
METHODS
published: 01 June 2018

doi: 10.3389/fninf.2018.00030

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2018 | Volume 12 | Article 30

Edited by:

Pedro Antonio Valdes-Sosa,

Clinical Hospital of Chengdu Brain

Science Institute, China

Reviewed by:

Emilia Iannilli,

National Center for Adaptive

Neurotechnologies, United States

Vasil Kolev,

Institute of Neurobiology (BAS),

Bulgaria

*Correspondence:

Frederic von Wegner

vonWegner@med.uni-frankfurt.de

Received: 05 March 2018

Accepted: 11 May 2018

Published: 01 June 2018

Citation:

von Wegner F and Laufs H (2018)

Information-Theoretical Analysis of

EEG Microstate Sequences in Python.

Front. Neuroinform. 12:30.

doi: 10.3389/fninf.2018.00030

Information-Theoretical Analysis of
EEG Microstate Sequences in Python
Frederic von Wegner 1,2* and Helmut Laufs 2,3

1 Epilepsy Center Rhein-Main, Goethe University Frankfurt, Frankfurt am Main, Germany, 2Department of Neurology and

Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany, 3Department of Neurology, University

Hospital Kiel, Kiel, Germany

We present an open-source Python package to compute information-theoretical

quantities for electroencephalographic data. Electroencephalography (EEG) measures

the electrical potential generated by the cerebral cortex and the set of spatial patterns

projected by the brain’s electrical potential on the scalp surface can be clustered into a set

of representative maps called EEG microstates. Microstate time series are obtained by

competitively fitting the microstate maps back into the EEG data set, i.e., by substituting

the EEG data at a given time with the label of the microstate that has the highest similarity

with the actual EEG topography. As microstate sequences consist of non-metric random

variables, e.g., the letters A–D, we recently introduced information-theoretical measures

to quantify these time series. In wakeful resting state EEG recordings, we found new

characteristics of microstate sequences such as periodicities related to EEG frequency

bands. The algorithms used are here provided as an open-source package and their

use is explained in a tutorial style. The package is self-contained and the programming

style is procedural, focusing on code intelligibility and easy portability. Using a sample

EEG file, we demonstrate how to perform EEG microstate segmentation using the

modified K-means approach, and how to compute and visualize the recently introduced

information-theoretical tests and quantities. The time-lagged mutual information function

is derived as a discrete symbolic alternative to the autocorrelation function for metric time

series and confidence intervals are computed from Markov chain surrogate data. The

software package provides an open-source extension to the existing implementations

of the microstate transform and is specifically designed to analyze resting state EEG

recordings.

Keywords: EEG microstates, information theory, entropy, mutual information, Markovianity, open-source

1. INTRODUCTION AND BACKGROUND

Electroencephalography (EEG) is a routine technique in neuroscientific research and the clinical
sciences, used to measure electrical potentials generated by the cerebral cortex. It is a relatively
low-cost and widely distributed diagnostic tool. The measured EEG signal records a superposition
of excitatory and inhibitory postsynaptic potentials via electrodes located on the skull surface
(Niedermeyer and da Silva, 2005). Among the data reduction techniques that have been employed
to compress EEG recordings, the microstate algorithm is of special importance as it has been
evaluated in a variety of experimental conditions (Lehmann et al., 1987; Wackermann et al., 1993;
Pascual-Marqui et al., 1995). The microstate algorithm can be summarized as follows. Consider an

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00030
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00030&domain=pdf&date_stamp=2018-06-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vonWegner@med.uni-frankfurt.de
https://doi.org/10.3389/fninf.2018.00030
https://www.frontiersin.org/articles/10.3389/fninf.2018.00030/full
http://loop.frontiersin.org/people/28419/overview
http://loop.frontiersin.org/people/61439/overview

von Wegner and Laufs Microstate Entropy in Python

EEG data set that consists of nt time samples from nch channels,
or electrode locations. Then, each sample is an array of nch
real numbers, each number representing the electrical potential
at a specific location, and the whole array provides a discrete
sampling of the continuous electrical field. An EEG data set
can therefore be visualized as a time series of changing spatial
patterns, often called maps. The microstate algorithm searches
for a small set of spatial patterns that explain the maximum
amount of the data’s variance. Often, only four representative
maps are needed to explain ca. 70% of the data variance and to
capture neurobiologically relevant data features (Koenig et al.,
2002; Brodbeck et al., 2012; Khanna et al., 2015; Kuhn et al.,
2015). It could be shown that the computed microstates convey
information about functional brain states during cognition (Milz
et al., 2015), different vigilance states (Brodbeck et al., 2012; Kuhn
et al., 2015), and disease (Koenig et al., 1999; Nishida et al.,
2013). We here implement the commonly employed modified K-
means algorithm, as introduced in Pascual-Marqui et al. (1995)
and which has been used in many published studies, for instance
in vision research (Antonova et al., 2015), studies on olfaction
(Iannilli et al., 2013), and taste (Iannilli et al., 2017), and in a
multi-center schizophrenia study (Lehmann et al., 2005), to name
but a few.

The canonical K-means algorithm yields a cluster assignment
that minimizes the sum of squared distances of all data points to
their respective cluster centroids, i.e., to the arithmeticmean of all
points currently assigned to that cluster. The algorithm proceeds
stochastically, using a fixed number of clusters and initializing
the cluster centroids with randomly selected data samples. In
the case of EEG records, a data sample consists of an array of
electrical potential values at a given time point, and the size
of the array represents the number of EEG channels. In each
iteration, the algorithm assigns each data sample to its closest
cluster centroid, and then updates all clusters and their centroids
taking into account the newly assigned samples. Modified K-
means clustering for EEG microstates, as introduced in Pascual-
Marqui et al. (1995), does not use the arithmetic mean of samples
to represent the cluster, but the first principal component of the
samples. Thus, the polarity of the EEG topography is ignored,
leaving the overall symmetry of the potential topography as the
feature to be clustered (Wackermann et al., 1993; Pascual-Marqui
et al., 1995). The convergence criterion for the modified K-
means algorithm is the relative error in the explained variance,
as detailed further below.

In this context, two particular types of EEG experimental
designs should be mentioned, resting state recordings on the one
hand, and event-related potentials (ERP) on the other. We here
focus on resting state recordings, in which the ongoing EEG in
a task-free (“resting”) condition is recorded in order to follow
spontaneous changes in cortical activity. Resting state recordings
have received considerable attention as they provide insight
into functional brain networks that spontaneously activate and
de-activate (Tagliazucchi et al., 2012). In ERP experiments,
which we will not study further in this article, certain stimuli
(acoustic, visual, cognitive tasks) are presented repetitively and
the synchronously recorded EEG signal is analyzed in blocks.
The start of each EEG data block is aligned with the stimulus

presentation times, and thus, EEG features time-locked to
stimulus onset are extracted. Due to often low signal-to-noise
ratios in single stimulus responses, the evoked EEG changes
are usually averaged. We mention ERP experiments since the
microstate approach has been applied to ERP data for a long
time (Murray et al., 2008). The algorithms presented here can
readily be applied to ERP data sets, however, we do not provide
the functionalities for the necessary pre-processing, such as epoch
splitting, averaging, and ERP component identification.

The microstate algorithm transforms an EEG data set
into a sequence of microstate labels, according to maximum
similarity between the candidate microstates and the actual EEG
topography. Commonly, the microstate maps are labeled with
the symbols A–D. The fact that the resulting time series consist
of categorical variables severely limits the list of applicable time
series methods. Frequently used linear characteristics, such as
the autocorrelation function or the power spectral density for
instance, cannot be computed as sum and product terms are not
defined on the discrete set of states.

The most frequently used approach is the transition matrix
method that summarizes microstate dynamics by a square
matrix of first-order transition statistics, i.e., the conditional
probabilities of transitioning from one microstate to the next
(Wackermann et al., 1993). The main limitation of this approach
is the fact that only the t → t + 1 transition, i.e., a single
time lag is considered. On a conceptual level, the transition
matrix can only fully represent a first-order Markov process,
for which the complete information about the future state
Xt+1 is contained in the random variable Xt . We have shown
that resting state EEG microstate sequences do not follow
the Markov property, when testing Markovianity of the time
series statistically (von Wegner et al., 2017). EEG microstate
sequences rather show memory effects extending up to time
scales of several hundred milliseconds (von Wegner et al.,
2017). The statistical tests for Markovianity of order 0, 1,
and 2 are contained in the software package introduced
here.

As an alternative, a random walk analysis of microstate
sequences has been proposed (Van de Ville et al., 2010). To
use the method, however, the microstate labels (e.g., A–D)
have to be mapped to real numbers, e.g., ±1, in order to use
Hurst exponent estimators. Furthermore, the method aggregates
several microstates into one class which is mapped to a single
real number (Van de Ville et al., 2010; von Wegner et al.,
2016). In the case of four microstates, an arbitrary pair of
microstates is mapped to the value −1, and the other two
microstates are mapped to the value +1. This procedure has
several disadvantages. First, there are no biologically inspired
reasons which microstate maps should be grouped into one class.
If all possible class assignments are tested independently, their
number diverges exponentially for larger numbers of microstates.
In the case of an odd number of microstates, the partition
into two classes is even more difficult to justify. Second, the
arithmetic operations performed on the assigned real numbers
(sums, products, square roots) do not have a clearly defined
meaning on the level of the EEG potential topographies they
represent.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

Finally, the transition matrix approach and the random walk
embedding contradict each other on a theoretical level, as the first
uses a memory-less Markov model and the latter uses an infinite
memory, scale-free approach. To overcome these limitations,
in a recent publication we introduced information-theoretical
methods in order to (i) work with an arbitrary number of
microstate labels directly, and (ii) to assess the memory structure
of microstate sequences for all time lags, i.e., beyond t → t + 1
transitions, as captured by the transition matrix method (von
Wegner et al., 2017). We also added further statistical tests for
stationarity and symmetry of the transition matrix, and finally
detected previously unrecognized periodicities in microstate
sequences by means of the time-lagged mutual information
function. Our previous publication provides an evaluation of
these methods on a set of healthy subject resting state EEG
recordings. In the present work, we make the methods developed
and analyzed in von Wegner et al. (2017) available to other
researchers. The code provided along with this manuscript allows
to reproduce our previous results, and to perform new studies
using the same methodology.

2. SOFTWARE DESIGN

The philosophy of this project is to provide a free and
open-source stand-alone package. We chose to implement the
algorithm in Python (Rossum, 1995) in order to provide a
freely distributable, open-source, cross-platform implementation
without restrictions with respect to licensed or commercial
software, or the operating system used. Moreover, Python offers
easily accessible source code and a reasonable trade-off between
performance and code comprehensibility.

The programming style is procedural, providing a set of
functions to import, pre-process, visualize, and analyze EEG
data sets with the microstate algorithm and the information-
theoretical metrics described in von Wegner et al. (2017).
Individual functions can easily be imported into other Python
projects, and the procedural approach facilitates portability,
compared to an object-oriented approach introducing specific
class structures for EEG data that may interfere with data
structures defined in other software packages.

From our experience, the scientific process often starts with a
visual exploration phase, followed by more extensive and often
automated data analyses, where the code may run on headless
servers or remote computation facilities using the command
line. Therefore, we have chosen to implement the software as
a command line tool, to be used in scripts aimed at high
productivity, i.e., to process a hierarchy of directories containing
the EEG files to be analyzed. Rather than providing a graphical
user interface (GUI), we use an interactive IPython notebook
tutorial for visual analysis during the data exploration phase. The
notebook format can easily be extended and modified. By this
means, preliminary and intermediate results can directly be used
in a tutorial or presentation setting. Finally, as another argument
to use Python and as a perspective into the processing of larger
EEG databases, Python code allows straightforward extensions to
database management and web applications while staying within

the same programming framework. The code is provided as a
single source code file in Python 2.7 syntax and using standard
code documentation following the PEP 8 style guide.

2.1. Requirements and Dependencies
We provide stand-alone code using minimal dependencies.
Dependencies consist in standard Python packages for scientific
computing and visualization and have no link to licensed or
commercial software. In order to run the tutorials provided in
the source code and in the IPython notebook, the user needs to
have installed:

• NumPy for array handling and numerical computing.
• matplotlib for data visualization.
• SciPy for filtering, interpolation, and χ2 statistics.
• StatsModels for multiple comparison statistics.
• scikit-learn for principial component analysis based EEG data

visualization.

When only using the core functions implementing the microstate
algorithm, statistical tests and information-theoretic quantities,
the packages StatsModels (for multiple comparisons) and scikit-
learn (for principal component analysis based visualization) can
be omitted.

2.2. Command Line Options
From the command line, the following options are available:

• “-i” or “- -input” defines the full path to a single “.edf” file to
be processed.

• “-f” or “- -filelist” defines the full path to a text file containing
the full paths to all “.edf” files to be processed, row-wise.

• “-d” or “- -directory” defines the path to a directory, from
which all “.edf” files will be processed.

• “-m” or “- -markovsurrogates” sets the number of Markov
surrogates to be used for the computation of the mutual
information confidence interval.

On the command line, all options can be viewed running the
source file with the –help option.

2.3. Other Implementations of the
Microstate Algorithm
A detailed description of the original microstate algorithm
is given in Pascual-Marqui et al. (1995) and Murray et al.
(2008). Computational implementations exist as the Windows
executable Cartool which is described in Brunet et al. (2011).
The program is freely available, but ships without source
code. For the commercial Matlab software, a free and
open-source implementation called microstates has been
published, and the package depends on the Matlab EEGLAB
toolbox. Another EEGLAB-based implementation is the
Microstate-EEGlab-toolbox. The large Chicago Electrical
Neuroimaging Analytics software package contains the
microstate algorithm as a Matlab plugin for the Brainstorm
software. Recently, the probabilistic microstate analysis approach
was published (Dinov and Leech, 2017), where microstates were
obtained by the classical K-means algorithm rather than the
modified K-means algorithm as given in Murray et al. (2008).

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 30

https://ipython.org/notebook.html
https://www.python.org/dev/peps/pep-0008/
http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/
http://www.statsmodels.org/stable/index.html
http://scikit-learn.org/stable/
http://sites.google.com/site/cartoolcommunity
https://github.com/deoxyribose/microstates
https://sccn.ucsd.edu/eeglab/
https://github.com/atpoulsen/Microstate-EEGlab-toolbox
https://hpenlaboratory.uchicago.edu/page/cena
http://neuroimage.usc.edu/brainstorm/
https://github.com/martindinov/probabilistic_microstates
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

The Key institute Python implementation for ERP analysis
contains the microstate algorithm as presented in Milz (2016).

We would like to highlight that none of the implementations
listed above includes the information-theoretical analyses
contained in our package. However, as the other packages
contain alternative implementations of the microstate algorithm
and further analytic approaches, the user may choose to use
and benefit from interfacing our code with some of these
software packages. This is especially easy in the case of
communication with external Python code. Our code allows for
easy portability to other Python programs by simply importing
the corresponding functions, e.g., the Markov tests, entropy
calculations, surrogate data synthesis, and the implementation of
the mutual information function.

3. THE PROCESSING PIPELINE

In the following, we illustrate a typical processing pipeline
that can be implemented with the provided functions. During
presentation, it should become clear that not all presented
computations have to be performed, or necessarily in the order
presented in the example. In particular, the number of clusters
to be computed is provided by the user, and any integer (≥ 2)
is allowed. All subsequent analysis steps are not affected by the
choice and are computed for the given number of clusters. The
Figure 1 summarizes the procedure. Selected EEG channel data
is illustrated on the top left, showing the channel abbreviations
on the y-axis (e.g., O1 is the left occipital electrode). Below, the
global field power (GFP, blue) and its local maxima (MAX, red
dots) are shown. The EEG topographies at the local GFP maxima
provide the input for modified K-means clustering (arrow 1).
The clustering procedure yields the four microstate maps A–
D shown on the right. Step 2 refers to the competitive back-
fitting of the microstate maps into the EEG data set, based on a
maximum squared correlation metric. The microstate time series
is illustrated by the label sequence A, B, B, C... depicted below
the EEG data. Step 3 corresponds to information-theoretical
analysis, in particular to time-lagged mutual information. The
Venn diagram visualizes mutual (or shared) information between
the microstates at time point t and the k-step future time point
t + k as the intersection between two sets representing the
entropies H(Xt) and H(Xt+k). Equivalently, mutual information
is defined as I(k) = H(Xt+k)−H(Xt+k | Xt), i.e., as the difference
between the uncertainty about state Xt+k, and the uncertainty
about Xt+k given exact knowledge about Xt . To put it differently,
I(k) measures the information about Xt+k that is contained in
Xt . Step 3 points to the bottom panel of Figure 1, which shows
the time-lagged mutual information function for time lags k
up to 400 ms. To point out non-Markovian memory effects
in experimental EEG data, we show the mutual information
function for a microstate sequence from experimental EEG data,
as well as a confidence interval computed from 10 Markov
surrogate sequences (significance level α = 0.01). Time-lagged
mutual information of EEG data is shown in black (solid line
with black squares) and the Markov confidence interval is shown
as a gray-shaded area. The experimental mutual information

FIGURE 1 | Algorithm: the (top) panel shows a section of resting state EEG

(1–40 Hz, black), the global field power (GFP, blue), and the local GFP maxima

(red dots). EEG topographies at local GFP maxima are clustered by the

modified K-means algorithm to obtain the n = 4 microstate maps A–D (step

1). Fitting the maps back into the EEG data set yields the microstate sequence

(A,B,B,C,...) depicted below the EEG data (step 2). Step 3 illustrates

information-theoretical analysis of the microstate sequence. Time-lagged

mutual information I(k) for time lag k is illustrated by a Venn diagram. The

(bottom) panel shows the periodic mutual information function (black) and the

Markov confidence interval (gray area, α = 0.01).

function shows distinct oscillatory peaks not explained by the
Markov model. Further details are given in the subsequent
sections.

3.1. EEG Data and Pre-processing
To run this tutorial, we provide a test EEG file (test.edf) which
must be located in the same folder as the source code file
(eeg_microstates.py). The record contains 192 s. from an eyes-
closed resting state experiment of a healthymale subject recorded
with a 30 channel EEG cap in the standard 10–10 electrode
configuration. The experiment was approved by the local ethics
committee of the Goethe University, Frankfurt, Germany. The
EEG sampling rate is 250 Hz and the data is band-pass filtered
to the 1–40 Hz range. Electrode locations are given as cartesian
coordinates in the cap.xyz file which is imported for visualization
of EEG topographies. All files are contained in our GitHub
repository. To import EEG data, the package contains a basic edf

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 30

https://github.com/keyinst/keypy
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

file reader, using the publicly available specifications for the .edf
file format. Data is loaded in a single line of code:

(1) Load EEG data from ’.edf’ file

chs, fs, data_raw = read_edf("test.edf")

The first two return variables are a list of channel name strings
and the sampling frequency in Hz. EEG data is contained in a
NumPy array of shape (nt, nch), with time samples along the rows
(first index) and electrodes or channels along columns (second
index). In case the provided functions are called from another
Python program, EEG data must be formatted into that shape to
be processed by our functions.

EEG data is usually pre-processed by a band-pass filter. As an
example, we give the code for a pass band of 1–35 Hz, where fs
denotes the sampling frequency in Hz and the data array has the
time axis running along the first dimension (axis = 0):

(2) Band-pass filtering

data = bp_filter(data_raw, (1, 35), fs)

To get a general impression of the data in one dimension, an
option to plot the time-course of the first principal component
of the multi-channel data set is included. Figure 2 shows that
the time series contains strongly amplitude modulated, irregular
oscillations in the alpha frequency band. The inset in the upper
right corner shows the first 8 s. of the data to illustrate alpha
oscillations on a shorter time scale, as often found in EEG
visualization software.

3.2. Modified K-Means Clustering and
Competitive Fitting
Microstates are computed by the modified K-means clustering
algorithm introduced in Pascual-Marqui et al. (1995) and as
reviewed in Murray et al. (2008). The algorithm receives the EEG
data array (nt × nch) and the desired number of microstate maps
nmaps as minimum inputs. Note that the number of microstates
is an optional argument that can be set to any integer nmaps ≥ 2.
If not provided, the default value nmaps = 4 is used. In the
worked example, four microstates are computed. The remaining
parameters (nruns, maxerr, maxiter) can be provided as additional
parameters to the kmeans function call, otherwise the default
values (nruns = 10, maxerr = 10−6, maxiter = 500) are used.
From all K-means runs, the optimum run is selected according
to the cross-validation (CV) criterion detailed in Murray et al.
(2008). The CV criterion to be minimized measures the residual
variance while correcting for the number of electrodes. Note that
Murray recommends to (spatially) downsample EEG data with
more than 64 electrodes (Murray et al., 2008). The function call
looks like:

(4) Modified K-means clustering

maps, x, gfp_peaks, gev, cv = kmeans(data,

n_maps=4, doplot=True)

The microstate maps are returned in a (nmaps, nch) formatted
array, and the variable x contains the sequence of microstate map
labels for the given EEG data series, i.e., its length is equal to
the number of EEG time samples. The remaining return values
contain the indices of the GFP peaks used for clustering, the

global explained variance (GEV) of the microstate maps, and the
absolute value of the cross-validation criterion, i.e., the minimum
value across all K-means runs.

The microstate ordering returned by the K-means algorithm
is random, whereas a standard ordering has been established in
the literature (Koenig et al., 2002). Our K-means implementation
contains an option to re-label the microstates interactively
before proceeding. In the case of four microstates, the standard
microstate labeling is based on the map geometry. For map
A, the border between positive and negative potential values
runs approximately along the diagonal from the frontal left to
the occipital right corners. Map B is diagonal in the opposite
direction, map C has a horizontal orientation, andmap D is often
circular. Sometimes, slightly different maps are generated. We
mostly observed the occurrence of a map D with a vertical axis
instead of a circular pattern. In this case, you can either accept
the results and proceed, or re-cluster the data set as the results of
the K-means algorithm differ between runs.

Note that the sequence returned by the K-means
algorithm contains the microstate labels as numbers,
{A,B,C,D} → {0, 1, 2, 3}, in order to accelerate information-
theoretical computations. Using numbers, the microstate
label can directly be used as an index in arrays and matrices.
If microstate sequences generated by external software are
analyzed, the labels have to be converted to the numerical values
0, ..., nmaps − 1 before using the functions of this package.

3.3. Information-Theoretical
Analysis-Motivation and Basics
To analyze the microstate sequence with information-theoretical
methods, we first need to compute the distribution of microstate
labels P(Xt = Si), i.e., the probability to find the label Si ∈

{A,B,C,D} at time point t. The distribution of Xt can be
characterized by its Shannon entropy H (Kullback et al., 1962):

H = −
∑

i

P(Xt = Si) log P(Xt = Si). (1)

If the sequence always repeated the same microstate label,
uncertainty would be minimal and its Shannon entropy would
attain its minimum value H = 0, corresponding to a delta
distribution P(Xt). Maximum entropy is obtained for a uniform
distribution of microstate labels, resulting in H = log(4) in the
case of four microstates. Logarithms are taken with respect to the
base e (Euler’s constant), leading to the unit “nats.”

The subsequent tests will take into account dependencies
between microstate labels at different times. For one-step
transitions Xt → Xt+1, dependencies on the values Xt , Xt−1, and
Xt−2 are tested by the Markovianity tests, as detailed below. For
further time lags, Xt+k with k > 1, temporal dependencies are
assessed by mutual information between Xt and Xt+k. Moreover,
we test time stationarity and the symmetry of the transition
matrix. Each test leads to specific distributions, an empirical
distribution derived from the actual data, and a reference
distribution derived from the independence assumption under
the null hypothesis. The distance between the empirical

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 30

http://www.edfplus.info/specs/edf.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

FIGURE 2 | The overall structure of the EEG time series is visualized by the first principal component of the data set. The first principal component of the test file yields

a time series similar to the signals observed at single electrodes, especially at parietal and occipital locations. The main feature of the data set are amplitude

modulated oscillations in the alpha frequency band (8–12 Hz). The inset in the upper right corner shows the first 8 s of data to better visualize the characteristic alpha

oscillations at a shorter time scale.

distribution (pi) and the null distribution (qi) is measured by the
Kullback-Leibler divergence D(p, q) = −

∑

i pi log
pi
qi
(Kullback,

1959; Kullback et al., 1962). Statistical significance is tested with
χ2-statistics using classical convergence theorems (Anderson
and Goodman, 1957; Kullback, 1959; Billingsley, 1961; Kullback
et al., 1962).

The specific test statistics along with their mathematical
expressions are given in Table 1. In notation, we follow (Kullback
et al., 1962) and denote observed frequencies by f . The estimated
probability of microstate label Si, denoted as pi, is the ratio of fi,
the number of observations of label Si, and the sample size n,

or pi =
fi
n . In Table 1, indices run over microstate labels and

multiple sums are abbreviated by a single summation sign and
the indices over which the sum is calculated.

3.4. Symbol Distribution and the Transition
Matrix
Basic statistics commonly used to characterize microstate
sequences can be obtained by calling:

(5) Basic microstate statistics

Empirical label distribution and

transition matrix

p_hat = p_empirical(x, n_maps)

T_hat = T_empirical(x, n_maps)

PPS (peaks per second)

pps = len(gfp_peaks) / (len(x)/fs)

print("GFP peaks per sec.: {:.2f}".format

(pps))

GEV (global explained variance A-D)

print("Global explained variance (GEV) per

map:" +

keywordsstr(gev))

print("Total GEV: {:.2f}".format

(gev.sum()))

The tutorial code outputs the basic statistics on the console.
The distribution of the four microstate maps is p =

[0.279, 0.222, 0.235, 0.264], identical to the sometimes used term

“ratio of time covered” (RTT) (Brodbeck et al., 2012). The first
order transition matrix T evaluates to:

Tsym =









0.799 0.071 0.069 0.061
0.079 0.771 0.094 0.057
0.053 0.064 0.767 0.116
0.099 0.061 0.056 0.784









The EEG data set at hand contains 21.51 GFP peaks per second,
and the global explained variance (GEV) per microstate map in
our case was 0.13 (map A), 0.10 (map B), 0.31 (map C), and 0.19
(map D), giving the total GEV of this run equal to 0.73. Due to
the stochastic initialization of the K-means algorithm, other runs
of the algorithm may give slightly different GEV values.

The Shannon entropy of the sequence and the maximum
entropy possible for the sequence are computed as:

(6) Shannon entropy

h_hat = H_1(x, n_clusters)

h_max = max_entropy(n_clusters)

The empirical Shannon entropy of the microstate sequence is
H = 1.38, while the maximum possible Shannon entropy
for any series of four symbols is log(4) = 1.39. We see that
the EEG derived sequence almost achieves maximum entropy,
suggesting a process with high randomness. In the following
sections, however, we show how distinct memory features such as
periodicities linked to the cortical alpha rhythm can be extracted
and used to characterize the sequence.

3.5. Markov Properties and Markovianity
Tests
First, we test if the sequence follows a simple Markov process of
order 0, 1, or 2. To this end, the following tests will be computed:

(7) Markovianity tests

alpha = 0.01

p0 = testMarkov0(x, n_maps, alpha)

p1 = testMarkov1(x, n_maps, alpha)

p2 = testMarkov2(x, n_maps, alpha)

p_geo_vals = geoTest(x, n_maps, 1000./fs,

alpha)

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

TABLE 1 | Test statistics for microstate sequences.

Property Expression G-test statistic d.o.f.

Markov-0 P(Xt+1 | Xt) = P(Xt+1) G0 = 2
∑

ij fij log
nfij
fi fj

(ns − 1) (ns − 1)

Markov-1 P(Xt+1 | Xt,Xt−1) = P(Xt+1 | Xt) G1a = 2
∑

ijk fijk log
fijk fj
fij fjk

ns(ns − 1) (ns − 1)

Geometric qi (k) = (1− Tii)× Tk−1
ii

G1b = 2
∑m

i=1 pi log
pi
qi

m− 1

Markov-2 P(Xt+1 | Xt,Xt−1,Xt−2) = P(Xt+1 | Xt,Xt−1) G2 = 2
∑

ijkl fijkl log
fijkl fjk
fijk fjkl

nsns(ns − 1) (ns − 1)

Stationarity P(X
(k)
t+1 | X

(k)
t) = P(Xt+1 | Xt) G3 = 2

∑

ijk fijk log
fijk fj
fij fjk

(r − 1) (ns − 1)ns

Symmetry P(Xt+1 = Si | Xt = Sj) = P(Xt+1 = Sj | Xt = Si) G4 = 2
∑

i 6=j fij log
2fij
fij+fji

ns(ns − 1)/2

The console output for all tests also gives the value of the test
statistic and the degrees of freedom of the corresponding χ2

distribution, calculated according to Table 1.

3.5.1. Zero-Order Markov Property
The null hypothesis is that the transition probability from the
current state Xt to the next state Xt+1 is independent on Xt .
Therefore, P(Xt+1 | Xt) = P(Xt+1) under the null hypothesis.
We obtain the corresponding test statistic G0 in Table 1, if
the observed number of transitions Xt = Si → Xt+1 =

Sj is denoted fij, the number of observations Xt = Si is fi,
and the number of observations Xt+1 = Sj is fj. The length
of the microstate sequence Xt is n. The degrees of freedom
(d.o.f.) of the asymptotic χ2 distribution is given in the right
column of Table 1 (Kullback, 1959; Kullback et al., 1962). The
console output shows that the zero-order Markovianity test
yields a p-value of almost zero, within double floating point
precision, under the assumption of total independence between
subsequent symbols. The independence assumption is therefore
clearly rejected.

3.5.2. First-Order Markov Property
The null hypothesis is that the transition probability P(Xt+1 |

Xt) only depends on Xt , and not on any states further in
the past, implying P(Xt+1 | Xt ,Xt−1) = P(Xt+1 | Xt).
Calculating the test statistic G1a as given in Table 1, we find
p = 4.29 × 10−145, indicating that a first-order Markov
process is also rejected as a data model. Alternatively, first-
order Markovianity can be assessed based on the equivalence
of the first-order Markov property (the memoryless property)
with a geometric distribution of state durations (Feller, 1971).
Each microstate label has an associated lifetime distribution that
contains the lengths of contiguous segments of the given label.
For a first-order Markov process, the probability that label i
appears in a contiguous segment of length k follows the geometric

distribution qi(k) = (1 − Tii) × Tk−1
ii . The term Tk−1

ii is the
(k − 1)-th potency of the i-th diagonal element of the transition
matrix T. In the G-test statisticG1b in Table 1,m is the maximum
lifetime and pi is the empirical lifetime distribution. Testing our
EEG data set for geometric lifetime distributions gives analogous
results to the test statistic G1a, rejecting the first-order Markov
hypothesis for all four microstate maps (pA = 1.33×10−19, pB =

2.68× 10−17, pC = 1.57× 10−75, pD = 3.24× 10−14).

3.5.3. Second-Order Markov Property
Second-order Markovianity is tested based on the null hypothesis
that the transition probability P(Xt+1 | Xt ,Xt−1) does not
change if one step further in the past is taken into consideration.
The resulting statistical expression for the null hypothesis is
P(Xt+1 | Xt ,Xt−1,Xt−2) = P(Xt+1 | Xt ,Xt−1). Note that
a true first-order Markov process, as later used in surrogate
data tests, should also fulfill the second-order Markov property,
as neither of the states Xt−1 or Xt−2 contribute information
about the transition probability P(Xt+1 | Xt). For the test data,
second-order Markovianity is clearly rejected (p = 3.32×10−86).

3.6. Stationarity of the Transition Matrix
Stationarity of the transition matrix over time depends on the
length L of the time window. For a given L, the data set is
partitioned into r non-overlapping blocks of length L and the
transitionmatrix is computed for each data block k = 0, . . . , r−1.
In case of stationarity, the number of transitions Xt = Si →

Xt+1 = Sj within block k, denoted fijk, is independent of the
block index k. The expression for the null hypothesis and the test
statistic can be found inTable 1. The stationarity test is computed
as:

(8) Stationarity test for the transition

matrix

p3 = conditionalHomogeneityTest(x, n_maps,

L, alpha)

For a block size of 5,000, we obtain 9 data blocks, and the p-value
of p = 2.21× 10−5 indicates that the transition matrix of the test
data set is not stationary. Other block sizes can be defined in the
function call, or interactively in the console and IPython tutorials
provided.

3.7. Symmetry
If each state transition occurs with the same probability as the
reverse transition, the transition matrix T will be symmetric. The
expression for the null hypothesis and the test statistic are given
in Table 1, and the symmetry test is computed as:

(9) Symmetry test for the transition

matrix

p4 = symmetryTest(x, n_maps, alpha)

The test result p = 4.88 × 10−89 leads to rejection of the null
hypothesis, and to the conclusion that the EEG data set has
an asymmetric transition matrix. Asymmetry of the transition

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

matrix is important when considering non-equilibrium processes
possibly underlying microstate dynamics (von Wegner et al.,
2017).

3.8. Markov Surrogate Data
As a first-order Markov process is uniquely defined by an
initial state distribution π and a first-order transition matrix T,
an equivalent Markov process with π and T identical to the
empirical microstate sequence can be synthesized (Häggström,
2002). The iterative construction is visualized in Figure 3 where
the individual steps are labeled with (blue) numbers. The
procedure starts with an initialization function and then iterates
an updating function for the desired length of the surrogate
sequence. The initial state, one of the microstate labels A,B,C,D,
is selected in accordance with the equilibrium distribution
π . A pseudo-random number r0 ∼ U[0, 1], uniformly and
independently distributed on the unit interval, defines the index

of the initial state by the condition
∑j−1

i=0 πi ≤ r0 <
∑j

i=0 πi. Step
1 in Figure 3 illustrates this step showing that the equilibrium
distribution π partitions the unit interval [0, 1]. Given the
initial state, all subsequent states of the surrogate sequence are
generated by the transition matrix T. The same principle as in the
initialization step is used. The current state at time t determines
the row of the transition matrix to be used for the next transition
t → t + 1. In Figure 3, the random initial state is B, so the
next state is calculated from the second row of T (step 2). As
the conditional probabilities in each row fulfill

∑

j Tij = 1, each

row of T is a partition of the unit interval. Choosing another
random variable r1 ∼ U[0, 1] (step 3), the index of the next state

is determined by
∑j−1

l=0
Til ≤ rt <

∑j

l=0
Til. In Figure 3, r1 points

to element pBC, and thus, we record the state transition B → C
for t → t + 1. The next state is generated in the same manner
(step 4), this time using the third row of T, because the current
state is now C. Using NumPy, the two computational steps used
by the algorithm can be written as a single line of code each.

First-order Markov surrogates are computed as:

(10) Synthesize a surrogate first-order

Markov process

x_mc = surrogate_mc(p_hat, T_hat, n_maps,

len(x))

p_surr = p_empirical(x_mc, n_maps)

T_surr = T_empirical(x_mc, n_maps)

By construction, the synthetic Markov chain has a symbol
distribution almost identical, within stochastic boundaries,
to the one of the experimental data. Here, we get p =

[0.281, 0.219, 0.239, 0.261] for the surrogate Markov chain. The
surrogate process also has a transition matrix almost identical to
the experimental data:

Tsym =









0.797 0.070 0.072 0.061
0.081 0.769 0.091 0.059
0.050 0.064 0.768 0.119
0.105 0.060 0.059 0.777









FIGURE 3 | The surrogate Markov process algorithm. The initial state is

selected according to the equilibrium distribution π using a pseudo-random

number r0 ∼ U[0, 1] (step 1). In this example, state B is selected and therefore,

the next state is selected using the partition of unity defined by row 2 of the

transition matrix T (step 2) and the pseudo-random number r1 ∼ U[0, 1]. Here,

r1 points to pBC (step 3), so the next state of the process is C. Starting from

state C, the successor state will be selected from the third row of T, and a new

random number r1 (step 4). The algorithm can be iterated for any desired

length of the surrogate sequence.

All tests calculated for the experimental data set can now be
applied to the surrogate sequence, which by construction is a
first-order Markov sequence:

(11) Markov tests for surrogate data

p0_ = testMarkov0(x_mc, n_maps, alpha)

p1_ = testMarkov1(x_mc, n_maps, alpha)

p2_ = testMarkov2(x_mc, n_maps, alpha)

p_geo_vals_ = geoTest(x_mc, n_maps, 1000./

fs, alpha)

p3_ = conditionalHomogeneityTest(x_mc,

n_maps, L, alpha)

p4_ = symmetryTest(x_mc, n_maps, alpha)

The test results reveal that all desired properties are fulfilled by
the surrogate Markov sequence. The sequence is not zero-order
Markov (p = 0.00), but is first-order Markov (p = 0.553)
and also second-order Markov (p = 0.886), as expected. The
alternative test for first-order Markovianity based on geometric
lifetime distributions confirms the above results, as the null
hypothesis is accepted for all four microstate maps (pA = 0.545,
pB = 0.302, pC = 0.207, pD = 0.797). As the surrogate sequence
is synthesized from a constant transition matrix, we find the
sequence to be stationary (p = 0.180, block size 5,000) while
reproducing the asymmetry of the experimental transitionmatrix
(p = 3.84× 10−95).

3.9. Mutual Information
Time-lagged mutual information for discrete time lag k can be
defined in entropy terms as:

I(k) = H(Xt+k)−H(Xt+k | Xt). (2)

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

In words, I(k) measures dependencies between time points
t and t + k as the difference between two entropies. The term
H(Xt+k) is the uncertainty aboutXt+k without further knowledge
about the past, and H(Xt+k | Xt) is the conditional uncertainty
about Xt+k, knowing the state Xt . The time-lagged mutual
information of a first-order Markov process can be written in
terms of its equilibrium distribution π and its transition matrix
T (von Wegner et al., 2017):

Î(k) = −
∑

i

πi logπi +
∑

i

πi

∑

j

Tk
ij logT

k
ij. (3)

The equation uses the matrix potency Tk, computed using a
diagonalization of T (von Wegner et al., 2017). The time-lagged
mutual information function for the EEG microstate sequence
and the Markov surrogate are calculated as:

(12) Time-lagged mutual information with

confidence interval

l_max = 100

aif = mutinf(x, n_maps, l_max)

aif_mc = mutinf(x_mc, n_maps, l_max)

In the tutorials, a confidence interval for the mutual information
function, or autoinformation function (AIF) is computed from
10 Markov surrogates, in order to limit the computation time.
The results are visualized at the bottom of Figure 1. The EEG-
derived autoinformation function [label AIF (EEG), solid black
line and squares] lies within the α = 0.01 confidence interval
defined by n = 10 Markov surrogate processes [label AIF
(Markov), gray area]. Time lags up to 400 ms are shown on a
y-semi-logarithmic scale.

The demonstration of non-Markovianity, non-stationarity
and periodic information in resting state EEG recordings were
the main results presented in von Wegner et al. (2017). This
tutorial should enable the reader to reproduce these results with
their own data, and to design new studies to further elucidate the
functional role of EEG microstates.

4. IPYTHON TUTORIAL

We provide an interactive IPython notebook to illustrate a
typical analysis pipeline starting from raw EEG and leading
to test statistics and graphical presentations of the results.
The analysis proceeds in the same order as the console
tutorial, and using identical numbering of all steps for easier
comparison. The notebook is part of the repository and
can be viusalized on the GitHub page directly, or using
the nbviewer web application, pasting the eeg_microstates
package url. The only exception is the iframe element calling
the PubMed site for reviewing recent publications on the
topic, which is not rendered on these pages for security
reasons. In a running notebook, however, the link is rendered
interactively.

4.1. Acceleration
The published code can be further optimized with respect to
computational speed. As several functions involve nested loops
over simple numerical values, well known Python accelerators
can be applied. We tested Numba just-in-time compilation,
compiled C functions using Cython, pure C functions invoked by
a system call from Python and external Julia code. All methods
gave considerable speedups which we do not further quantify
here. We anticipate users to choose their favorite method.
Though we did not include these code variants in the published
package, in order to minimize dependencies and to maximize
portability of the code across platforms, additional code can be
obtained from the authors.

5. DISCUSSION AND OUTLOOK

In the present article, we introduce an open-source Python
package to perform the microstate algorithm on EEG data
sets, and to analyze the resulting symbolic time series
using information-theoretic measures and statistical tests. We
presented the application of the procedures included in the
package in a recent publication (von Wegner et al., 2017). As
the methods we used in the paper are not available as open-
source code, to the best of our knowledge, the code is presented
alongside with the theoretical basis and a tutorial. We focused
on code portability in order to provide easy access of the
algorithms presented here. Useful applications of the package
include the comparison of information-theoretical quantities
under varying experimental conditions. For instance, in the
past we have used the transition matrix approach to quantify
microstate sequences calculated from EEG recordings during
wakefulness and non-REM sleep in healthy subjects and in
synaesthesia patients (Brodbeck et al., 2012; Kuhn et al., 2015).
Using the new algorithms, we can extend these analyses and add
spectral information, in particular the peaks of the time-lagged
mutual information function, to search for subtle differences
in the temporal structure of microstate sequences. Also, the
(non-)stationarity of microstate sequences can be compared
under different conditions, and prior to using other algorithms
requiring stationarity. The same principle can be followed to
study EEG recordings (resting state or ERPs) in neuropsychiatric
diseases or during cognition.

AUTHOR CONTRIBUTIONS

FvW implemented the code, performed software tests and wrote
the manuscript and tutorials. HL provided EEG data and co-
designed the analysis pipeline and software structure.

FUNDING

This work was funded by the Bundesministerium für Bildung
und Forschung (grant 01 EV 0703) and LOEWE Neuronale
Koordination Forschungsschwerpunkt Frankfurt (NeFF).

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2018 | Volume 12 | Article 30

http://nbviewer.jupyter.org/
https://github.com/Frederic-vW/eeg_microstates/blob/master/LICENSE.md
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

von Wegner and Laufs Microstate Entropy in Python

REFERENCES

Anderson, T. W., and Goodman, L. A. (1957). Statistical inference about Markov

chains. Ann. Math. Stat. 28, 89–110.

Antonova, I., Bänninger, A., Dierks, T., Griskova-Bulanova, I., Koenig,

T., and Kohler, A. (2015). Differential recruitment of brain

networks during visuospatial and color processing: evidence from ERP

microstates. Neuroscience 305, 128–138. doi: 10.1016/j.neuroscience.2015.

07.078

Billingsley, P. (1961). Statistical methods in Markov chains. Annals Math. Stat. 32,

12–40.

Brodbeck, V., Kuhn, A., vonWegner, F., Morzelewski, A., Tagliazucchi, E., Borisov,

S., et al. (2012). EEG microstates of wakefulness and NREM sleep. Neuroimage

62, 2129–2139. doi: 10.1016/j.neuroimage.2012.05.060

Brunet, D., Murray, M. M., and Michel, C. M. (2011). Spatiotemporal analysis

of multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011:813870.

doi: 10.1155/2011/813870

Dinov, M., and Leech, R. (2017). Modeling uncertainties in eeg microstates:

analysis of real and imagined motor movements using probabilistic clustering-

driven training of probabilistic neural networks. Front. Hum. Neurosci. 11:534.

doi: 10.3389/fnhum.2017.00534

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol.

II, 2nd Edn. New York, NY: John Wiley & Sons Inc.

Häggström, O. (2002). Finite Markov Chains and Algorithmic Applications.

Cambridge: Cambridge University Press.

Iannilli, E., Broy, F., Kunz, S., and Hummel, T. (2017). Age-related changes of

gustatory function depend on alteration of neuronal circuits. J. Neurosci. Res.

95, 1927–1936. doi: 10.1002/jnr.24071

Iannilli, E., Wiens, S., Arshamian, A., and Seo, H.-S. (2013). A

spatiotemporal comparison between olfactory and trigeminal event-related

potentials. Neuroimage 77, 254–261. doi: 10.1016/j.neuroimage.2012.

12.057

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates

in resting-state EEG: current status and future directions. Neurosci. Biobehav.

Rev. 49, 105–113. doi: 10.1016/j.neubiorev.2014.12.010

Koenig, T., Lehmann, D., Merlo, M. C., Kochi, K., Hell, D., and Koukkou,

M. (1999). A deviant EEG brain microstate in acute, neuroleptic-naive

schizophrenics at rest. Eur. Arch. Psychiatry Clin. Neurosci. 249, 205–211.

Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., et al.

(2002). Millisecond by millisecond, year by year: normative EEG microstates

and developmental stages. Neuroimage 16, 41–48. doi: 10.1006/nimg.2002.1070

Kuhn, A., Brodbeck, V., Tagliazucchi, E., Morzelewski, A., von Wegner,

F., and Laufs, H. (2015). Narcoleptic patients show fragmented EEG-

microstructure during early NREM sleep. Brain Topogr. 28, 619–635.

doi: 10.1007/s10548-014-0387-1

Kullback, S. (1959). Information Theory and Statistics. Mineola, NY: Dover

Publications, Inc.

Kullback, S., Kupperman, M., and Ku, H. H. (1962). Tests for contingency tables

and Markov chains. Technometrics 4, 573–608.

Lehmann, D., Faber, P. L., Galderisi, S., Herrmann,W.M., Kinoshita, T., Koukkou,

M., et al. (2005). EEG microstate duration and syntax in acute, medication-

naive, first-episode schizophrenia: a multi-center study. Psychiatry Res. 138,

141–156. doi: 10.1016/j.pscychresns.2004.05.007

Lehmann, D., Ozaki, H., and Pal, I. (1987). EEG alpha map series: brain micro-

states by space-oriented adaptive segmentation. Electroencephalogr. Clin.

Neurophysiol. 67, 271–288.

Milz, P. (2016). Keypy–an open source library for EEG microstate analysis. Eur.

Psychiatr. 33, S290–S643. doi: 10.1016/j.eurpsy.2016.01.1812

Milz, P., Faber, P. L., Lehmann, D., Koenig, T., Kochi, K., and Pascual-

Marqui, R. D. (2015). The functional significance of EEG microstates-

associations with modalities of thinking. Neuroimage 125, 643–656.

doi: 10.1016/j.neuroimage.2015.08.023

Murray, M. M., Brunet, D., and Michel, C. M. (2008). Topographic ERP

analyses: a step-by-step tutorial review. Brain Topogr. 20, 249–264.

doi: 10.1007/s10548-008-0054-5

Niedermeyer, E., and da Silva, F. L. (2005). Electroencephalography. Basic

Principles, Clinical Applications, and Related Fields, 5th Edn. Philadelphia, PA:

Lippincott Williams &Wilkins.

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., et al.

(2013). EEG microstates associated with salience and frontoparietal networks

in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin.

Neurophysiol. 124, 1106–1114. doi: 10.1016/j.clinph.2013.01.005

Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1995). Segmentation of

brain electrical activity into microstates: model estimation and validation. IEEE

Trans. Biomed. Eng. 42, 658–665.

Rossum, G. (1995). Python Reference Manual. Amsterdam: Centre for

Mathematics and Computer Science.

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., and

Laufs, H. (2012). Dynamic BOLD functional connectivity in humans

and its electrophysiological correlates. Front. Hum. Neurosci. 6:339.

doi: 10.3389/fnhum.2012.00339

Van de Ville, D., Britz, J., and Michel, C. M. (2010). EEG microstate sequences in

healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U.S.A.

107, 18179–18184. doi: 10.1073/pnas.1007841107

von Wegner, F., Tagliazucchi, E., Brodbeck, V., and Laufs, H. (2016). Analytical

and empirical fluctuation functions of the EEG microstate random walk

- short-range vs. long-range correlations. Neuroimage 141, 442–451.

doi: 10.1016/j.neuroimage.2016.07.050

von Wegner, F., Tagliazucchi, E., and Laufs, H. (2017). Information-

theoretical analysis of resting state EEG microstate sequences - non-

Markovianity, non-stationarity and periodicities. Neuroimage 158, 99–111.

doi: 10.1016/j.neuroimage.2017.06.062

Wackermann, J., Lehmann, D., Michel, C. M., and Strik, W. K. (1993). Adaptive

segmentation of spontaneous EEGmap series into spatially definedmicrostates.

Int. J. Psychophysiol. 14, 269–283.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 von Wegner and Laufs. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2018 | Volume 12 | Article 30

https://doi.org/10.1016/j.neuroscience.2015.07.078
https://doi.org/10.1016/j.neuroimage.2012.05.060
https://doi.org/10.1155/2011/813870
https://doi.org/10.3389/fnhum.2017.00534
https://doi.org/10.1002/jnr.24071
https://doi.org/10.1016/j.neuroimage.2012.12.057
https://doi.org/10.1016/j.neubiorev.2014.12.010
https://doi.org/10.1006/nimg.2002.1070
https://doi.org/10.1007/s10548-014-0387-1
https://doi.org/10.1016/j.pscychresns.2004.05.007
https://doi.org/10.1016/j.eurpsy.2016.01.1812
https://doi.org/10.1016/j.neuroimage.2015.08.023
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1016/j.clinph.2013.01.005
https://doi.org/10.3389/fnhum.2012.00339
https://doi.org/10.1073/pnas.1007841107
https://doi.org/10.1016/j.neuroimage.2016.07.050
https://doi.org/10.1016/j.neuroimage.2017.06.062
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Information-Theoretical Analysis of EEG Microstate Sequences in Python
	1. Introduction and Background
	2. Software Design
	2.1. Requirements and Dependencies
	2.2. Command Line Options
	2.3. Other Implementations of the Microstate Algorithm

	3. The Processing Pipeline
	3.1. EEG Data and Pre-processing
	3.2. Modified K-Means Clustering and Competitive Fitting
	3.3. Information-Theoretical Analysis-Motivation and Basics
	3.4. Symbol Distribution and the Transition Matrix
	3.5. Markov Properties and Markovianity Tests
	3.5.1. Zero-Order Markov Property
	3.5.2. First-Order Markov Property
	3.5.3. Second-Order Markov Property

	3.6. Stationarity of the Transition Matrix
	3.7. Symmetry
	3.8. Markov Surrogate Data
	3.9. Mutual Information

	4. IPython Tutorial
	4.1. Acceleration

	5. Discussion and Outlook
	Author Contributions
	Funding
	References

