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Alzheimer’s disease (AD) is an irreversible brain degenerative disorder affecting people
aged older than 65 years. Currently, there is no effective cure for AD, but its progression
can be delayed with some treatments. Accurate and early diagnosis of AD is vital for
the patient care and development of future treatment. Fluorodeoxyglucose positrons
emission tomography (FDG-PET) is a functional molecular imaging modality, which
proves to be powerful to help understand the anatomical and neural changes of brain
related to AD. Most existing methods extract the handcrafted features from images,
and then design a classifier to distinguish AD from other groups. These methods
highly depends on the preprocessing of brain images, including image rigid registration
and segmentation. Motivated by the success of deep learning in image classification,
this paper proposes a new classification framework based on combination of 2D
convolutional neural networks (CNN) and recurrent neural networks (RNNs), which
learns the intra-slice and inter-slice features for classification after decomposition of
the 3D PET image into a sequence of 2D slices. The 2D CNNs are built to capture the
features of image slices while the gated recurrent unit (GRU) of RNN is cascaded to
learn and integrate the inter-slice features for image classification. No rigid registration
and segmentation are required for PET images. Our method is evaluated on the
baseline FDG-PET images acquired from 339 subjects including 93 AD patients, 146
mild cognitive impairments (MCI) and 100 normal controls (NC) from Alzheimer’s Disease
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GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG,
Pfizer Inc., F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer’s Association
and Alzheimer’s Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector
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Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed
method achieves an area under receiver operating characteristic curve (AUC) of 95.3%
for AD vs. NC classification and 83.9% for MCI vs. NC classification, demonstrating the
promising classification performance.

Keywords: Alzheimer’s disease diagnosis, FDG-PET, convolutional neural networks (CNN), recurrent neural
network, deep learning, image classification

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible brain
degenerative disorder which often affect the people older than
65 years. At present, there are around 90 million people who has
been diagnosed with AD, and it is estimated that the number of
AD patients will reach 300 million by 2050 (Zhan et al., 2015;
Zhu et al., 2015). Mild cognitive impairment (MCI) is often
considered as a clinical precursor of AD, which is a transitional
state from normal control (NC) to AD dementia (Silveira and
Marques, 2015). Currently, there is no effective cure for AD,
thus the early detection at its prodromal stage and accurate
diagnosis is vital for patient care and developing future treatment.
In the past few decades, neuroimaging technologies have been
widely used to discover AD-related biomarkers in human brain
and help AD diagnosis. Positrons emission tomography (PET)
is a functional molecular imaging modality through obtaining
the virtue of focus glucose metabolic activity and distribution
via imaging agent such as 18F-fluorodeoxy-glucose (18F-FDG)
(Minati et al., 2009; Silveira and Marques, 2015). A positron-
emitting radionuclide (tracer) with a biologically active molecule,
such as (18)F-fluorodeoxy-glucose ((18)FDG), is introduced in
the body. Concentrations of this tracer are imaged using a
camera and indicate tissue metabolic activity by virtue of the
regional glucose uptake (Silveira and Marques, 2015). It proves
to be a powerful functional imaging tool to help physicians to
diagnose AD. Therefore, Fluorodeoxiglucose positron emission
tomography (FDG-PET) brain image becomes one of the
powerful functional biomarkers for AD diagnosis in clinical and
computer aided diagnosis.

In recent years, various pattern recognition methods have
been investigated for analysis of FDG-PET brain images to
identify the patterns related to AD and decode the disease states
for computer-aided-diagnosis (CAD) (Cabral et al., 2013; Liu
et al., 2014; Lu et al., 2015; Shen et al., 2017). A region based
method was proposed to select the regions of interest, extract
discriminate features and classify AD using PET brain images
(Garali et al., 2016). In this method, brain images were mapped
into 116 anatomical regions of interest (ROIs) and the first four
moments and the entropy of the histograms of these regions
are computed as the features. Receiver operating characteristics
(ROC) curves are then used to rank the discriminative ability
of ROIs to distinguish PET brain images. Finally, the features
from top 21 regions are fed into both support vector machine
(SVM) and random forest classifiers for AD classification. A ROI-
based method was also proposed using FDG-PET images in (Gray
et al., 2011), which segments the whole brain into 83 anatomical
regions according to the MRI-space of each subject and extracts

the mean signal intensity per cubic millimeter in each region
from the FDG-PET images as the features. A SVM classifier was
trained with these features for AD classification. In (Lu et al.,
2015), 286 features were extracted from 116 cerebral anatomical
volumes of interest (VOIs) based on the automated anatomical
labeling (AAL) cortical parcellation map, and a semi-supervised
method was proposed to integrate the labeled and unlabeled data
by random manifold learning with affinity regularization for AD
classification. In addition, a ROI-based method was proposed
to combine the cross-sectional and longitudinal multi-region
FDG-PET information for classification in (Gray et al., 2012).
The regional image intensities were extracted as one kind of
important features at each time point, as well as the changes of
the image intensities over the follow-up period are combined for
classification of AD.

Instead of extracting the features from ROIs, the voxel-wise
intensity features were extracted to capture the rich feature
after preprocessing PET images, including co-registration to
their baseline PET scan, reorientation into a standard space,
voxel intensity normalization and smoothing with a 8 mm
FWHM Gaussian filter for AD classification. In (Silveira and
Marques, 2015), a boosting classification method was proposed
for classification of FDG-PET images based on a mixture of
simple classifiers, which automatically performs feature selection
concurrently with the classification to solve high dimensional
problem. A favorite class ensemble of classifiers was proposed
with each base classifier using a different feature subset (Cabral
et al., 2013). Recently, deep learning methods can take the
advantage of the data privilege to extract the latent features from
measurements of ROIs with different image modalities for AD
classification (Liu et al., 2015; Suk et al., 2015). Liu et al. (2015)
extracted a set of latent features from 83 ROIs of MRI and PET
scans and trained a multi-layered neural network consisting of
several auto-encoders to combine multimodal features for image
classification. Suk et al. (2015) used a stacked Autoencoder to
learn the high-level features separately from the multimodal
ROI features as those in (Zhang et al., 2011) and a multi-
kernel SVM was used to combine these features to improve the
classification performance. A deep learning framework based
on 3D convolutional neural networks (CNN) was proposed for
estimating missing PET imaging data with respect to the MRI
data, and then the voxel-wise GM density map of MRI and the
intensity values of PET are combined with a sparse regression
classifier for multimodal classification of AD (Li et al., 2014).

Although the above methods have shown their effectiveness
in AD diagnosis, there are still some problems to solve in
these methods. The ROI-based feature extraction may ignore
some minute abnormal changes although it can significantly
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reduce the feature dimension and provide robust representations.
In addition, the ROIs are generated by the prior hypotheses
and the abnormal brain regions relevant to AD might not fit
well to the pre-defined ROIs, thus limiting the representation
power of extracted features. Since the ROI method need to
extract the influential brain regions, complex registration and
segmentation are often required in image preprocessing. The
voxel-wise features can alleviate this problem, but they are of
huge dimensionality, far more features than training subjects,
which may lead to low classification performance due to
the ‘curse of dimensionality’. In addition, the extraction of
these handcrafted features requires domain expert knowledge.
The success of the above CAD methods highly depends on
the performance of the image preprocessing, including rigid
registration and segmentation. Thus, it is still a challenging
task to automatically learn the latent and generic features
and perform the classification for AD diagnosis using PET
images.

Recently, deep learning methods such as CNN have been
widely investigated for image classification and computer vision
(Simonyan and Zisserman, 2014; Ng et al., 2015; Chen et al.,
2016; Wang et al., 2017). Deep CNN has been successfully
applied to jointly learn the image features and discrimination for
object detection and image analysis with less image preprocessing
(Simonyan and Zisserman, 2014). The deep 3D CNNs have
been studied to extract the features of 3D medical images for
classifications (Hosseini-Asl et al., 2016). In addition, recurrent
neural network (RNN) was investigated for learning the features
of sequential images such as video classification and video action
recognition (Cabral et al., 2013; Zhan et al., 2015). The deep 2D
CNNs and Long Short-Term Memory (LSTM) networks were
combined to capture the spatial and time sequential features of
video for action recognition (Zhan et al., 2015). In addition,
RNN has been investigated to model the 3D structure of medical
images for image segmentation (Chen et al., 2016). The intra-
slice and inter-slice context information are exploited by a
combination of a fully convolutional network (FCN) and a RNN
for 3D biomedical images segmentation.

Since 3D CNNs can capture the 3D structure of brain image
better than 2D CNNs, one direct way for image classification
is to construct a 3D CNN for extraction of 3D spatial features
from the 3D PET images. But the 3D PET brain images are
of large size (256 × 256 × 256 voxels in our experiments),
which requires to train a deeper CNN to capture the rich
structure information. Different from the computer vision, the
brain image set for AD diagnosis is usually small. Overfitting is
still a critical challenge in training a deeper CNN model with
a limited number of training samples compared to the large
number of learnable parameters (Shen et al., 2017). This will
result in low performance of deep models. Instead, this paper
proposes a new classification framework based on combination
of 2D CNN and RNN, which learns the features of 3D PET
images for AD diagnosis. In this framework, the 3D image
is decomposed into a sequence of 2D image slices based on
a single view. Then, the deep 2D CNNs are built to capture
the intra-slice features while RNN is used to extract the inter-
slice features. The BGRU is used in modeling RNN. Finally,

both the intra-slice and inter-slice features are integrated for
final classification of 3D PET images. The proposed method
investigates the combination of CNNs and BGRU to learn more
generic features for classification. To our best knowledge, there
are few studies focusing on combination of CNN and RNN for
3D medical image classification. Compared to the 3D CNN, the
proposed method has the following advantages. First, the 3D
PET image is decomposed into a sequence of 2D images to train
a 2D CNN, which can reduce number of learnable parameters
and increase the number of training samples. Thus, the 2D
CNN model is easier to train for extraction of the intra-slice
features. Second, RNN is further applied to extract the inter-
slice features, and both the intra-slice and inter-slice features
are jointly learned and integrated to capture the rich 3D spatial
features for improving the image classification.

The remainder of this paper is organized as follows. In
next section, we will present the image set used in this work
and the proposed method. Then we will present the details of
experimental results and discussion. Finally, we will conclude this
paper.

DATA SET AND METHOD

In this section, we will present the data set used in this work
and the proposed method in detail. Our proposed method
makes no assumption on a specific neuroimaging modality. The
3D FDG-PET image is a powerful imaging modality for AD
diagnosis and is studied in this work. We propose a deep learning
framework based on combination of CNN and BGRU for AD
diagnosis using 3D FDG-PET images. The complex problem
of 3D image classification is decomposed into the ensemble
classification of 2D slice images. Figure 1 shows the flowchart
of our proposed framework for a single direction of 3D PET
images. The CNN and BGRU are cascaded and combined to
learn the intra-slice and inter-slice features of 3D PET images
for classification prediction. The proposed method consists of
three main steps: image preprocessing and decomposition, intra-
slice feature learning by deep CNN, inter-slice feature learning
by BGRU, and final ensemble classification, as detailed in the
following subsections.

Data Set
In this study, all data set were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which are
publicly available in the website1. The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of the ADNI was
to test whether serial magnetic resonance imaging (MRI), PET,
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific

1http://adni.loni.usc.edu/
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FIGURE 1 | The flowchart of our classification framework for the sagittal direction, we first decompose 3D PET image into many groups of slices and then build a
deep CNN to capture the intra-slice features for each group while two stacked BGRU layers are trained to capture the inter-slice features. On top of BGRUs, two fully
connected layers (FC1 and FC2) and one softmax layer are added to make classification prediction.

markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as reduce the time and cost of
clinical trials. The principal investigator of this initiative is
Michael W. Weiner, M.D., VA Medical Center and University
of California, San Francisco. ADNI was the result of efforts
of many co-investigators from a broad range of academic
institutions and private corporations. The study subjects were
recruited from over 50 sites across the United States and
Canada and gave written informed consent at the time of
enrollment for imaging and genetic sample collection and
completed questionnaires approved by each participating sites
Institutional Review Board (IRB).

Subjects
In this work, we use the 18-Fluoro-DeoxyGlucose PET (FDG-
PET) imaging data from the baseline visit of ADNI database for
evaluation. These imaging data was acquired from 339 ADNI
participants including 93 AD subjects, 146 MCI subjects (76 MCI
converters (pMCI) and 70 MCI non-converters (sMCI)), 100 NC
subjects. Table 1 presents the demographic details of the studied
subjects in this paper.

FDG-PET Data Acquisition and Preprocessing
In ADNI, PET image acquisition had been done according to
the ADNI acquisition protocol in (Jack et al., 2008). The FDG-
PET images were acquired by 30–60 min post-injection, and were
averaged, spatially aligned, interpolated to a standard voxel size,
normalized in intensity, and smoothed to a common resolution
of 8 mm full width at half maximum. More detailed information
about the FDG-PET acquisition procedures is available at the
ADNI website. Each image was examined for major artifacts, and
its orientation was adjusted if necessary.

The FDG-PET images were processed to make the images
from different systems more similar. The processing included
affine registration to a template, intensity normalization, and
conversion to a uniform isotropic resolution of 8 mm FWHM as
those in (Silveira and Marques, 2015). No image segmentation
and rigid registration are required for the images. For
consistency, all images were resampled to size of 256× 256× 256
and resolution of 1× 1× 1 mm3. The voxels outside the brain are
removed from the image analysis, and the FDG-PET images are
reduced to size of 193× 153× 163 for classification.

In this work, the complex classification problem of 3D images
is divided into a number of 2D image classification problems and

TABLE 1 | Demographic characteristics of the studied subjects (from ADNI database).

Diagnosis Number Age Gender (F/M) MMSE Education CDR

AD 93 75.49 ± 7.4 36/57 23.45 ± 2.1 14.66 ± 3.2 0.8 ± 0.25

MCI 146 75.35 ± 6.7 49/97 26.99 ± 1.8 15.48 ± 2.7 0.5 ± 0.04

NC 100 75.93 ± 4.8 39/61 28.93 ± 1.1 15.83 ± 3.2 0 ± 0

CDR: the Clinical Dementia Rating. MMSE: the Mini-Mental State Examination. The values are denoted as mean ± standard deviation.
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their integrations. Thus, each 3D FDG-PET image is decomposed
into a number of 2D slices along the third direction (e.g.,
axials, sagittal, and coronal). Since there is no rigid registration
performed on the image, the adjacent slices may have similar
structure. The decomposed slice images are partitioned into a
few number of groups at a certain interval with some overlaps.
Each group consists of 15 slices and interval is set to 9 slices
in our experiments. For each group of slices, a deep 2D CNN
network is built and trained to capture the intra-slice features.
Since all deep 2D CNN network shares the same structure, all the
decomposed 2D slices is reduced to the same size of 150× 150 by
cutting off the peripheral to facilitate building CNN. To extract
the inter-slice features, two stacked BGRUs are constructed with
a sequence of input feature vectors, which are generated from the
sequential 2D image slices. The features generated by BGRU are
further fed into two stacked full connection layers followed by a
softmax layer to make the classification prediction.

Learning Intra-Slice Features by Deep
CNN
Different from the conventional methods that explicitly extract
the regional and handcrafted features, deep CNN is used to learn
the latent and generic features from the 2D image slices. CNN
is a special kind of multi-layer neural networks, which has been
widely used in image classification and object detection (Lécun
et al., 1998; Krizhevsky et al., 2012; He et al., 2015). It is designed
to recognize visual patterns with extreme variability directly
from pixel images with minimal preprocessing and with the
robustness to distortions and simple geometric transformations.
To extract the intra-slice features, we propose to build the 2D
CNN models for learning intra-slice characteristics invariant
to the simple distortions and geometric transformations. For
each group of slices, the 2D CNN model is constructed and
trained with the slices from the same group. There are several
variations on the CNN architecture. Typically, a deep CNN for
feature extraction alternatively stacks several convolutional and
sub-sampling layers followed by fully connected layers. In this
work, the 2D CNN architecture is composed of convolutional,
max pooling, full connection and softmax classification layers
as shown in Table 2. Table 2 also lists the details of the
relevant parameters for the architecture of deep 2D CNNs. For
simplification, the same network structure is used to build the
deep CNNs for all groups of slices, but with different parameters
trained for different groups.

The first type of layer is the convolutional layers which
convolve the learned filters with the input image, followed
by adding a bias term and applying a non-linear activation
function, and finally generate a feature map for each filter.
Through convolution, the features can capture the discriminatory
information of the image. The second layer is the max-pooling
layers which down-sample the input feature map along the spatial
dimensions by replacing each non-overlapping block with its
maximum. Max-pooling can help to keep the most influential
features for distinguishing images. Through max-pooling, the
features become more compact and efficient from low to higher
layers, which can achieve robustness to some distortions and

geometric variations such as shift, scale and rotation at a certain
level. The third type of layer is the fully connected layers, which
takes all neurons in the previous layer and connects them to
every output neuron. Each output neuron produces the learned
linear combination of all inputs from the previous layer and
passed through non-linearity. Finally, a softmax classification
layer is appended to the last fully connected layer and is fine-
tuned back-propagation with negative log-likelihood to predict
class probability. The softmax function is a derivation of logistic
function that highlights the largest values in a vector while
suppressing those that are significantly below the maximum.
The outputs of the softmax layer can be interpreted as class
prediction probabilities from 0 and 1. The sum of all the outputs
is always 1.

In our implementation, each deep CNN is composed of 5
convolutional layers, 2 max pooling layers, 2 fully connected
layers and 1 softmax layer, as shown in Table 2. The sizes of
all convolutional filters are set to 3 × 3 and the filter numbers
are set to 16, 16, 32, 32, and 64 for 5 convolution layers,
respectively. Max-pooling is applied on each 2 × 2 region. Tanh
function is adopted as the activation function in these layers. The
convolutional kernels are randomly initialized on the Gaussian
distribution. The other trainable parameters of the networks
are tuned using the standard back-propagation with stochastic
gradient descent (SGD) by minimizing the cross-entropy loss.
The dropout strategy for regularization (Srivastava et al., 2014) is
employed to reduce the co-adaption of intermediate features and
overfitting problem, and then improve generalization capability.
In the training stage, each deep CNN is trained separately to
capture the specific features in the group of image slices for the
classification task. Therefore, each image slice is converted into
a high-level feature vector from the last fully connected layer for
the following processing.

Staked BGRUs for Learning Inter-Slice
Features
The 3D FDG-PET image is considered as a set of 2D slice
sequences in this work. Recurrent neural networks (RNNs) are
effective to process and model the sequential data. While the

TABLE 2 | The network architecture and parameters of our deep CNNs.

Layer ID Layer name Kernel
number

Kernel
size/Stride

Output size

0 Input 1 × 150 × 150

1 Conv1 16 3 × 3/2 16 × 74 × 74

2 Conv2 16 3 × 3/1 16 × 72 × 72

3 Max-Pooling 1 2 × 2/2 16 × 36 × 36

4 Conv3 32 3 × 3/1 32 × 34 × 34

5 Conv4 32 3 × 3/1 32 × 32 × 32

6 Max-Pooling 2 2 × 2/2 32 × 16 × 16

7 Conv5 64 3 × 3/1 64 × 14 × 14

8 Fatten 12544

9 Full-Connected 1 512 512

10 Full-Connected 2 256 256

11 Softmax 2 2

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00035 June 17, 2018 Time: 12:20 # 6

Liu et al. AD Classification by CNN and RNN

intra-slice features are extracted with the deep 2D CNNs, RNN
is applied to capture the inter-slice features of the 3D images. We
propose the stacked RNNs to model the sequential correlations
between the consecutive slices and extract the inter-slice features
as shown in Figure 2.

In the past decades, the performance of RNN was severely
restricted due to the difficulty of training. Gradient mass
and explosion are the common unsolved problems until the
emergence of a special kind of RNN structure—LSTM. LSTM
contains three gate units (forget gate, input gate and output gate)
and a memory cell unit. By updating the state of memory cell
through three gates, LSTM can discard irrelevant information
and effectively capture the helpful information in sequence. Gate
recurrent unit (GRU) was proposed as a special kind of variants
for LSTM (Cho et al., 2014). Through removing the memory
cell from the original LSTM, GRU makes RNN simpler without
degrading performance. In (Chung et al., 2014), the author made
a detailed comparison of these two kinds of RNN architectures
and concluded that GRU has a slightly better performance than
LSTM.

Compared to LSTM, GRU has only two gates: update gate z
and reset gate r, thus it has the advantages of less parameters and
easier training. The forget and output gates of LSTM are merged
into a single update gate z, which is used to get the current state
of the output via linear interpolation in GRU. When the input is
(xi, hi−1), which denote the input features of the ith image slice
and the previous hidden state, the update gate z and reset gate r
are computed as:

zi = σ(Wxzxi +Whzhi−1) (1)

ri = σ(Wxrxi +Whrhi−1) (2)

where Wxz , Whz , Wxr and Whr are the corresponding weight
matrices; σ is a logistic sigmoid function. The candidate state of
the hidden unit is computed by:

h̃i = tan(Wxhxi +Whh(hi−1 � ri)) (3)

where � is an element wise multiplication. When ri is close
to 0 (off), the reset gate r effectively makes the unit to read
the first symbol of an input sequence and forget the previously
computed state. The ith hidden activation state hi of GRU is
a linear interpolation between the previous state hi−1 and the
candidate state h̃i:

hi = (1− zi)� h̃i + zi � hi−1 (4)

Each image slice has no specific direction and is correlated
with both its preceding and following slices in capturing the
discriminative information. Thus, we apply the Bidirectional-
GRU (BGRU), which consists of a forward GRU (i is from 1
to n) and a backward GRU (i is from n to 1), to capture more
correlation features between the image slices. The inputs of each
BGRU include the features of image slices produced by 2D
CNNs. For each group, feature vectors are generated from 2D
image slices extracted at a certain interval from the 3D FDG-
PET image. To capture more detailed inter-slice information by
BGRU without sacrificing the efficiency, each group contains
15 image slices decomposed from a 3D image for training
one deep 2D CNN. The image groups are partitioned at an

FIGURE 2 | Our deep recurrent neural network (RNN) based on two stacked layers of bidirectional gated recurrent units (BGRU), where xi are the feature vectors
generated from image slice i as the inputs of BGRU while yi1 and yi2 are the output feature vectors of GRU from two directions (the internal structure of GRU is
shown in the bottom, where ri„ zi, hi and hi are the reset gate, update gate, candidate hidden layer and output layer, respectively). On top of stacked BGRU layers,
two fully connected layers and one softmax layer are appended for classification prediction.
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FIGURE 3 | Final ensemble of multi-view classifications.

interval of 9 slices and with an overlap of 6 slices between the
neighboring groups. The outputs of both forward and backward
GRUs are concatenated together to form the outputs of BGRU
at the same time. In addition, to further enhance the inter-
slice information flow in the network, two layers of BGRUs
are stacked into a deep structure by taking the outputs of one
BGRU as the inputs of another BGRU. Figure 2 shows the inter-
slice learning model by stacked BGRUs for all groups of image
slices. To alleviate overfitting problem, the dropout techniques
are also adopted in training the BGRU network of RNN (Gal
and Ghahramani, 2016). At last, the learned features from the
outputs of BGRUs are concatenated together as the inputs to
the fully connected and softmax layers for the classification
task.

Final Ensemble Classification
For image classification task, the BGRU network layer is followed
by two fully connected layers and one softmax layer. The features
generated from the second BGRU layer are fed into the followed
two fully connected layers, and a softmax layer is appended for
final classification prediction. The BGRU, the fully connected,
and the softmax layers are jointly optimized for classification.
Finally, we can obtain the classification prediction probability for
each subject. Training of the proposed CNN-GRU classification
framework consists of pre-training of individual 2D CNNs, and
fine-training of the stacked GRU networks for the task-specific
classification. Initially, each deep 2D CNN is individually pre-
trained for each group of 2D image slices by directly mapping the
outputs of fully connected layer to the probabilistic scores of class
labels with softmax function. Then, the initial-trained parameters
of 2D CNNs are fixed for all convolution and pooling, and fully
connected layers, while the parameters of the GRUs are trained
jointly with the upper 2 fully connected and softmax prediction

layers. The training iteration ends when the validation error rate
stops decreasing.

In addition, since the decompositions of 3D FDG-PET images
at the axial, sagittal and coronal directions may capture the
complementary information for classification from different
views of the 3D context. Thus, we train individual CNNs and
BGRU combination models (CNN-GRU) for axial, sagittal and
coronal directions and obtain three prediction scores. The final
classification is performed by weighted averaging three prediction
scores obtained from three different views as shown in Figure 3.
The weights are determined by grid search of the possible values
for fusion of three direction BGRU prediction scores on the
validation set.

Feature Sets and Implementation
To learn the features with 2D CNN, the 3D FDG-PET image
is first decomposed into a number of 2D image slices. In total,
there are 193 image slices decomposed in coronal direction, 153
slices in sagittal direction and 163 slices in axial direction for
each subject. The decomposed image slices are further partitioned
into a number of groups at an interval of 9 slices and with an
overlap of 6 slices. Thus, each group for a subject consists of 15
image slices for training one deep 2D CNN. Therefore, there are
20 deep CNNs in coronal, 17 CNNs in sagittal and 18 CNNs in
axials obtained to generate the intra-slice feature vectors for 3D
FDG-PET images. After training of 2D CNNs, the CNNs with low
classification accuracies on the validation sets are removed and
not considered for further processing. For each group of slices,
the features generated from 4 image slices are fed into the inputs
of BGRU. The number of hidden units in each BGRU is set to 256.

Our proposed algorithm is implemented with the Keras library
(Chollet, 2015) in Python, which is based on Theano (Bastien
et al., 2012). The experiments are conducted on PC with a
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NVIDIA GeForce GTX TITAN X GPU with 12GB memory. The
initial weights of the deep network are set as the defaults in Keras,
i.e., Xavier uniform. For training the deep CNNs, SGD is used
with a low learning rate of 1× 10−4, and momentum is set to 0.9
and weight decay is set to 1× 10−6. The deep networks are stable
after iteration of about 100 epochs. Adam optimizer algorithm
(Dauphin et al., 2015) is adopted for training the BGRU. The
batch sizes for training CNN and GRU are set to 40. Validation
set is used for optimization of the training process. To avoid
overfitting problem, dropout technique, L1 and L2 regulations are
used in our deep networks (Srivastava et al., 2014). Relu activation
is applied for each neuron of 2D CNN while tanh activation is
used for the BGRU hidden unit.

In our experiments, we will evaluate the effectiveness of
deep CNNs and BGRU on the classification. First, we test the
classification performance of each individual CNNs and select
the best CNNs with the highest classification accuracy from
three different directions. Second, we evaluate the classification
performances after adding the BGRU to combine the intra-slice
features from each direction. Finally, we present the classification
performance of the proposed method by weighted averaging of
prediction scores at three directions.

EXPERIMENTAL RESULTS

The proposed algorithm was tested on the classifications of
AD vs. NC and MCI vs. NC. The datasets that we used in
the experiments are from the ADNI dataset and the image
preprocessing is conducted as illustrated in the above section.
The FDG-PET brain images are captured from 339 participants
including 93 AD subjects, 146 MCI subjects and 100 NC subjects.
Ten-fold cross-validation is performed to reduce the influence
of random factors. Each time, one fold of the image set is used
for testing; another fold is used for validation while the left
eight folds are used for training. The validation set is used for
monitoring the training process to obtain the model weights with
the optimized performance. The classification performances are
averaged on the test set of 10 folds. To evaluate the classification
performance, we compute four measures for comparison in the
experiments, which are classification accuracy (ACC), sensitivity
(SEN), specificity (SPE), receiver operating characteristic curve
(ROC) and area under ROC (AUC). The ACC is defined
as the proportion of correctly classified samples among the
total number of samples. SEN is computed as the proportion
of correctly classified positive samples (patients) among the
total number of positive samples. The SPE is computed as
the proportion of correctly classified negative samples (Normal
Controls) among the total number of negative samples. The ROC
curves plotting the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings are also shown
and the AUC are computed for more comparisons.

Test the Effectiveness of Deep CNNs and
BGRU
Table 3 shows the performance comparisons of the deep CNNs
and BGRU on classifications of AD vs. NC and MCI vs. NC.

The ACC and AUC are used to evaluate the classification
performance. The best 2D CNNs with the highest classification
accuracy from three different directions are denoted as “Coronal-
CNN,” “Sagittal-CNN” and “Axial-CNN,” respectively. Adding
BGRU to combine the intra-slice features from three directions
are denoted as “Coronal-BGRU,” “Sagittal-BGRU” and “Axial-
BGRU,” respectively. Our proposed method with weighted
averaging of prediction scores at three directions is denoted as
“Weighted Fusion” in Table 3.

In addition, we compare our proposed method to the deep 2D
CNN and 3D CNN methods. The results of 2D CNNs are based
on the Coronal-CNN which performs best among all 2D CNNs.
We build a deep 3D CNN on the same data set to learn the latent
and generic features for image classification. The architecture and
parameters of the deep CNN are optimized with our best efforts.
Table 4 shows the performance comparisons of the 2D CNN and
3D CNN as well as our proposed method on classifications of AD
vs. NC and MCI vs. NC. Figures 4A,B display the comparisons
of their ROCs for classifications of AD vs. NC and MCI vs. NC,
respectively. The ACC, SEN, SPE, ROC and AUC are used to
evaluate the classification performance.

Comparison With Existing Methods
In this section, we compare our results with some recent
results reported in the literature which are also based on FDG-
PET data from ADNI database for AD and MCI diagnosis.
In particular, the results reported in three recent methods
(Gray et al., 2011; Li et al., 2014; Silveira and Marques,
2015) are compared with our results in Table 5, as briefly
described following. In (Silveira and Marques, 2015), a boosting
classification method, which effectively combined several simple
classifiers and performs feature selection concurrently with
the segmentation, was proposed to improve the classification
performance when compared with the SVM classifier. A multi-
region analysis based on anatomical segmentations, which are
automatically generated in the native space of each subject instead
of the space of a single reference image, was proposed for
extraction of regional signal intensities and a SVM classifier
was used for feature classification in (Gray et al., 2011). In (Li
et al., 2014), the voxel-wise intensities of FDG-PET neuroimages
were extracted as features after performing the rigid registration
to the respective MR images and a sparse regression classifier

TABLE 3 | The performance comparison of deep CNNs, BGRU and their
combination.

Task AD vs. NC (%) MCI vs. NC (%)

AUC ACC AUC ACC

Coronal-CNN 91.8 84.5 79.8 71.2

Sagittal-CNN 91.2 85.0 77.9 74.4

Axial-CNN 91.4 84.5 78.7 74.0

Coronal-BGRU 94.6 88.6 80.8 74.8

Sagittal-BGRU 94.8 90.7 82.5 77.6

Axial-BGRU 94.7 88.1 83.1 76.0

Weighted Fusion 95.3 91.2 83.9 78.9
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TABLE 4 | Comparison of the classification performances with 2D/3D CNNs and the proposed method.

Method AD vs. NC (%) MCI vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

2D-CNN 84.5 82.8 86.0 91.8 71.2 79.5 51.0 79.8

3D-CNN 87.1 87.1 84.0 93.5 75.6 82.2 66.0 82.1

Our method 91.2 91.4 91.0 95.3 78.9 78.1 80.0 83.9

SEN = TP/(TP + FN); SPE = TN/(TN + FP). TP: true positive; TN: true negative; FP: false positive; FN: false negative.

FIGURE 4 | Comparisons of ROC curves on classification of (A) AD vs. NC and (B) MCI vs. NC (AUC is given in brackets).

was used for feature classification. The above methods include
the traditional extractions of ROI and voxel-wise features and
the ensemble classification on FDG-PET images from ADNI
database. But their codes are not released and it is not easy to
implement these published methods on the same settings for fair
comparison. Thus, we use the reported results in the literature for
comparison of these methods in Table 5.

DISCUSSION

From the results in Table 3, we can observe that BGRU can
boost the classification performance in all three directions
for both classification tasks of AD vs. NC and MCI vs.

NC. This demonstrates that the inter-slice sequential features
can provide complementary information and improves the
classification performance for FDG-PET images. We also found
that the sequence of image slices in the sagittal direction
have the best ACC and AUC by using the BGRU for AD
classification. Nevertheless, the fusion of prediction scores from
three directions can further enhance classification performance.
From the results of Table 4 and Figure 4, we can see that the
3D CNN performs better than the 2D CNN. This is because the
3D CNN can capture more information about the 3D spatial
context for classification. These results also demonstrate our
proposed algorithm can achieve better performance than the
3D CNNs on classification of AD and MCI subjects from NC
subjects. The proposed CNN-BGRU combination framework

TABLE 5 | Comparison of the classification performances reported in the literature.

Method AD vs. NC (%) MCI vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

(Silveira and Marques, 2015) 90.9 – – – 79.6 – – –

(Gray et al., 2011) 81.6 82.7 80.4 90.0 70.2 73.8 62.3 73.0

(Li et al., 2014) – – – 89.8 – – – 70.1

Our method 91.2 91.4 91.0 95.3 78.9 78.1 80.0 83.9

SEN = TP/(TP + FN); SPE = TN/ (TN + FP). TP: true positive; TN: true negative; FP: false positive; FN: false negative.
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FIGURE 5 | The network attention areas for AD diagnosis.

can more effectively learn the discriminative features than 3D
CNNs.

From the results in Table 5, we can see that our proposed
method performs better than other published methods. It is
worth noting that the result differences may be caused not only
by using different feature extraction and classification methods,
but also with different ADNI subjects. In addition, the differences
in the test samples, the partition of cross-validation to separate
the training and testing sets can also make the fair comparison
difficult to achieve. Different from the conventional methods that
are based on the handcrafted ROI features (Gray et al., 2011;
Silveira and Marques, 2015), the proposed method combines the
2D CNNs and RNN to automatically and hierarchically learn
the features of 3D PET images for AD classification. Compared
to the conventional methods, the proposed method has the
following three main advantages. First, the feature extraction
is a machine learning based method by learning deep CNNs,
which is data-driven method and does not require any domain
expert knowledge. Second, the intra-slice and inter-slice features
are jointly learned and integrated to capture the rich 3D spatial
features and improve the image classification. Third, no rigid
registration or segmentation procedures are required in image
processing, which can simplify the diagnosis procedure and save
the computation costs. But there are still several weaknesses in the
proposed method. First, it is not easy to optimize the parameters
of the deep CNN, such as the number of layers, the size and
number of kernels in each layer. Second, the learned features by
the proposed method have no sufficient clinical information for
visualization and interpretation of the brain neurodegenerative
disease (i.e., AD or MCI) in the clinical application.

However, there are some suggestions to address the above
weaknesses. For setting the parameters of the deep CNN, large
kernel size is effective to capture the large patterns of PET image
but it may ignore the small ones. More network layers can
be used to learn the hierarchical and rich features. Thus, the
size of all kernels is set to 3 × 3, but multiple convolutional
layers are used to hierarchically capture the large patterns. The
other optimal parameters can be obtaine by cross validation in

our experiments. Since AD can affect the certain pathological
patterns, only a subset of image regions may be closely related
to AD diagnosis. It is also important to detect these regions for
diagnosis and interpretations of the diseases. To achieve this,
we attempt to systematically occlude different local regions of
the input 2D image slice with a black square (25 × 25 voxels
in our experiments), and monitoring the prediction outputs of
classifier as a function of occluded positions as in (Zeiler and
Fergus, 2014). When the occluded part covers the important
regions related to AD, the probability of the correct class in
the classifier output will drop significantly. In this way, we can
generate a network activity map by evaluation of classification
performance reduction as a function of occluded position. In our
experiments, the top 3 groups of 2D image slices with the better
classification performance are selected from the low-level 2D
CNNs of three different directions. Then, the network attention
areas are generated by compiling the prediction masks obtained
by obstructing these selected image patches of 25 × 25 and
measuring the drop of the output probability. This heatmap
shows how the network learns the importance of local areas in
prediction of disease status. The areas with the highest attention
for FDG-PET images in AD diagnosis are demonstrated in
Figure 5. These areas seem to be consistent with the ones that
are mostly affected by AD, mainly in hippocampus, posterior
temporal lobe and parietal lobe, the posterior cingulate gyrus and
left parahippocampal gyrus (Zhang et al., 2011; Liu et al., 2015).

CONCLUSION

In this paper, we have proposed a new classification framework
based on combination of CNN and BGRU to capture the rich
features of 3D FDG-PET images for AD diagnosis. The 3D
FDG-PET image is decomposed into a set of 2D image slices
and multiple deep 2D CNNs are built to learn the intra-slice
context features while BGRU is applied to capture the inter-
slice features of the 3D image context. No segmentation and
rigid registration are required for preprocessing the FDG-PET
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image in the proposed method. The experimental results on
the ADNI dataset have shown that the proposed method
has achieved promising performance for classifications of
AD and MCI.
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