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Functional near-infrared spectroscopy (fNIRS) has evolved as a neuro-imaging modality

over the course of the past two decades. The removal of superfluous information

accompanying the optical signal, however, remains a challenge. A comprehensive

analysis of each step is necessary to ensure the extraction of actual information from

measured fNIRS waveforms. A slight change in shape could alter the features required

for fNIRS-BCI applications. In the present study, the effect of the differential path-length

factor (DPF) values on the characteristics of the hemodynamic response function (HRF)

was investigated. Results were compiled for both simulated data sets and healthy human

subjects over a range of DPF values from three to eight. Different sets of activation

durations and stimuli were used to generate the simulated signals for further analysis.

These signals were split into optical densities under a constrained environment utilizing

known values of DPF. Later, different values of DPF were used to analyze the variations

of actual HRF. The results, as summarized into four categories, suggest that the DPF

can change the main and post-stimuli responses in addition to other interferences. Six

healthy subjects participated in this study. Their observed optical brain time-series were

fed into an iterative optimization problem in order to estimate the best possible fit of HRF

and physiological noises present in the measured signals with free parameters. A series

of solutions was derived for different values of DPF in order to analyze the variations of

HRF. It was observed that DPF change is responsible for HRF creep from actual values

as well as changes in HRF characteristics.

Keywords: functional near-infrared spectroscopy, differential path-length factor, hemodynamic response, optimal

cortical model, optical brain imaging

INTRODUCTION

Optical spectroscopy is an emerging neuro-imaging modality that can indicate cortical
functionality with good temporal resolution relative to the other modalities (e.g., Mannan et al.,
2016a; Meszlényi et al., 2017). The optical signal observed through functional near-infrared
spectroscopy (fNIRS) reflects the interaction of light with matter, and will differ according to
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the properties of matter (Maikala, 2010). fNIRS utilizes
near-infrared (NIR) light in the spectral range of 650–
900 nm. Thus, absorption and scattering are among the
fundamental characteristics/properties that produce signal/NIR
light attenuation (van der Zee et al., 1990; Kohl et al., 1998).
It is well-known that biological tissue is a medium that highly
scatters NIR light (Duncan et al., 1995). The absorption of
NIR light is mainly caused by two chromophores in the
blood, namely, oxy-hemoglobin (HbO) and deoxy-hemoglobin
(HbR) (Schroeter et al., 2004). Continuous wave near-infrared
spectroscopy (CW-NIRS) measures the concentration changes
of HbO (1Hbo) and HbR (1HbR), respectively, at each time
step, making it at attractive option for brain-computer interface
(BCI) applications, among others (Scholkmann and Wolf, 2013;
Talukdar et al., 2013; Naseer and Hong, 2015; Mannan et al.,
2016b; Cavazza et al., 2017; García-Prieto et al., 2017).

The fNIRS system consists mainly of a source-emitting NIR
light of dual or more wavelengths of particular frequencies,
along with detector(s) to measure the intensity of attenuated
light. NIR light of multiple wavelengths (e.g., 760 and 830 nm)
is thrown onto the surface of the scalp, with a physical
connection between the source and scalp. This incident NIR
light passes through the scalp, skull, cerebral spinal fluid (CSF),
gray matter and white matter, a portion of it being received
at a nearby photo-detector. It is assumed that the NIR light
emitted by the source and detected by a near-by detector follows
a banana-shaped path (Kamran et al., 2016). Thus, the actual
path traveled by NIR light is much longer than the source-
detector separation on the surface of the scalp (Delpy et al.,
1988; Hiraoka et al., 1993; Chatterjee et al., 2015; Piao et al.,
2015).

FIGURE 1 | Schematic of algorithm.

It is necessary to accurately estimate/measure the actual
distance traveled by NIR light (Kohl et al., 1998). A parameter,
namely the differential path-length factor (DPF), has been used in
previous studies to cover the extra distance traveled by NIR light
(Kamran et al., 2016). This is a wavelength-dependent scaling
factor that indicates how many times farther (than the actual
source/detector separation) the detected NIR light has traveled
(Scholkmann and Wolf, 2013). It has been common practice
to use a DPF value between three and six (Delpy et al., 1988;
Duncan et al., 1995; Scholkmann and Wolf, 2013). The value
of DPF is generally determined through measurement of the
mean time of flight (TOF) of a pico-second pulse of NIR light
traveling through biological tissue (van der Zee et al., 1990, 1992;
Ferrari et al., 1992). Another possibility for DPF measurement is
via frequency-domain NIRS (FD-fNIRS) (Lackowicz and Berndt,
1990; Duncan et al., 1993, 1995). Duncan et al. (1995) determined
the values of DPF at four different wavelengths (i.e., 690, 744,
807, 832 nm) for adult arm, head, leg, and new-born-baby head,
respectively. Later, Duncan et al. (1996) experimented with 283
subjects (age range: 1 day ∼ 50 years) and developed four
different equations for the age dependency of DPF at particular
wavelengths. The equations are as follows:

DPF690 = 5.38+ 0.049∗(A0.877), (1)

DPF744 = 5.11+ 0.106∗(A0.723), (2)

DPF807 = 4.99+ 0.067∗(A0.814), (3)

DPF832 = 4.67+ 0.062∗(A0.819), (4)

Later, Kohl et al. (1998) concluded that the DPF is the ratio of
the attenuation change to the change in absorption coefficient,
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FIGURE 2 | (A) Experimental paradigm, (B) source-detector localization and separation.

which is to say, (DPF = ∂A
∂µa

r−1), where A is the attenuation,

[µa] is the absorption coefficient, and r is the source-detector
separation. Schroeter et al. (2003) analyzed the age dependency
of the hemodynamic response function on the DPF. Their results
suggest that aging decreases the hemodynamic response and that
the decrease might be caused by the changing of tissue properties
with age. In their subsequent work, Schroeter et al. (2004) pointed
out that the DPF can vary intra-individually between several
pixels and inter-individually between subjects of the same age.
Their observation was based on previous studies (Essenpreis
et al., 1993; Zhao et al., 2002). Since none of the commercially
available optical imaging systems measures DPF for each pixel,
such studies are impossible (Schroeter et al., 2004). The multiple
layers of the human scalp and skull can affect the DPF, thereby
leading to systematic errors (Talukdar et al., 2013). Recently,
Scholkmann and Wolf (2013) modeled the DPF as a function of
age and wavelength, deriving the following equation (Equation 5)
for calculation of DPF at any wavelength and age A:

DPF(λ,A) = 223.3+ 0.05624A0.8493 − 5.723∗10−7λ3

+ 0.001245λ2 − 0.9025λ. (5)

It is obvious from the previous studies that the DPF can
affect optically measured signals and incur, thereby, error and
inaccurate results (Jasdzewski et al., 2003). Therefore, it is very

important to analyze the effects of the DPF on NIRS waveforms.
In the current study, the authors analyzed the effect of DPF
on optically measured signals. In the first step, simulated data
sets were generated using a method described in previous
studies (Prince et al., 2003; Kamran et al., 2015). The simulated
HbO signal was separated into its constituent optical densities
under different constraints, and the accuracy of the results were
confirmed before further processing. The results were observed
for variations of DPFλ1 and DPFλ2 and compared with the
actual signals. Later, NIRS experiments were performed on six
healthy subjects. The problem was formulated as an iterative
optimization problem for estimation of the best possible fit of
HRF and physiological noises with free parameters. Comparative
results were derived, and a detailed analysis was performed
for different values of DPFλ1 and DPFλ2 . The results serve to
comprehensively summarize the effect of DPF variations onHRF.

THEORY

Derivation of Concentration Changes of
Chromophores
The intensity of attenuated NIR light received by a detector
depends on the reflection, absorption and scattering properties
of the tissues that light has passed through (Delpy et al., 1988;
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FIGURE 3 | Simulated data with initial rest (10 s) different stimulus (St1-St5) and task durations (10, 20, and 30 s) followed by 30 s rest, 10 s activation (top left), 20 s

activation (top right), 30 s activation (bottom left), and canonical hemodynamic response to all stimuli (bottom right).

Duncan et al., 1996; Maikala, 2010; Kamran et al., 2016). This
phenomenon can be modeled according to the modified beer-
Lambert law (MBLL) as

OD = ln(
Iin(λ)

Io(λ)
) (6)

Or

OD = 1µa(λ)dDPF(λ)+ G(λ) (7)

where Iin(λ) and I0(λ) are the incident and attenuated detected
light, respectively,µa is the absorption coefficient, d is the source-
detector separation, and G(λ) is the geometrical parameter for
the light’s scattering properties. The absorption coefficient is
the sum of the products of the extinction coefficients and the
concentrations of the different chromophores present in the
medium under experimentation (Scholkmann and Wolf, 2013;

Kamran et al., 2016). The above equation can be modified, by
scattering to be considered as a constant (Maikala, 2010). Finally,
we obtain

1ODλi = (ε
λi
HbO

1HbO+ ε
λi
HbR

1HbR)dDPF(λ) (8)

where [λi] is the wavelength of incident NIR light, and ε
λi
HbO

and

ε
λi
HbR

are the extinction coefficients of HbO andHbR, respectively.
Assuming two wavelengths λ1 and λ2, we can rewrite the above
equation as

1HbOi(k) =
(ελ1

HbR
1ODλ2 (k)
DPFλ2

)− (ελ2
HbR

1ODλ1 (k)
DPFλ1

)

li(ελ1
HbR

ε
λ2
HbO

− ε
λ2
HbR

ε
λ1
HbO

)
(9)

and

1HbRi(k) =
(ελ2

HbO
1ODλ1 (k)
DPFλ1

)− (ελ1
HbO

1ODλ2 (k)
DPFλ2

)

li(ελ1
HbR

ε
λ2
HbO

− ε
λ2
HbR

ε
λ1
HbO

)
(10)
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where 1HbOi(k) and 1HbRi(k) are the relative
concentration changes of HbO and HbR, respectively,
k is the step time, i represents the ith-channel of the
source-detector set, λ1 and λ2 are NIR light of 760

and 830 nm wavelength, respectively, ε
λ1
HbO

, ε
λ1
HbR

, ε
λ2
HbO

,

and ε
λ2
HbR

represent the extinction coefficients of HbO
and HbR at two different wavelengths, respectively,
1ODλj (k) is the optical density variation at the kth-
sample time and a particular wavelength (j = 1, 2),
li is the source-detector separation, and DPFλj is the
differential path-length factor at a particular wavelength
(j= 1, 2).

Hemodynamic Response Model
Since the fNIRS-measured cortical signal resembles one
measured through functional magnetic resonance imaging
(fMRI), Friston et al. (1994) introduced statistical parameter
mapping (SPM) software for analysis of fMRI data. The
general characteristics of the hemodynamic response (HR) for
stimulus are well-established in the literature. There is early
de-oxygenation at 1–3 s, followed by a positive peak at around
5–6 s, a drop-down to the baseline, and, finally, a settling down
at 25–30 s (Friston et al., 1998; Koray et al., 2008). The canonical

shape of this model can be represented as a linear combination
of two Gamma functions (Friston et al., 1994; Kamran et al.,
2015),

HRF(k) = h(k) ∗ u(k), (11)

h(k) =

[

kα1−1βα1
1
e−β1k

Ŵ(α1)
−

kα2−1βα2
2
e−β2k

6Ŵ(α2)

]

(12)

where u he experimental procedure, h is the canonical
hemodynamic response function (cHRF), α1 is the delay of the
response, α2 is the delay of the undershoot, β1 is the dispersion
of the response, β2 is the dispersion of the undershoot, and Ŵ

represents the Gamma distribution.

Optical Signal Model
In the case of fNIRS, the observed processed signal is a
linear combination of cortical activity relevant to a particular
experiment, physiological signals and certain unknown signals
termed as “Gaussain noise.” The signal related to cortical activity
is modeled in Equation (11). Physiological noises are respiratory

FIGURE 4 | Results for both positive cases (Case: 1) with variation in value of DPFλ1 (3–8) under stimulation St1-St5 (top left, top middle, top right, bottom left, and

bottom middle).
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rhythm, heartbeat, and low-frequency Mayer waves (Prince et al.,
2003; Abdelnour and Huppert, 2009; Kamran et al., 2015). These
physiological noises are periodic in nature for healthy human
beings. Therefore, their corresponding signals can be added as
sinusoidal signals (Prince et al., 2003; Kamran et al., 2015).
Accordingly, the optical signal can be modeled mathematically
as

yi
HbO

(k) = ao + a1HRF(k)+ ac sin(2π fck)+ ar sin(2π frk)

+ am sin(2π fmk)+ εi(k) (13)

where yi
HbO

is the observedHbO time-series at the ith-channel, a0
is the baseline correction, a1 is the activity-strength parameter, ac,
ar , am, fc, fr , fm are the amplitudes and frequencies of the cardiac,
respiratory andMayer waves, and εi(k) is the zeromean Gaussian
noise at the kth-sample time.

Experimental Procedure and Paradigm
Six healthy subjects participated in the experiments. Their
average age was 28 years with a standard deviation of 7 years.
Each subject was asked about his/her medical history, and it
was determined that none had had any neuronal disorder. All
of the subjects had 6 × 6 eyesight with/without glasses. A
written consent attesting to his willingness to participate in

the experiment was signed by each subject. The experiment
was conducted in accordance with the latest version of the
Declaration of Helsinki. The study was approved by ethical
Institutional Review Board, Pusan National University, South
Korea. As it is standard good practice, all of the subjects
were informed of the experimental details for the best possible
results. They were advised to remain calm while sitting on
a comfortable seat, so as to avoid artifacts and noise. The
experiment included an initial rest period of 15 s followed by
four task/rest trials. Each trial included a 15–s task session
followed by a 15–s rest session. During the task sessions, different
arithmetic operations with answers were shown; the subject
was instructed to tap his right index finger if the answer was
correct, and to keep the finger still if the answer was incorrect.
It was observed that all of the subjects properly tapped their
finger only on display of a correct answer. The arithmetic
operations were shown on a screen positioned 100 cm away
from the subject. The data were acquired at a sampling rate of
1.81Hz. Later, it was resampled at a rate of 100Hz for further
processing.

The algorithm was verified on simulated data sets of different
combinations of stimulus patterns and task durations (10, 20, and
30 s). The simulated data sets were generated using Equations
(11–13) according to the method described in Kamran et al.
(2015).

FIGURE 5 | Results for both negative cases (Case: 2) with variation in value of DPFλ1 (3–8) under stimulation St1-St5 (top left, top middle, top right, bottom left, and

bottom middle).
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Problem Formulation
There are three commercially available NIRS systems: time
domain (TD), frequency domain (FD), and continuous wave
(CW) (Talukdar et al., 2013). In continuous-wave NIRS (CW-
NIRS), usually, two different wavelengths of NIR light are thrown
onto the scalp, and their corresponding changes in optical
density are received by detector/detectors. In that way, the optical
densities corresponding to wavelengths λ1 and λ2 are recorded
(Ye et al., 2009). These optical densities 1ODλ1 and 1ODλ2 are
used to obtain the concentration changes of HbO and HbR by
Equations (9, 10). The problem with respect to simulated data
sets is formulated as a cost function j1,

J1 =

N
∑

k=1

{yiHbO(k)− 0.03751ODλ2(k)+ 0.016441ODλ1(k)}2.

(14)

The Equation (14) is solved for optical densities 1ODλ1

and 1ODλ2 ] using an optimization algorithm to minimize J1
under certain constraints. The above equation has infinitely
many solutions, which are divided into four categories.
Correspondingly, four differently constrained problems are
solved for optical densities: (1): 1ODλ1 ,1ODλ2 > 0, (2):
1ODλ1 >,1ODλ2 < 0, (3): 1ODλ1 < 0,1ODλ2 > 0, and (4):

1ODλ1 < 0,1ODλ2 < 0. The solutions for Equation (14) are fed
into the equation

yiHbO(k) = 0.2170
1ODλ2(k)

DPFλ2
− 0.1015

1ODλ1(k)

DPFλ1
, (15)

and the results are compared with the actual data to verify the
correctness of the solutions for actual values ofDPFλ1 andDPFλ2 .
Later, different values of DPFλ1 and DPFλ2 are used to analyze
the effects of these parameters on HRF attributes. In the case
of real data sets, most of the previous studies have utilized the
outputs of Equations (9, 10) for further processing and modeling
of HRF signals (Jasdzewski et al., 2003; Abdelnour and Huppert,
2009; Kamran and Hong, 2013, 2014; Kamran et al., 2015). In
the present study, a proposed alternative means of optimization
for estimation of the HRF directly from given optical densities
of real data sets was tested. For this purpose, a cost
function J2,

J2 =
N
∑

k=1

{(ao + a1HRF(k)+ ac sin(2π fck)+ ar sin(2π frk)

+ am sin(2π fmk))− 0.21701ODλ1 (k)
DPFλ2

− 0.10151ODλ2 (k)
DPFλ1

}2,

FIGURE 6 | Results for first positive and second negative cases (Case: 3) with variation in value of DPFλ1 (3–8) under stimulation St1-St5 (top left, top middle, top

right, bottom left, and bottom middle).
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FIGURE 7 | Results for first negative and second positive cases (Case: 4) with variation in value of DPFλ1 (3–8) under stimulation St1-St5 (top left, top middle, top

right, bottom left, and bottom middle).

was defined, which can be formulated in an optimization problem
according to the following constraints:

min J2(α1,α2,β1,β2, ao, a1, ac, am, ar , fc, fr , fm) s.t
C1 : 2 ≤ α1 ≤ 10, C7 : 0 ≤ ac ≤ 2,
C2 : 6 ≤ α2 ≤ 20, C8 : 0 ≤ ar ≤ 2,
C3 : 0.5 ≤ β1 ≤ 2, C9 : 0 ≤ am ≤ 2,
C4 : 0 ≤ β2 ≤ 1.5, C10 : 0.5 ≤ fc ≤ 1.5,
C5 : 0 ≤ ao ≤ 20, C11 : 0.2 ≤ fr ≤ 0.3,
C6 : 0 ≤ a1 ≤ 15. C12 : 0.09 ≤ fm ≤ 0.1.

(16)

The optimal values of the free parameters
(α∗

1 ,α
∗
2 ,β

∗
1 ,β

∗
1 ,α

∗
0 ,α

∗
1 ,α

∗
c ,α

∗
m,α

∗
r , f

∗
c , f

∗
r , f

∗
m,) for specific values

of DPFλ1 and DPFλ2 are estimated using an improved version
of the simplex method [later named the Nelder-Mead simplex
method (NMSM)]. The iteration of NMSM can be performed
in three steps, namely, ordering, centroid, and transformation.
The details on this algorithm are available in Haftka et al. (1990),
Lagarias et al. (1998), Luersen and Riche (2004), and Kamran
et al. (2015).

RESULTS

A schematic of the algorithm is shown in Figure 1. It displays the
general idea of the study. Each time different set of values of DPF
were used to analyze the output of neuro-activation optimization

model and results were compared to comprehensively analyze
the effects. The details of the experimental paradigm and source-
detector separation and localization are shown in Figure 2.
Sixteen set of source-detector pairs were utilized to measure
motor cortex. The channel 3 is located at C3 location in
10–20 system. Figure 3 plots the simulated HRFs and their
corresponding cHRFs for different task sessions. Figures 4–7 plot
the effects of the variation of DPFλ1 on the HRFs corresponding
to different stimuli (St1-St5). Similarly, Figures 8–11 show the
effects of variations ofDPFλ2 on HRFs corresponding to different
stimuli (St1-St5). The x-axis in Figures 4–11 shows the sample
time as mentioned before that the data is resampled at 100Hz.
Thus, each step of sample time corresponds to 0.01 s. It is obvious
to analyze from Figures 4–11 that DPF has strong relation with
the shape of HRF. A change in DPF value can affect the peak
value of the main response as well as the depth of post-stimulus
undershoot. In some cases DPF has no effect on main response
(Figures 6, 10) and in some cases it has nothing to do with
post-stimulus undershoot (Figures 7, 11). The reason behind this
is that positive output is not possible in case: 3 (See section
Discussion) and negative output is not possible in case: 4 (See
section Discussion). Figure 12 summarizes the results for the
six healthy subjects with respect to the effects of DPFλ1 change
and DPF1 in the label represents the DPFλ1 . Figure 13 plots the
effects of DPFλ2 variation on real data sets and DPF2 in the label
represents the DPFλ2 . Figure 14 projects the effects of changes in
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FIGURE 8 | Results for both positive cases (Case: 1) with variation in value of DPFλ2 (3–8) under stimulation St1-St5 (top left, top middle, top right, bottom left, and

bottom middle).

the peak values of HRF as DPFλ1 (top plot) and DPFλ2 (bottom
plot) are varied. The concentration change of HbO is calculated
by using DPFλ1 and DPFλ2 from Equation (9). Figure 14 top
plot displays the effects of variation of DPFλ1 keeping DPFλ2 at
fixed value. The value of DPFλ2 is displayed by dark blue vertical
line. Similarly, the bottom plot shows the value of DPFλ1 by
vertical blue line while displaying the variation of DPFλ2 for all
subjects.

DISCUSSION

fNIRS is an emerging neuro-imaging methodology that can be
used in medical as well as BCI applications (Kamran et al., 2016).
The observed time-series of optical data includes unnecessary
(unrelated to cortical activity) information. This information is
noise that renders extraction of the neuron-related information
on a particular task more challenging. Noise is of different
types: physiological noise, motion artifacts, systematic noise,
and others. There also exist other factors operative in the
process of converting fNIRS’ observed optical densities, those
can affect signal shape. The DPF is the important parameter in
the conversion step, as it can affect signal attributes (Jasdzewski
et al., 2003). The DPF is included to cover the actual distance

traveled by light in the signal acquisition process (Maikala,
2010; Kamran et al., 2016). Several studies have reported the
effect of the DPF on fNIRS signals (Lackowicz and Berndt,
1990; Duncan et al., 1993, 1995; Kohl et al., 1998; Jasdzewski
et al., 2003; Schroeter et al., 2003, 2004; Talukdar et al., 2013).
Hiraoka et al. (1993) reported that DPF has only valid for a
homogenous medium but real human brain and head tissues
have different optical properties. Thus, accurate quantification
of NIRS signal is possible with information regarding nature
of light transport through in-homogenous medium. Chatterjee
et al. (2015) analyzed a Monte-Carlo based computational model
within a single layer of tissue like human brain. Their finding
concluded that optical path changes by changing the source-
detector separation. The brain is highly scatter medium of NIR
light. Thus, variation in path-length traveled by light photons
is also possible. DPF depends upon the extra path traveled by
light photons. Schroeter et al. (2004) commented on a very
important point that DPF can vary intra-individually between
several pixels and none of commercially available optical imaging
system measures DPF for each pixel. Therefore, it is necessary
to analyze its effects on the signal. In the present study, the
effects of DPF change were analyzed for both simulated data
sets and the healthy subjects’ real data sets. The simulated data
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FIGURE 9 | Results for both negative cases (Case: 2) with variation in value of DPFλ2 (3–8) under stimulation St1-St5 (top left, top middle, top right, bottom left, and

bottom middle).

sets were generated using the method described in Kamran
et al. (2015). These data sets were subjected to Equation
(14) to solve for optical densities under constraints. Four
different cases were resolved with Equation (14), and the results
were compared with actual data using Equation (15). Later,
different values of DPFλ1 and DPFλ2 were used to analyze the
effects.

Case 1: Both of the optical densities were constrained to be
positive. In this case, as DPFλ2 was changed from the lower
value of 3 to the higher value of 8, a translation was observed
along the y-axis in the upward direction (Figure 4), but asDPFλ1

was increased more, the translation decreased. Additionally, the
post-stimuli undershoot decreased asDPFλ2 increased. Similarly,
a translation along the y-axis in the downward direction was
observed for the variation of DPFλ2 (Figure 8). The change in
DPFλ2 did not havemuch affect on the post-stimulus undershoot.
Case 2: Both of the optical densities were constrained to be
negative. This case showed a translation along the y-axis in the
downward direction as DPFλ1 as varied. The translation step
became small with proximity to the actual HRF (Figure 5). There
is no effects on the post-stimulus undershoot. A translation
also was observed along the y-axis in the upward direction as
DPFλ2 as changed from lower to higher values (Figure 9). The

post-stimulus undershoot decreased with increasing DPFλ2 , and
the translation became too small as value DPFλ2 is increased.
Case 3: The optical density related to wavelength λ1 was
constrained to be positive, and the one related to wavelength
λ2 as negative. In this case, there was no effect on the positive
part of the HRF (Figures 6, 10) for variation in either DPFλ1

or DPFλ2 . The post-stimulus undershoot decreased as DPFλ2

increased, and the increment of decrease became small as the
DPFλ2 values increased (Figure 10). Similarly, a slight change
in post-stimulus undershoot was observed as DPFλ1 increased
(Figure 6). Case 4: The optical density related to wavelength
λ1 was constrained to be negative, and the one related to
wavelength λ2 as positive. In this case, no effect was observed on
post-stimulus undershoot for either DPFλ1 or DPFλ2 variation.
One of the main reasons for this is that negative output was
not possible in this case. It was observed that the peak of
the response decreased as DPFλ2 increased and that there
was a slight change in the peak of HRF as DPFλ1 increased
(Figures 7, 11).

The real data on the healthy human subjects were collected
using fNIRS in a visuo-motor experiment. The data was fed
to Equation (16), and the best possible HRF was estimated
using cost function J2. The results (Figure 12) indicated that the
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FIGURE 10 | Results for first positive and second negative cases (Case: 3) with variation in value of DPFλ2 (3–8) under stimulation St1-St5 (top left, top middle, top

right, bottom left, and bottom middle).

FIGURE 11 | Results for first negative and second positive cases (Case: 4) with variation in value of DPFλ2 (3–8) under stimulation St1-St5 (top left, top middle, top

right, bottom left, and bottom middle).
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FIGURE 12 | Results for fNIRS data set with variation in DPFλ1 .

FIGURE 13 | Results for fNIRS data set with variation in DPFλ2 .
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FIGURE 14 | Effects of variations in DPFλ1 and DPFλ2 on peak of HRF for all subjects.

peak of HRF increased as DPFλ1 was increased from lower to
higher values. Also, there was an increment in the full width
at half maximum (FWHM) of the HRF. Similarly, in contrast
to the DPFλ1 variation, a decrement in the peak of HRF was
observed as DPFλ2 was increased, resulting also in a decrement
of FWHM (Figure 13). The changes in the peak values of HRF
with variation of DPFλ1 and DPFλ2 are plotted in Figure 14. The
results clearly show that a change in DPF corresponding to any
wavelength significantly effects HRF shape. It is well known fact
that in most BCI-fNIRS applications, features are observed from
HRF attributes. Thus, a slight change in HRF on the basis of the
DPF can lead to incurred error, misleading results, and reduced
accuracy.

It was evident from the diffusion equation relating to the
transportation of light through the homogeneous semi-infinite
medium that the DPF depends on the reduced scattering
coefficient, the absorption coefficient, and the source-detector
separation (Scholkmann and Wolf, 2013). The human brain
tissue causes high scattering of NIR light. The difference in
structure and behavior of tissue is also possible among different
subjects. Therefore, each human being respond differently to
NIR light. That is due to the variation in the optical properties
of the path-length of light photons. It also causes the change
in the traveled distance of light photons. Talukdar et al. (2013)
concluded that multiple layer of human scalp, skull, and brain
tissues can effect scattering and thus DPF, which leads to
systematic errors. Thus, the variation of DPF among the subjects

is obvious. Similarly, the MBLL can interpret the dependency
of HRF on DPF (Maikala, 2010). Therefore, it is worthwhile
to analyze the effects of DPF change on NIR light based on
human brain signals, particularly given that different brain areas
have different scattering and absorption properties according to
a subject’s specific physiology and condition. A possible means
of analyzing the effect of DPF on HRF is to split the HRF into
three sections, namely pre-stimuli, main response peak, and post-
stimuli undershoot. Therefore, a generic overview of the effects of
DPF on HRF was presented in this paper.

CONCLUSION

In this study, the effects of the DPF were analyzed for fNIRS-
observed data. The observed optical densities were utilized to
formulate an iterative optimization problem for estimation of
the best possible HRFs for different values of DPF related
to wavelengths λ1 and λ2. Different simulated data sets were
generated for a combination of different stimuli and activation
times. The simulated HRF was fed into an optimization problem
in order to split it into two different optical densities for further
analyses. Later, different values of DPF were used to regenerate
actual data and its effects. In addition to the simulation of data,
the motor cortices of six healthy human subjects were scanned
for a DPF analysis of measured fNIRS signals. It was concluded
that the DPF affects the attributes of the HRF and that correct
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values of DPF are required for accurate results and their proper
interpretation.
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