accepted and well known within

the scientific community and can be considered mature. All of
these simulation tools implement deterministic methods to solve
the systems of ODEs, and some of them also have possibility
to implement SDE models (see e.g., Stimberg et al., 2014).
Deterministic integration methods for solving ODEs use either
a fixed or adaptable integration step size. For some neurons
of IF type, it is possible to solve the ODE exactly between
the spike times and update the model at each spike time, thus
significantly increasing the accuracy of numerical integration.
The extensive discussion about numerical methods can be found
in the literature (Rotter and Diesmann, 1999; Lytton and Hines,
2005; Carnevale and Hines, 2006; Brette et al., 2007; Stimberg
et al., 2014). Here, we do not aim at giving an overview of
simulation tools or comparing their properties, these topics
have been extensively discussed elsewhere (see e.g., Brette et al,,
2007; McDougal et al, 2016). Instead, we will present our
unpublished user experiences from describing and simulating
spiking neuronal networks using NEST (Eppler et al.,, 2015),
Brian (Goodman and Brette, 2008; Stimberg et al., 2014), and
PyNN (Davison et al., 2009).

2.2. Models

In this section, we give an overview of computational models
used in our reproducibility, replicability, and comparability
studies. These include the models of intracellular signal
transduction for neurons and glial cells, in addition to single
glial cells, neuron-glia interactions, and neuronal networks. We
tabulated the following properties for the models whenever
suitable:

e Neuron model: Multicompartmental or point neuron models
adopted from the literature.

e Synapse model: Types of synaptic models and receptors.

e Neuron-astrocyte synapse model: Types of synaptic models
and receptors.

e Connectivity: Statistical description of connectivity schemes.

o Intracellular signaling; Intracellular calcium signaling (e.g.,
leaks, pumps, and receptors that are not named under other
categories) in addition to different intracellular chemical
species taken into account either in neurons or astrocytes.

e Data analysis: Description of the methods used to analyze
in silico data from spiking neuronal network models.

Some of the models we used in this study were found available in
model repositories. These repositories are listed in Table 1.

2.2.1. Neuronal Signal Transduction Models

More than a hundred intracellular biochemical species are
important in synaptic plasticity. Hundreds of neuronal signal
transduction models have been developed to test the criticality
of different chemical species. Several reviews of the models
exist, some focus on just a few different models whereas others
give an overview of more than hundred models (Brown et al.,
1990; Neher, 1998; Hudmon and Schulman, 2002a,b; Bi and
Rubin, 2005; Holmes, 2005; Worgétter and Porr, 2005; Ajay and
Bhalla, 2006; Klipp and Liebermeister, 2006; Zou and Destexhe,
2007; Morrison et al,, 2008; Ogasawara et al., 2008; Bhalla,
2009; Ogasawara and Kawato, 2009; Tanaka and Augustine,
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2009; Urakubo et al., 2009; Castellani and Zironi, 2010; Gerkin
et al., 2010; Graupner and Brunel, 2010; Hellgren Kotaleski and
Blackwell, 2010; Manninen et al., 2010; Shouval et al., 2010).
The models range from a simple models with just a single
reversible reaction to very detailed models with several hundred
reactions. In Table 2, we list the neuronal signal transduction
models for plasticity that we evaluated in this study. The models
by d’Alcantara et al. (2003) and Delord et al. (2007) were
the simplest with just a few reactions, whereas the model by
Zachariou et al. (2013) had both pre- and postsynaptic single-
compartmental neurons and rest of the models had very detailed
intracellular signaling pathways taken into account. The models
by d’Alcantara et al. (2003), Delord et al. (2007), and Zachariou
et al. (2013) we used in the reproducibility studies. In the
comparability studies (Manninen and Linne, 2008; Manninen
et al,, 2011), we tested the models by d’Alcantara et al. (2003),
Hayer and Bhalla (2005), Lindskog et al. (2006), Delord et al.
(2007), Nakano et al. (2010), and Kim et al. (2010).

2.2.2. Astrocyte Models

Similarly to neuronal signal transduction models, hundreds
of single astrocyte, astrocytic network, and neuron-astrocyte
interaction models have been developed to study different
phenomena. Several reviews of computational astrocyte and
neuron-astrocyte models have appeared during the last few years,
some focusing only to a few models and some giving a general
overview of the field (see e.g., Jolivet et al., 2010; Mangia et al.,
2011; De Pitta et al., 2012, 2016; Fellin et al., 2012; Min et al.,
2012; Volman et al., 2012; Wade et al., 2013; Linne and Jalonen,
2014; Tewari and Parpura, 2014; Manninen et al., 2018a,b). In
Table 3, we list the models that we evaluated in this study.
We chose five single astrocyte and signal transduction models
(Di Garbo et al., 2007; Lavrentovich and Hemkin, 2008; De Pitta
et al., 2009; Dupont et al., 2011; Riera et al., 2011a,b) and four
neuron-astrocyte interaction models (Nadkarni and Jung, 2003;
Silchenko and Tass, 2008; Wade et al., 2011, 2012). Silchenko
and Tass (2008) used a two-compartmental neuron model,
whereas the other three (Nadkarni and Jung, 2003; Wade et al,,
2011, 2012) used single-compartmental models. The models by
Nadkarni and Jung (2003), Di Garbo et al. (2007), Silchenko and
Tass (2008), Lavrentovich and Hemkin (2008), De Pitta et al.
(2009), Riera et al. (2011a,b), Dupont et al. (2011), and Wade
et al. (2011, 2012) were tested in the reproducibility studies (see
also Manninen et al., 2017, 2018b). In addition, the models by
Lavrentovich and Hemkin (2008), De Pitta et al. (2009), Riera
etal. (2011a,b), and our modified version of the model by Dupont
et al. (2011) were used in the comparability study (see also
Manninen et al., 2017).

2.2.3. Spiking Neuronal Network Models

Spiking neuronal network models are numerous in the literature
and used to model various phenomena and brain structures.
In order to constrain this evaluation to a reasonable set of
models, we selected only those models which are developed
for the spontaneously synchronized population activity from
dissociated neuronal cultures in vitro (for more details, see
Robinson et al, 1993; Teppola et al., 2011). The focus on

data-driven models gives us an opportunity to emphasize
the need for reproduction of both model and data analysis
tools. We compared several publications (Latham et al., 2000;
Giugliano et al., 2004; French and Gruenstein, 2006; Gritsun
et al,, 2010, 2011; Baltz et al, 2011; Maheswaranathan et al.,
2012; Miki-Marttunen et al., 2013; Masquelier and Deco,
2013; Yamamoto et al., 2016; Lonardoni et al., 2017), that use
similar models, address similar questions, and should converge
toward similar conclusions. Some differences emerge from the
experimental preparation, from the recording technology, or
variations in model composition. The publications by Gritsun
et al. (2010, 2011) present two parts of the same study. They
are considered as one study, but are presented separately in
Table4 due to the small differences in model construction
and data analysis. The publication by Maki-Marttunen et al.
(2013) is not, strictly speaking, modeling the experimental data
but rather uses the theoretical concepts to explore models and
synthetic data typical for this same type of experiments. All of
the studies under consideration implement networks of point-
neurons (a few hundred to few thousand neurons) with none
or short-term plasticity in synapses and statistical description
of connectivity. Similar models have been extensively analyzed
in theoretical studies exploring feasible dynamical regimes, and
some of them are available in public repositories dedicated to
reproducible model development (see OpenSourceBrain; http://
www.opensourcebrain.org/). In this study, we do not consider
recent attempts to model the effects of non-neuronal cells, and
we also leave out the mean field approaches to modeling the
same type of experiments and data. The 10 selected studies are
summarized in Table 4.

3. RESULTS

We here evaluate first the simulation tools we used for
biochemical reactions, growth in cell cultures, and spiking
neuronal networks, and last the computational models for
signal transduction in neurons, astrocytes, and spiking neuronal
networks.

3.1. Evaluation of Simulation Tools

3.1.1. Simulation Tools for Biochemical Reactions

In our previous studies, we have extensively used and
evaluated both deterministic and stochastic simulation tools
for biochemical reactions (see Table 1), categorized their basic
properties, benefits, and drawbacks, as well as tested the tools by
implementing test cases and running simulations (Pettinen et al.,
2005; Manninen et al., 2006¢; Mikiraatikka et al., 2007). At first,
we tested four deterministic simulation tools, GENESIS/Kinetikit
(versions 2.2 and 2.2.1 of the GENESIS and versions 8 and
9 of the Kinetikit), Jarnac/JDesigner (version 2.0 of Jarnac
and version 1.8k of JDesigner), Gepasi (version 3.30), and
SimTool, by implementing the same test case for every simulation
tool and running simulations (Pettinen et al., 2005). Next, we
tested three stochastic simulation tools, Dizzy (version 1.11.2),
Copasi (release candidate 1, build 17), and Systems Biology
Toolbox (version 1.5), the same way (Manninen et al., 2006¢;
Mikiraatikka et al., 2007). Last, we tested the possibility to

Frontiers in Neuroinformatics | www.frontiersin.org

May 2018 | Volume 12 | Article 20


http://www.opensourcebrain.org/
http://www.opensourcebrain.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al.

Challenges in Reproducibility, Replicability, and Comparability

TABLE 2 | Summary of the neuronal signal transduction models.

Model

Neuron model

Synapse model

Intracellular signaling

CaM, CaMKIl, CaN, DARPP32 or I1, PP1

AC1, AC2, AMP, Ca*, CaM, CaMKll, cAMP, CaN, I, Ng, PDE1, PKA, PKC, PP1,
PP2A

AC5, AMP, ATP, CaM, CaMKIl, cAMP, CaN, Cdbk, DARPP32, G protein, PDET,
PDE4, PKA, PP1, PP2A

Kinase, phosphatase, substrate

AC5, AMP, ATP, Ca?+, CaM, CaMKII, cAMP, CaN, Cd5k, CK1, DARPP32, G protein,
11, PDE1, PDE2, PKA, PP1, PP2A, PP2C

AC1, AC8, AMP, ATP, Ca2*, CaM, CaMKil, CAMP, CaN, G protein, |1, PDE1B, PDE4,
PKA, PP1

Postsyn.: 2-AG, Ca2t (Ca2+ leak from ER into cyt, Ca2+ leak from ext into cyt,
PMCA, SERCA), CaZ, DAG

d’Alcantara et al., 2003 No AMPAR

Hayer and Bhalla, 2005 No AMPAR, NMDAR

Lindskog et al., 2006 No D4R

Delord et al., 2007 No No

Nakano et al., 2010 No AMPAR, D1R

Kim et al., 2010 No D¢R

Zachariou et al., 2013 Presyn.: HH (Kdr, Na, Presyn.: CBy,
N-type VGCC), postsyn.: postsyn.: AMPAR,
HH (Kdr, L-type VGCC, Na) GABAAR

Neuron model: pre- and postsynaptic point neuron models. Synapse model: pre- and postsynaptic receptors. Intracellular signaling: intracellular calcium signaling (e.g., leaks
and pumps that are not named under other categories) in addition to different intracellular chemical species in pre- and postsynaptic neurons. 2-AG, 2-arachidonoylglycerol; ACT,
adenylyl cyclase type 1; AC2, AC type 2; AC5, AC type 5; AC8, AC type 8; AMP, adenosine monophosphate; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
ATP, adenosine triphosphate; Ca2*, calcium ion; CaM, calmodulin; CaMKill, Ca?t/CaM-dependent protein kinase Il: CAMP cyclic AMP; CaN, calcineurin; CB;, cannabinoid type 1
receptor; Cdk5, cyclin-dependent kinase 5; CK1, casein kinase 1, cyt, cytosol; D1R, dopamine receptor; DAG, diacylglycerol; DARPP32, dopamine- and cAMP-regulated neuronal
phosphoprotein of 32 kDa, ER, endoplasmic reticulum; ext, extracellular space; GABAAR, gamma-aminobutyric acid type A receptor; HH, Hodgkin-Huxley; 11, inhibitor 1; Kdr, delayed
rectifier potassium current; Na, sodium current; Ng, neurogranin; NMDAR, N-methyl-D-aspartate receptor; PDE1, phosphodiesterase type 1, PDE1B, PDE type 1B; PDE2, PDE type
2; PDE4, PDE type 4; PKA, cAMP-dependent protein kinase; PKC, protein kinase C; PMCA, plasma membrane Ca?t ATPase; PP1, protein phosphatase 1, PP2A, PP type 2A; PP2C,
PP type 2C; SERCA, sarco/endoplasmic reticulum Ca%*-ATPase; VGCC, voltage-gated Ca?+ channel.

easily exchange models between stochastic simulation tools
using Systems Biology Markup Language (SBML) (Mikiraatikka
et al., 2007). As a surprise, only a few of the tools that were
supposed to support SBML import were capable of simulating
the selected test case when imported as SBML file (Mékiraatikka
et al, 2007). Of the tools that we tested for that study,
only Dizzy, Narrator, and XPPAUT succeeded in simulating
the imported SBML file. We found out in all of our studies
(Pettinen et al., 2005; Manninen et al., 2006c; Mikiraatikka
et al., 2007) that the simulation results between the tools were
convergent. Using the same test case as by Pettinen et al. (2005),
we also found out in a separate set of tests that NEURON
produced similar results as the other tools mentioned above.
Based on our studies, we concluded that the comparability
of the simulation results needed several requirements to be
fulfilled. First, the usability of the simulation tools and existence
of proper manuals were crucial. For example, even beginners
were able to use Dizzy, Gepasi, Copasi, and Jarnac/JDesigner,
but former experience in MATLAB® was required for Systems
Biology Toolbox and SimTool. Second, the lack of standards
and interfaces between tools also made the comparability
problematic. For example related to SBML import, graphical
user interfaces designed to help the SBML import were not
intuitive, the error messages were not informative enough,
and not all the SBML levels were supported. Furthermore, for
stochastic simulations with the Gillespie stochastic simulation
algorithm, all the chemical reactions in the model had to
be implemented as irreversible. Although the test case was
implemented and exported with only irreversible reactions, we
found simulation tools that mistook some of the irreversible
reactions for reversible reactions during the SBML import and
thus, we were not able to run stochastic simulations with these

tools (Mikiraatikka et al., 2007). In addition, problems arose
when having various biochemical and physiological units because
during manual conversion the chance of making errors was
significant. Third, the utilization of realistic external stimuli was
not possible in all simulation tools. Out of the tested simulation
tools, GENESIS/Kinetikit was one of the good examples where
external stimuli were enabled. Fourth, only a few of the tools had
built-in automated parameter estimation methods to tune the
models and their unknown parameter values. However, several
methodology improvements have been made in the field in order
to perform sophisticated parameter estimation. The use may,
however, require some more detailed knowledge in computer
science. Thus, all these difficulties and deficiencies present in
simulation tools can make the comparison of simulation results
difficult.

3.1.2. Simulation Tools for Neurodevelopment
We tested two simulation tools dedicated to modeling
neurodevelopmental mechanisms, NETMORPH and Cortex3D
(Acimovi¢ et al, 2011). While other simulation tools (e.g.,
NEURON) can be used to implement models at particular
developmental age, NETMORPH and Cortex3D implement
the mechanisms behind developmental changes. NETMORPH
and Cortex3D can be used to address the same questions, but
they are fundamentally different in methodology, approach, and
philosophy of modeling being therefore complementary rather
than competing. NETMORPH and Cortex3D were implemented
using different programming languages. Running simulations
beyond making simple changes to the provided examples
required a deeper understanding of the tools.

In short, we implemented a phenomenological model,
compatible with both simulation tools, of neurite growth and
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TABLE 3 | Summary of the astrocyte and neuron-astrocyte models.

Model Neuron model Neuron-astrocyte synapse

model

Intracellular
signaling in neuron

Intracellular signaling in astrocyte

Nadkarni and Postsyn.: HH (Kdr, Na) Postsyn. voltage +— astro IP3,

Jung, 2003 astro CaZt 1> postsyn. current
Di Garbo et al., No Astro: P2XR, P2YR
2007

Silchenko and Postsyn.: Pinsky-Rinzel, Postsyn.: AMPAR, NMDAR,

Tass, 2008 HH (AHP, Kdr, L-type astro: mGIuR
VGCC, Na)

Lavrentovich and No No

Hemkin, 2008

De Pitta et al., No No

2009

Riera et al., No No

2011a,b

Dupont et al., No Astro: mGIuR

2011

Wade et al., 2011 Postsyn.: LIF Tsodyks +— astro IP3 and syn.
current, astro Ca2+
postsyn. NMDAR,
astro glutamate — Tsodyks

Wade et al., 2012 Postsyn.: LIF Postsyn. 2-AG + astro IPg,

astro glutamate ~ syn. current

Ca?*t (CICR via IP3R, Ca?* leak from ER into cyt,
SERCA), IP3, active fraction of IPzR

Ca?*t (CCE, CICR via IP3R, Ca?t efflux, Ca?* leak from
ER into cyt, Ca2* leak from ext into cyt, SERCA), Caég,
IP3, active fraction of IPgR

Ca?*t (CICR via IPgR, Ca?* efflux, glutamate-dependent
CaZ* influx, Ca2+ influx, Ca2™ leak from ER into cyt,
SERCA), Caég, IP3, vesicle cycle, glutamate release
Ca?*t (CICR via IPgR, Ca?t efflux, Ca2t influx, Ca?+
leak from ER into cyt, SERCA), Ca%fg, IP3

Ca?*t (CICR via IP3R, Ca?* leak from ER into cyt,
SERCA), IP3, active fraction of IPgR

Ca?t (CCE, CICR via IPgR, Ca2* efflux, Ca?* influx via
channels, Ca?*t leak from ER into cyt, SERCA), Cafzrg'e,
IP3, active fraction of IP3R

Ca?*t (CICR via IPgR, Ca?t efflux, Ca2t influx, Ca+
leak from ER into cyt, SERCA), DAG, IP3, fraction of
Ca?*-inhibited IP3R, active fraction of PKC

Ca?*t (CICR via IP3R, Ca?* leak from ER into cyt,
SERCA), IP3, active fraction of IPgR, glutamate release

No

No

Ca2+

No
No

No

No

No

Ca?* (CICR via IP3R, Ca?* leak from ER into cyt,
SERCA), IP3, active fraction of IP3R, glutamate release

Postsyn.: 2-AG,
depression,
potentiation

Neuron model: postsynaptic multicompartmental and point neuron models. Neuron-astrocyte synapse model: Tsodyks-Pawelzik-Markram model; postsynaptic and astrocytic
receptors. Intracellular signaling in neuron: intracellular chemical species in postsynaptic neuron. Intracellular signaling in astrocyte: intracellular calcium signaling (e.g., leaks,
pumps, and receptors that are not named under other categories) in addition to different intracellular chemical species in astrocyte. We only implemented the astrocyte component of
the model by Di Garbo et al. (2007), and not the neuron component at all. 2-AG, 2-arachidonoylglycerol; AHP, after-hyperpolarization current; AMPAR, a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor; ATP, adenosine triphosphate; Ca*, calcium ion; CCE, capacitive Ca®* entry; CICR, Ca®*-induced Ca®* release; cyt, cytosol; DAG, diacylglycerol; ER,
endoplasmic reticulum; ext, extracellular space; HH, Hodgkin-Huxley; IPs, inositol trisphosphate; IP3R, IPs receptor; Kdr, delayed rectifier potassium current; LIF, leaky integrate-and-fire;
mGluR, metabotropic glutamate receptor; Na, sodium current; NMDAR, N-methyl-D-aspartate receptor; P2XR, ionotropic purinergic ATP receptor; P2YR, purinergic G-protein-coupled

metabotropic receptor; PKC, protein kinase C; SERCA, sarco/ER Ca?*t-ATPase; VGCC, voltage-gated Ca®* channel.

formation of synaptic contacts based on morphology criteria
(for more details see Acimovi¢ et al, 2011). The choice is
determined by model components and mechanisms available
in NETMORPH. To analyze the simulation results, we wrote
own MATLAB® code which converted both simulated data
sets to the same format and computed the statistics from the
data. We examined the simulated morphologies, analyzed the
number of generated synapses at different simulation times, and
compared the synapse counts to the experimental data extracted
from the literature (see Figure1l). As a conclusion, the two
simulation tools produced qualitatively similar growth dynamics.
The simulated results were consistent with the experimental data
in the early phase of growth but deviated in the latter phase.
Cortex3D gave somewhat shorter neurites with less synaptic
contacts and less precise control of the orientation of neurite
segments than NETMORPH. While NETMORPH implements
a set of equations derived to produce precise statistics for all
relevant parameters of neurite morphology, Cortex3D focuses on
the underlying mechanisms of growth, for example the tensions
resulting from elongation and the production of resources
needed for growth. These mechanisms affect neurite morphology

in a complex and not fully predictable way. The computational
model used for testing and comparing the simulation tools
was a natural choice for NETMORPH and therefore easier to
implement, faster to simulate, and less memory consuming.
However, Cortex3D offers more flexibility to implement user-
defined models for various phases of neurodevelopment, and can
be used to study many other mechanisms in addition to neurite
growth.

3.1.3. Simulation Tools for Spiking Neuronal Networks
We present our user experience with three common tools for
simulation of large spiking networks of point neuron models.
In addition to testing and comparing the simulation tools,
we discuss the flexibility of simulation tools to implement
user-defined model components. We tested the common tools,
NEST (version 2.8.0) with PyNN (version 0.8.0) used as an
interface and Brian (version 2.0). All of the tested packages
are well documented and additional support is offered through
user groups. The general tendency to develop Python based
simulation tools or Python interface to simulation tools saves
time when analyzing the obtained simulation results, since the
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TABLE 4 | Summary of the spiking neuronal network models.

Model Neuron model Synapse model Connectivity Data analysis

Latham et al., QIF/Theta, AHP, Ref, exp-cond. Nonstructured, Burst detection: none; Measures: rasterplot, GFR
2000 excitatory and inhibitory distance-based

Giugliano et al., LIFa, excitatory exp-curr. Nonstructured Burst detection: not given; Measures: burst structure,
2004 burst count/freq.

French and LIF, AHP, Ref, T-type VGCC  alpha-curr., depression SW Burst detection: none; Measures: burst size (number of
Gruenstein, 2006 active neurons), speed of burst propagation

Gritsun et al., 2010 Izhikevich, excitatory and exp-curr., Tsodyks Nonstructured Burst detection: GFR; Measures: burst structure

Gritsun et al., 2011

Baltz et al., 2011

Maheswaranathan
etal, 2012
Maki-Marttunen
etal., 2013

inhibitory

Izhikevich, excitatory and
inhibitory

LIF, AHP, Ref, T-type VGCC,
excitatory

Izhikevich, excitatory and
inhibitory

LIF, HH (Kdr, K-slow, Na,
NaP), excitatory and

exp-curr., Tsodyks

AMPAR, NMDAR, Tsodyks

exp

(with LIF) exp-curr., Tsodyks;
(with HH) AMPAR, NMDAR,

inhibitory
LIF, AHP, excitatory

GABAAR

Masquelier and AMPAR, NMDAR, Tsodyks

Deco, 2013

Yamamoto et al., LIF, AHP, Ref, T-type VGCC,  biexp-cond.

2016 excitatory

Lonardoni et al., AdExp, excitatory and biexp-cond., AMPAR,

2017 inhibitory GABAAR, NMDAR, Tsodyks

Nonstructured, intense Burst detection: ISI-cell.; Measures: burst count/freq.

neurons

Nonstructured Burst detection: ISI-cell.; Measures: rasterplots, GFR,
burst structure, burst count/freq.

SW Burst detection: GFR; Measures: rasterplots, GFR, burst
structure, spectral analysis, PCA

Nonstructured, Burst detection: ISI-pop.; Measures: rasterplots, burst

distance-based, SW,
complex, simulated

structure, connectivity, graph measures

Nonstructured Burst detection: GFR; Measures: burst count/freq.

Nonstructured Burst detection: not clear; Measures: rasterplots, burst

count/freq., connectivity
Distance-based
(alternatives
considered)

Burst detection: GFR; Measures: burst structure, burst
count/freq., GFR, connectivity, burst propagation, graph
measures

Neuron model: point neuron model, one (excitatory) or two (excitatory and inhibitory) neuronal populations. Synapse model: exponential (exp.), bi-exponential (biexp.), or alpha
postsynaptic current (curr.) or conductance (cond.); Tsodyks-Markram model; synaptic receptors. Connectivity: network connectivity, nonstructured (equal probability of connection
for every pair of neurons), distance-based (probability of connection decreases with the distance between somata), small-world and other complex connectivity schemes, intense
neurons (nonstructured, but a subset of neurons has particularly strong synapses), simulated (morphology-based connectivity simulated using NETMORPH). Data analysis: burst
detection (identifying periods of global synchronization from the data), categories: from inter-spike-intervals of individual neurons (ISI-cell.), from inter-spike-intervals of the population
(ISI-pop.), from global firing rates (GFR). Data measures: burst structure (length, number of spikes per burst etc.), burst count or frequency or statistics of inter-burst-intervals, frequency
analysis, burst propagation through network, analysis of connectivity (physical or functional/from spike trains), graph measures of connectivity. AdExp, adaptive exponential; AHF, after-
hyperpolarization current; AMPAR, «-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; GABAAR, gamma-aminobutyric acid type A receptor; HH, Hodgkin-Huxley; Kdr,
delayed rectifier potassium current; K-slow, slow potassium current; LIF and LIFa, leaky integrate and fire without and with adaptation; Na, sodium current; NaF, persistent sodium
current; NMDAR, N-methyl-D-aspartate receptor; PCA, principal component analysis; QIF, quadratic integrate-and-fire; Ref, refractory current; SW, small-world connectivity; Theta,

theta model; T-type VGCC, T-type voltage-gated Cat channel (in bursting neurons).

same Python modules for analysis and visualization of data
can be combined with each simulation tool. Parallelization
is supported by NEST and PyNN, however it is still under
development in Brian. An earlier version of Brian offers a
model fitting method for tuning the statistics of the interspike
intervals in spiking neuron models. In Brian version 2.0, this
option is under development. NEST and PyNN do not provide
direct tools for model fitting. However, both Brian and NEST
can easily be combined with external Python modules for
model fitting. For fast exploration of models, for example in
the early phase of model development, or for incorporating
nonstandard biophysical mechanisms in the model, Brian offered
more flexibility. In NEST and PyNN, the components of the
model have to be either selected from the list of existing
models or implemented by extending the simulation tool to
include new models. Brian provides more flexible framework
for implementation of user-defined models. Model components
are specified directly as strings of ODEs. Various models can
easily be implemented, however they still rely on the existing
functionalities of the simulation tool.

3.2. Evaluation and Comparison of

Computational Models

3.2.1. Neuronal Signal Transduction Models

Based on our large review of postsynaptic signal transduction
models for long-term potentiation and depression (Manninen
et al., 2010), we found out that it would have been often
time consuming or even impossible to try to reproduce the
simulations results. First, not all the details of the models, such as
equations, variables, inputs, outputs, compartments, parameters,
and initial conditions, were given in the original publications. For
example, even just missing to give the inputs in the publications
makes the reimplementation and reproduction of the simulation
results difficult or impossible with signal transduction models.
Second, most of the models were not available in model
databases or were not open access, and sometimes even the
simulation tool or programming language used was not named
in the publications. Third, comparison to previous models
was non-existent. Even qualitative comparison was difficult
because only a few publications provided graphical illustrations
of the model components or the graphical illustrations were
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FIGURE 1 | Evaluation and comparison of the neuronal growth simulation tools (NETMORPH and Cortex3D). Panels illustrate the increase in synapse counts during

simulation time equivalent to 4-21 days in vitro. The number and position of somata were fixed. For each neuron, the neurites grew according to the implemented
model and formed synaptic contacts based on proximity between axonal and dendritic branches. In this figure, we varied one of the parameters that controlled neurite
growth, the elongation rate vg (see legend), and different colors correspond to different parameter values. The results show mean (line) and standard deviation (bar) for
the number of synapses per neuron, averaged over all neurons in the culture. Stars indicate experimental values extracted from the literature (Ichikawa et al., 1993).
(Top left) Synapse counts obtained from NETMORPH, elongation rates equal to 1, 2, 4, 6, and 8 pm/day. (Top right) Zoomed interval 7-14 days from the panel (Top
left). (Bottom) Synapse counts obtained from Cortex3D, elongation rates equal to 2, 6, 10, 14, and 22 wm/day. x axis—growth time in days, y axis—number of
synapses per neuron. For days 4-14 and vy = 2 pm/day (NETMORPH) or vg = 10 pm/day (Cortex3D), the simulated values corresponded to the experimental ones.
After 14 days the simulated values increased while the experimental values saturated as no synaptic pruning was implemented in this test. The neurite growth was

slower for Cortex3D which was visible from the values for vg. Reproduced from Acimovic¢ et al. (2011) with permission from Hindawi.

misleading by having also components that were not actually
modeled. We concluded that the value of computational models
for understanding molecular mechanisms of synaptic plasticity
would be increasing only with detailed descriptions of the
published models and sharing the codes online.

We listed the models we tried to reimplement, resimulate, and
compare based on the information in the original publications in
Tables 2, 5. In Table 5, we can see that four out of seven models

were available in the model repositories but this is because four of
the models were chosen to this study because of the availability of
the code. Thus, the ratio of models available online is generally
not this high. In addition, most of the publications gave all
the details of the models as text, tabular format, supplementary
material, or at least in the model code. We were able to reproduce
Figure 1C of the publication by Delord et al. (2007). From the
publication by d’Alcantara et al. (2003), we decided to reproduce
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TABLE 5 | Evaluation of the neuronal signal transduction models.

Model Online Language Equations Parameters Init. cond. Repro., Repli. Compa.
d’Alcantara et al., 2008  No MATLAB® All appendix Most text Most appendix, text ++ Tested
Hayer and Bhalla, 2005 DOQCS GENESIS/Kinetikit, MATLAB®, SBML All code, suppl, tab All code, suppl, tab All code, suppl, tab Not tried Tested
Lindskog et al., 2006 ModelDB XPPAUT All code, tab, text All code, tab All code Not tried Tested
Delord et al., 2007 No Not given All text All text All text +++ Tested
Nakano et al., 2010 ModelDB GENESIS/Kinetikit All code, suppl, tab, text All code, suppl, tab All code, suppl, tab Not tried Tested
Kim et al., 2010 ModelDB XPPAUT All code, tab, text All code, tab, text  All code Not tried Tested
Zachariou et al., 2013 No XPPAUT Most text Most tab, text Some text - Not tried

Online: availability of the model implementation in a model repository by the original authors. Language/Simulation tool: programming language or simulation tool used by the original
authors to implement the model. Equations: availability and format of equations—embedded in the text, appendix, or supplementary material, presented in a table, or described in
the publicly available model implementation (code). Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and format of
initial conditions (same categories as for Equations). Repro., Repli.: reproducibility or replicability of the original results with the information given in the original publication. Compa.:
comparability of the models to each other. We described model implementation in the original publication using the following categories: none, some (at least about one third of the
details necessary for model reimplementation is given), most (at least about two thirds are given), or all. Models for which we were not able to reproduce any results are marked by —
sign. Models for which we reproduced at least some of the results are marked by one to three + signs depending how well we reproduced the results. We implemented the chosen
models with MATLAB®. See more details in section 3 and in our previous publications (Manninen and Linne, 2008; Manninen et al., 2011).

only Figures 3D-F. After fixing one mistake in the equations
by d’Alcantara et al. (2003), we were able to reproduce most of
the simulation results. We were able to reproduce all the other
curves, except our maximum value for o-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid receptor (AMPAR) activity
was about 220 % whereas the original maximum value in Figure
3D was about 280 %. The reason behind the different value
might be that not all parameter and initial values were given
in the original publication. We were not able to completely
implement the model by Zachariou et al. (2013) because not
all the information of the model was given in the original
publication. More information about the reproducibility issues of
the models can be found in our previous publications (Manninen
and Linne, 2008; Manninen et al., 2011).

We were the first ones to provide a computational comparison
of postsynaptic signal transduction models for synaptic plasticity
(Manninen et al., 2011). We evaluated altogether five models,
of which two were developed for hippocampal CAl neurons
(d’Alcantara et al., 2003; Kim et al., 2010), two were developed
for striatal medium spiny neurons (Lindskog et al., 2006; Nakano
et al., 2010), and one was a generic model (Hayer and Bhalla,
2005) (see Tables 2, 5). The model by d’Alcantara et al. (2003),
we implemented ourselves in MATLAB®, but the others we took
from model databases. The models by Kim et al. (2010) and
Lindskog et al. (2006) we took from ModelDB (Migliore et al.,
2003; Hines et al., 2004) in XPPAUT format. The codes were
properly commented and clearly written, which made it easy
to find the values we wanted to modify. The model by Nakano
et al. (2010) we took from ModelDB in GENESIS/Kinetikit
format. The model codes were neither intuitive nor commented.
However, the database and simulation tool provided helpful
explanation files to ease the use of the model files (see more
details in Manninen et al., 2011). The model by Hayer and
Bhalla (2005) we took from the Database of Quantitative Cellular
Signaling (DOQCS, Sivakumaran et al., 2003) in MATLAB®
format. However, the MATLAB® implementation of the model
was hard to modify due to issues with parameter handling.

Precisely, it was challenging to identify model parameters as the
authors opted to hard code numerical values to the MATLAB®
script instead of using parameter names (see more details in
Manninen et al., 2011). We compared the simulation results
of the models by using the same input for the models. We
ran a set of six simulations with different total concentrations
of calcium/calmodulin-dependent protein kinase II and protein
phosphatase 1 to see how the behavior of the models changed.
Our study showed that when using the same input for all the
models, models describing the plasticity phenomenon in the very
same neuron type produced partly different responses. On the
other hand, the models by d’Alcantara et al. (2003) and Nakano
et al. (2010) produced partly similar responses even though they
had been built for neurons in different brain areas, and Nakano
et al. (2010) did not report using the details of the model by
d’Alcantara et al. (2003) when building their model. The models
by Lindskog et al. (2006) and Kim et al. (2010) produced also
partly similar responses even though they had been built for
neurons in different brain areas, but Kim et al. (2010) stated that
they used the details of the model by Lindskog et al. (2006) when
building their model. Based on these results, we concluded that
there is a demand for a general setup to objectively compare the
models (see more details in Manninen et al., 2011). In our other
study (Manninen and Linne, 2008), we compared the models by
d’Alcantara et al. (2003) and Delord et al. (2007) with the same
input and the total concentration of AMPARs. We verified that
the model by d’Alcantara et al. (2003) was only able to explain the
induction of plastic modifications, whereas the model by Delord
et al. (2007) was able to explain both induction and maintenance
(see also d’Alcantara et al., 2003; Delord et al., 2007).

3.2.2. Astrocyte Models

After categorization of astrocyte and neuron-astrocyte models
in our previous studies (Manninen et al.,, 2018a,b), we realized
that these models have the same shortcomings as listed in the
previous section for neuronal signal transduction models, such
as several publications lacked important model details, model
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codes were rarely available online, graphical illustrations of these
models were misleadingly plotting also model components that
were not part of the actual model, mathematical equations were
sometimes incorrect, and selected model components were not
often justified.

In our previous studies (Manninen et al., 2017, 2018b), we
tried to reimplement altogether seven astrocyte models. In the
present study, we tried to reimplement two more models. None
of the models were available in model repositories by the original
authors. However, the model by Lavrentovich and Hemkin
(2008) is in ModelDB submitted by someone else (Accession
number: 112547). We have provided our implementation for four
out of nine models in ModelDB [the models by Lavrentovich and
Hemkin (2008), De Pitta et al. (2009), and Riera et al. (2011a,b),
and modified version of the model by Dupont et al. (2011),
Accession number: 223648]. Most of the publications provided
all the details of the models, except the initial conditions, either
in text, tabular format, appendix, supplementary material, or
in corrigendum. We were able to reproduce all of the chosen
original results by Di Garbo et al. (2007) and Lavrentovich and
Hembkin (2008) (see Table 6). We reproduced Figures 2, 5, and
8 by Di Garbo et al. (2007) and Figures 3, 4, 5, 7, and 9 by
Lavrentovich and Hemkin (2008). We were not able to reproduce
any of the important features of the original results by Riera et al.
(2011a,b) with the original equations, but after we fixed the found
error in one of the equations we were able to reproduce some of
the original results in Figure 4B by Riera et al. (2011a) when Xip3
was 0.43 uM/s between 100 and 900 s and 0 otherwise and all of
the original results when Xip3 was 0.43 uM/s between 100 and
900s and 0.2 uM/s otherwise. We were able to reproduce most
of the original results in Figure 12 by De Pitta et al. (2009). We
were able to reproduce well the amplitude modulation but not
the frequency modulation part of the figure. Thus the problem
might be that the original authors did not provide all the model
details correctly for the frequency modulation. We were not able
to reproduce any of the important features of the original results
in Figures 2 and 3 by Dupont et al. (2011) with the original
equations. After we tested our implementation, we realized that
there had to be a mistake in the original calcium equation. We
tested several different calcium equations based on the equations
published by the same authors and were able to reproduce most
of the original results with one of the tested equations. At first,
we were not able to reproduce Figure 2 by Nadkarni and Jung
(2003). After we fixed mistakes in one of the original equations
and parameter values, we were able to reproduce most of the
original results in Figure 2 by Nadkarni and Jung (2003). Due to
several deficiencies in the original model descriptions, we were
not able to reproduce the simulation results of the models by
Wade et al. (2011, 2012) (see Table 6). In addition, we were not
able to completely implement the model by Silchenko and Tass
(2008) because not all the information of the model was given in
the original publication. More details about the reproducibility
issues of the astrocyte models can be found in our previous
publications (Manninen et al., 2017, 2018b).

In addition to testing reproducibility, we also addressed the
comparability of the astrocyte models in our previous study
(Manninen et al., 2017). We compared the model by Riera

et al. (2011a,b) to the model by Lavrentovich and Hemkin
(2008), and the model by De Pitta et al. (2009) to our modified
version of the model by Dupont et al. (2011). We chose these
models because they described similar biological processes. The
models by Riera et al. (2011a,b) and Lavrentovich and Hemkin
(2008) were spontaneously oscillating models, whereas the other
two models used glutamate as stimulus. The overall dynamical
behaviors of the models were relatively different. The model
by Lavrentovich and Hemkin (2008) oscillated less frequently
than the model by Riera et al. (2011a,b). We found out that
both models were sensitive to parameter values. Especially, when
using the parameter values from the model by Riera et al.
(2011a,b) in the model by Lavrentovich and Hemkin (2008), the
model by Lavrentovich and Hemkin (2008) behaved differently
compared to the behavior with its own parameter values. With
a constant glutamate stimulus, the models by De Pitta et al.
(2009) and our modified version of the model by Dupont et al.
(2011) showed partly similar kind of behavior but there were
a few exceptions. First, a higher constant glutamate stimulus
value produced higher calcium concentrations with the model
by De Pitta et al. (2009) and lower calcium concentrations with
our modified version of the model by Dupont et al. (2011).
Second, the higher the constant glutamate stimulus value, the
faster the model by De Pitta et al. (2009) ceased to oscillate. With
pulse wave stimuli, the model by De Pitta et al. (2009) and our
modified version of the model by Dupont et al. (2011) produced
differing results. In our modified version of the model by Dupont
et al. (2011), the calcium concentration oscillated even with the
minimum concentration value of the glutamate stimulus pulse.
This did not happen with the model by De Pitta et al. (2009).
More details about the comparability issues of the astrocyte
models can be found in our previous publication (Manninen
etal., 2017).

3.2.3. Spiking Neuronal Network Models

We evaluated 10 models listed in Table4. The majority
of the examined publications presented a complete set of
equations describing the neuron and synapse models, either in
the methods section, appendices, or supplementary material.
We found an incomplete set of equations in two of the
publications. All model parameters were presented, however not
in an easily tractable format. Only one publication presented
all the parameters in a tabular format, 6/10 (7/10 if the
supplementary material was included) publications partially
summarized parameters in a tabular format. None of the
publications used the recommendable model description format
introduced by Nordlie et al. (2009). Non-systematic model
description increases the chance of errors both in the publication
and when reimplementing the model. We found several minor
errors: wrong naming of parameters, same name used for
different parameters in the same article, missing to define
some relevant parameters before using them, ambiguities in
defining probability distributions used to randomize some of
the parameters (e.g., using the wrong name for probability
distribution, ambiguity about implementation of probability
distribution in the utilized simulation tool), and ambiguities in
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TABLE 6 | Evaluation of the astrocyte and neuron-astrocyte models.

Model Online Language Equations Parameters Init. cond. Repro. Compa.
Nadkarni and No Not given All text All text No —/++ Not tried
Jung, 2003
Di Garbo et al., No Not given All text All tab No +++ Not tried
2007
Silchenko and No Not given Most appendix, text ~ Most appendix, tab, text  No — Not tried
Tass, 2008
Lavrentovich and No (ModelDB by Fortran (Python by Al text All corrigendum, text All text +++ Tested
Hemkin, 2008 us and others) us, XPP by others)
De Pitta et al., No (ModelDB by Not given (Python All appendix, text All tab No ++ Tested
2009 us) by us)
Riera et al., No (ModelDB by MATLAB® All suppl, tab, text All suppl, tab, text No —/+/+++  Tested
2011a,b us) (Python by us)
Dupont et al., No (ModelDB by MATLAB® (Mod. All text All tab, text No —/++ Tested
2011 us) model with Python

by us)
Wade et al., 2011 No MATLAB® All text Most tab, text Some text - Not tried
Wade et al., 2012 No MATLAB® All text All appendix, tab, text Most appendix, tab, text  — Not tried

Online: availability of the model implementation in a model repository by the original authors, by us, or by someone else. Language/Simulation tool: programming language or
simulation tool used by the original authors, by us, or by someone else to implement the model. Equations: availability and format of equations—embedded in the text, appendix,
supplementary material, or corrigendum, or presented in a table. Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and
format of initial conditions (same categories as for Equations). Repro.: reproducibility of the original results with the information given in the original publication. Compa.: comparability
of the models to each other. We described model implementation in the original publication using the following categories: none, some (at least about one third of the details necessary
for model reimplementation is given), most (at least about two thirds are given), or all. Models for which we were not able to reproduce any results are marked by — sign. Models for
which we reproduced at least some of the results are marked by one to three + signs depending how well we reproduced the results. We implemented all the models with Python and/or
MATLAB®, and made some of the models available in ModelDB (Accession number: 223648). We marked the language we used only if we made the model available in ModelDB. See

more details in section 3 and in our previous publications (Manninen et al., 2017, 2018b).

describing the connectivity scheme. In addition, most of the
publications did not give the initial conditions.

Description of network connectivity scheme is equally
important part in presentation of network models. The
unstructured connectivity is used in 6/10 studies, thus each pair
of neurons was connected with equal probability. The other
studies included additional connectivity schemes, often distance-
dependent connectivity, where the probability of connection
decreased with the distance between the pair of neurons, or
the small-world connectivity that allows the majority of local
and a few long-distance connections. A careful description
of the connectivity generating algorithm is advisable for all
but the simplest (unstructured) connectivity in order to avoid
implementation errors. For example, in one of the publications
the authors described network connectivity as “scale-free
random” but then assigned a number of outputs to each neuron
using a uniform random instead of a power-law distribution. The
two studies by Miaki-Marttunen et al. (2013) and Lonardoni et al.
(2017) paid additional attention to the generation of connectivity
matrix. Both included supplementary material to describe
implementations and implications of different connectivity
schemes.

The comparison between simulated and experimental data
requires extensive data analysis. The lack of standardization of
methodology and the ambiguity in presentation of the applied
algorithms pose additional obstacles to reproducibility and
replicability. All of the models under consideration generated
the same type of data, the spontaneous activity exhibiting

network-wide bursts, thus the intervals of intensive spiking
activity reflecting global synchronization. The analysis of this
data often consists of two steps: bursts detection, segmenting
the population spike-data into intervals containing bursts, and
computing the statistics of different quantitative measures based
on the burst detection or on original non-segmented data. Burst
detection itself might not be very reliable. A recent review
article conducted evaluation of a broad range of burst detection
methods and tested them against a carefully crafted benchmark
data (Cotterill et al., 2016). The authors concluded that none of
the algorithms performed ideally, and suggested a combination
of several methods for improving the precision. The issue was
not so dramatic in studies that we examined. All of them focused
on relatively large bursting events that were easier to identify,
compared to the study by Cotterill et al. (2016). Typically,
burst detection algorithms depend on free parameters that are
manually tuned to the data. However, the fact that methods
used in various studies differ and that authors rarely provide the
implementation of the algorithms creates an additional obstacle
in reproducing the published results. Even bigger variability
is presented in selection of methodology to quantify bursting
dynamics. The last column in Table 4 illustrates this variability
and lists the data measures used in different publications. In the
table, burst detection methods are classified into three categories:
methods based on spike-data of individual electrodes/neurons,
based on population spike-data, and based on global/population
firing rate. The measures used to quantify data include analysis
of the spike-data statistics, analysis of burst profiles or frequency
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TABLE 7 | Evaluation of the spiking network models.

Model Online Language Equations Parameters Init. cond. Repli.
Latham et al., 2000 No Not given All text All tab, text No Not tried
Giugliano et al., 2004 No Not given All text All tab, text No Not tried
French and Gruenstein, 2006 No MATLAB® All text All text No Not tried
Gritsun et al., 2010 No C++, MATLAB® Most appendix, text All tab, text No Not tried
Gritsun et al., 2011 No C++, MATLAB® Some text Some tab, text No Not tried
Baltz et al., 2011 No Brian v2, Python All text All text No Not tried
Maheswaranathan et al., No C++, MATLAB® Most text Most tab, text No Not tried
2012

Méki-Marttunen et al. (2013) ModelDB MATLAB®, NEST All code, text All code, tab, text All code +++
Masquelier and Deco, 2013 ModelDB Brian v1, Python All code, text All code, tab, text All code ++
Yamamoto et al., 2016 No Not given All text All text No Not tried
Lonardoni et al., 2017 DRYAD NEURON, Python All code, suppl, text All code, suppl, tab, text All code ++

Online: availability of the model implementation in a model repository by the original authors. Language/Simulation tool: programming language or simulation tool used by the original
authors to implement the model. Equations: availability and format of equations—embedded in the text, appendix, or supplementary material, presented in a table, or described in the
publicly available model implementation (code). Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and format of initial
conditions (same categories as for Equations). Repili.: replicability of the original results with the information given in the original publication. We described model implementation in the
original publication using the following categories: none, some (at least about one third of the details necessary for model reimplementation is given), most (at least about two thirds are
given), or all. Models for which we replicated at least some of the results are marked by one to three + signs depending how well we replicated the results.

of their occurrences, frequency analysis, principal component
analysis applied to global firing rates, spatial burst propagation,
extraction of connectivity from the spike-data of individual
neurons, as well as graph theoretic analysis of the extracted
connectivity. This lack of standardization in data representation
somewhat hinders the comparison between different studies.
Reproducibility of the model requires reimplementation of the
model equations, burst detection method, and measures used to
quantify the data.

The simulation tools range from the custom-made software
in MATLAB® or C4+ to the public simulation tools of spiking
neuronal networks (e.g., Brian, NEST, and NEURON). Three
out of 10 listed studies provide the full model implementation,
namely Masquelier and Deco (2013), Miki-Marttunen et al.
(2013), and Lonardoni et al. (2017). From these studies, we
attempted to replicate the results that demonstrate time evolution
of model variables and the global dynamical regime of the model,
for example adaptation variables, cell membrane potential, and
spike raster plots. The replicability of the three studies is
summarized in Table 7. The model by Masquelier and Deco
(2013) is available in Brian version 1.4.0 and Python version 2.6,
and we ran it in Brian version 1.4.1 and Python version 2.7.
The code contains model implementation, the list of parameters,
and the plotting function sufficient to replicate Figures 4, 5
from the article. The replication of Figure 4, the illustration
of neuron and network dynamics, was straightforward. In
Figure 5, the neuronal adaptation mechanism was examined
and the basic model was tested for two different values of
the adaptation time constant t,. We replicated the result
obtained for 7, = 1.6 s but failed to replicate the results
for T, = 1.2 s. This might be caused by different versions
of Python and Brian used in the original study and in our
replicability test. The model by Lonardoni et al. (2017) is available
in NEURON/Python format (versions of the software not

indicated). It required installation of an additional nonstandard
Python package. The model is well documented and supported
by many implementation details. The code downloaded from
DRYAD repository included model implementation, the code for
generating connectivity matrices, as well as three test examples
and three examples of connectivity matrices. The first attempt
to run the model using Neuron 7.1. produced errors. After
contacting the authors, we obtained the correct version for the
simulation tool (Neuron 7.3) and Python packages, as well as
valuable instructions how to use the code. Under Neuron 7.3,
all three test examples worked. We were able to use two out
of three connectivity matrices, but not the biggest one (N =
4,096 neurons) used in the article. Attempt to run the biggest
matrix failed most likely due to memory issues. However, we
managed to replicate the rasterplots in Figure 2A by Lonardoni
et al. (2017) using a smaller matrix (N = 1,024 neurons)
and after modifying one parameter. In a smaller network, the
burst propagation in Figure 2B by Lonardoni et al. (2017) was
somewhat less evident. Thus, we were able to replicate most of
the original results by Lonardoni et al. (2017). The study by
Maiki-Marttunen et al. (2013) contains two models, a network
of HH neurons and a network of leaky-IF (LIF) neurons. We
replicated Figure 3 from the article. The first, HH model, is
available in MATLAB® format (version R2010a/R2011b) using
own code and it was possible to replicate it. The second, LIF
model, is available in PyNEST format (Python version 2.4.3
and NEST version 2.0.0). The software versions are indicated
in the code. We managed to replicate the result using Python
version 2.7 and NEST version 2.2.1. Running the same code
in a newer version of the simulation tool, NEST version 2.8.0,
failed to produce any bursting dynamics. All of the studies
provided well-documented models and full set of parameters.
However, the replicability of the results was hindered by common
problems related to versions of the utilized software. These
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DIFFICULTY IN REPRODUCIBILITY OR REPLICABILITY OF RESULTS

FIGURE 2 | Summary of reproducibility and replicability studies. Both x- and y-values are based on subjective estimation. On the x-axis, we present the difficulty to
reimplement, simulate, and reproduce or rerun and replicate previous results (numbers mean the following: 0—immediately, 1—after a few hours of working on the
model, 2—after 1 day, 3—after a few days, 4-after 1 week, and 5—after 2 weeks or more). On the y-axis, we present the percentage of reproduced or replicated
results. The models are separated into three categories based on were they supplied in model repositories by original authors, were at least part of the parameter
values given in a tabular format, and were parameter values given only in text format.

examples illustrate the need to provide detailed information
about simulation environment, in addition to model description
and implementation.

3.2.4. Summary of Reproducibility and Replicability
Studies

Figure 2 shows our subjective evaluation of the difficulty in
timewise to reproduce and replicate the original simulation
results and the percentage of reproduced and replicated original
results. The list of issues affecting the evaluation of models
included: (1) complexity of the reproduced/replicated model, (2)
model description in the original publication (in a tabular format,
as text, or as a supplementary material, and the amount of details
given), (3) possible errors in the model description, (4) report
of versions of the simulation tools and packages, (5) person who
reimplemented the model, thus the experience of the researcher,
and (6) user support from the authors of the model.

We separated all tested reproducibility and replicability
models (see Tables5-7) into three classes according to
presentation in related publications: models described fully
in the text (all parameters embedded in the text), models
with parameters at least partially (and in some cases entirely)
given in a tabular format, and the studies which supplied
model implementation to the public repositories. We carried

out reproducibility studies for the first two categories and
replicability studies for the last category. As expected, the
replicability studies were less difficult than most of the
reproducibility studies, the replication times ranged from
working immediately to 2 days. The percentage of replicated
results was high in all studies (more than 60 %), and the
main obstacle was incompatibility of simulation tool versions.
Reproduction time for models described entirely in text ranged
from a few hours to a week. Surprisingly, we were able to
reproduce on average better the results from these models than
the rest of the models, including the three models that we tried
to replicate by rerunning the available model implementations
(see Figure 2). The reason might be a difference in complexity
of models, as these models tended to be simpler than others.
The majority of the reproduced models presented most or all
the parameter values in a tabular format. The time needed for
reproducing these models ranged from a few days to more than 2
weeks. Even though parameter values were given, at least partly,
in a tabular format for eight models, we were able to reproduce
the original results completely only with two of these models
and none of the original results with four of these models. Thus,
this category of models had a huge variation in percentage of
reproduced results, indicating that some other issues, in addition
to model presentation in the article, determined the success of
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reproduction. The difficulty to reproduce the results increased
even when only one parameter value was missing or one mistake
in equations. Our results showed that the four models for
which we were able to reproduce all the original results gave all
the equations and parameter values in the original publication,
including corrigenda and supplementary material. However, one
of the completely reproduced models had a mistake in one of
the equations that we had to fix, for all the other completely
reproduced models all the details were given correctly in the
publications. Moreover, if all the details of the models were
given in the original publication, it did not mean that we were
able to reproduce all the results. The reason was that often
the models had mistakes in parameter values or equations. We
should emphasize that small number of model examples in some
categories affected the conclusions (only three replication tests
and four tests with models fully described in text are shown).

Figure 2 shows some level of correlation between difficulty
and accuracy of reproduction/replication studies: all studies that
were done relative fast (up to a few days) achieved relatively
high reproduction/replication of the original results. The studies
that required more time ranged from no reproduction to perfect
reproduction. This also reflects the way how these studies
were carried out, some models immediately gave good results
while others required long time and numerous tests without
guarantee of success. The distribution of values reflecting the
success was somewhat bimodal, the reproduction results either
failed or succeeded with over 60 % reproduced results. The
percentage of replicated results were over 60 % for all models.
Finally, the large distribution of precisions for some classes
of models indicated that additional issues affect the success
of reproduction, particularly the complexity and the accuracy
of the model description. This should be emphasized in the
light of increasing interest for very complex and biophysically
accurate multiscale models. While simpler models provide
solid reproducibility in relatively short time, complex models
require detailed description of the model, preferably with model
implementation made publicly available.

4. DISCUSSION

We have continually evaluated computational neuroscience and
systems biology software and computational models since 2004
while developing new methods and models for computational
neuroscience. In this study, we partly summarized results
from our previous studies and partly presented new results.
We examined selected simulation tools that are intended for
simulation of biochemical reactions and subcellular networks
in neuronal and glial cells (see also Pettinen et al., 2005;
Manninen et al.,, 2006c; Mikiraatikka et al., 2007) and for
studying the growth and development of neocortical cultures
(see also Miki-Marttunen et al., 2010; Ac¢imovi¢ et al., 2011)
and the dynamics of spiking neuronal networks. We have
previously provided an extensive overview of more than hundred
computational models for postsynaptic signal transduction
pathways in synaptic plasticity (Manninen et al., 2010) and more

than hundred computational models for astrocytes and neuron-
astrocyte interactions (Manninen et al., 2018a,b), where our
purpose was to categorize the models in order to make their
similarities and differences more readily apparent. In this study,
we provided reproducibility and comparability results for some
of these models (see also Manninen et al., 2011, 2017, 2018b) with
an aim to present the state-of-the-art in the field and to provide
solutions for better reproducibility. Additionally, we provided
replicability results for spiking neuronal network models.

Our results show that the different simulation tools we
tested were able to provide same simulation results when the
same models were implemented in them. On the other hand,
it was somewhat difficult to reproduce the original simulated
results after reimplementing and simulating the models based
on the information in the original publications. We were able
to reproduce all the original simulation results of four models
out of 12 models we tested. The more complete and correct
description the model had in the original publication, the more
likely we were able to reimplement the model and reproduce
the original results. When the parameter values were in a
tabular format, it was much easier to reimplement the model
because there was no need to go through the whole article
looking for the possible values. Mistyped or missing equations
and parameter values in the original publications made the
reproducibility of the simulation results most difficult. In our
replicability studies, we were able to replicate one study and most
of the results from the other two studies. The issues encountered
while rerunning the models can be attributed to mismatch in
versions of the software used for replication and for original
model development. Our experiences emphasize the need to
supply not only the model description and implementation
but also the details of simulation environment, the versions
of the software, and the list of necessary packages. The
need for better tracking and documentation of the simulation
environment and possible solutions are discussed by Crook et al.
(2013).

When developing new simulation tools, a multitude of
questions should be asked. Naturally, every simulation tool is
limited with the adopted modeling framework but should aim at
providing the maximal flexibility within that framework. In that
context, the following challenges and questions are relevant:

e How big programming load is needed to implement new
biological mechanisms?

How easy is it to incorporate the model components into the
existing models from the literature and public databases?
Does the simulation tool allow flexible level of details when
describing different model components?

Do the version of the simulation tool and packages needed to

run the simulations pose a problem for replicability?

Most of the existing simulation tools of spiking neuronal
networks impose strict constraint on selection of model
components. Those components are implemented as part of
the model source code, and the new ones can be added
only through extension of the source code which prevents
fast modification of model components. Simulation tools that
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provide basic mechanisms for model implementation and allow
flexible description of details, for example directly implementing
the model as either ODEs or SDEs (Brian, XPPAUT), by
providing interface for adding new components (NEURON)), or
by providing unit checks (Brian), offer easier manipulation and
modification of the model. For the same reason, the simulation
tools of this type allow easier extension and reuse of the
published models. Several existing tools support development
of multiscale models [MOOSE (Ray et al., 2008), GENESIS,
NEURON] or implementation of models using more than
one standard simulation tool (MUSIC, Djurfeldt et al., 2010).
These tools support models where different mechanisms are
represented at different level of details. The different versions
of the simulation tools and the packages needed can make
replicability problematic. It is very important for the tool
developers to take this into account.

Our findings on a specific set of published models for different
biological systems stress the importance of a variety of aspects of
model development. The following challenges and questions are
relevant:

e Has the model been checked carefully in the review process
and can it produce the results in the publication?

e Is the quality of the code sufficient?

e Is the model properly validated against experimental wet-lab
data and correctly representing the biological findings?

What new biological, modeling, and computational aspects the
model provides on top of the previously published models?
Are all the details of the model equations and biological
components given in the publication in a clear way, preferably
in a tabular format?

Which programming language or simulation tool was used to
implement the model, which data analysis methods were used,
and are the implementation of the model and data analysis
methods available online?

It is important to emphasize that a good-quality model
implementation supplied with the original publication improves
not only replicability of the study but also understanding of
the model itself. This is already important during the review
process. Reviewers should have the possibility to rerun the
model code, check the simulated results, and compare the
simulated and experimental data during the review process (see
also Eglen et al., 2017; Rougier et al., 2017). Equally important
is to clearly explain what new components the model has
in comparison to previously published models and what old
and new results the model can show. Verbal description is a
suboptimal way to present complex mathematical formalisms
and algorithms. It often turns out to be incomplete and a number
of ambiguities emerge when attempting to reimplement a model,
usually not evident at first. More systematic and compact
description of all model details, such as equations, parameter
values, initial conditions, and stimuli, using, for example, a
tabular format proposed by Nordlie et al. (2009) and Manninen
etal. (2017) and a supplementary material presenting a metadata
and meta-code are needed for successful reproduction of the
published scientific results. Tools to manage, share, and, most
importantly, analyze and understand large amounts of both

experimental and simulated data are still needed (Bouchard
et al, 2016). However, suggestions how to design workflows
for electrophysiological data analysis (Denker and Griin, 2016)
and how to structure, collect, and distribute metadata of
neurophysiological data (Zehl et al., 2016) has already been
proposed. Our example of replicability of spiking network
models points at a bottleneck in reproducibility and replicability
created by the lack of commonly adopted methodology and
publicly available code for analysis of simulated data. Following
the good practices in development of data-analysis methods,
careful description of the methods in the article, and supplying
the code with method implementation in addition to the
model implementation are necessary steps to ensure model
reproducibility and replicability.

Best practices for description of neuronal network models
(Nordlie et al., 2009) and minimum information requirements
for reproduction (Le Novere et al, 2005; Waltemath et al,
2011a) have been suggested. Moreover, many XML-based model
and simulation representation formats, such as SBML (Hucka
et al.,, 2003), CellML (Lloyd et al., 2004), NeuroML (Gleeson
et al., 2010), SED-ML (Waltemath et al., 2011b), and LEMS
(Cannon et al, 2014), have been developed. On the other
hand, Jupyter Notebook (earlier known as IPython Notebook)
could be a potential solution to enhance reproducibility and
accessibility. In addition to giving all the details needed for
model implementation, it is equally important to categorize the
biological details of the models, such as neuron models, ion
channels, pumps, receptors, signaling pathways, synapse models,
in tabular format in publications (see e.g., Manninen et al., 2010,
2018a,b). If not possible to publish via journal due to page
limitations, providing the implementation of the model and data-
analysis method in a public and widely adopted simulation tool
or programming language (e.g., Python) in some of the available
model repositories, for example in ModelDB and BioModels
database (Le Novere et al., 2006), is a must. Regardless of all the
available formats and tools, many authors do not publish their
models in a format that is easily exchangeable between different
simulation platforms or provide their models at all in model
repositories. All these issues should be carefully considered in the
training of both experimental and computational neuroscientists
(see also Akil et al., 2016).

Throughout this study, we evaluated, reimplemented and
reproduced, and replicated a range of models incorporating
different levels of biological details and modeling scales. The
models and biological mechanisms included some relatively
conventional examples but also some that only recently attracted
larger attention within the computational community. As the
experimental methodology and protocols advance and various
neurobiological mechanisms become better understood, the new
challenges for computational modeling emerge. Few examples
are molecular diffusion in synaptic clefts, dendritic spines, and
in other neural compartments (Chay et al., 2016; Hepburn et al.,
2017), models of neurodevelopmental phenomena (Tetzlaff et al.,
2010; van Ooyen, 2011), or wider range of plasticity mechanisms
explored using conventional spiking networks (Miner and
Triesch, 2016). Finally, one can aim beyond network modeling
formalism and include extracellular space, for example similarly
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to the approach adopted in the Cortex3D simulation tool (Zubler
and Douglas, 2009).

All the above suggestions would greatly improve the
replicability and reproducibility of the published results, reduce
the time needed to compare the model details and results, and
support model reuse in complementary studies or in the studies
extending the range of biophysical mechanisms and experimental
data.
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