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Any modeler who has attempted to reproduce a spiking neural network model from its

description in a paper has discovered what a painful endeavor this is. Even when all

parameters appear to have been specified, which is rare, typically the initial attempt to

reproduce the network does not yield results that are recognizably akin to those in the

original publication. Causes include inaccurately reported or hidden parameters (e.g.,

wrong unit or the existence of an initialization distribution), differences in implementation

of model dynamics, and ambiguities in the text description of the network experiment.

The very fact that adequate reproduction often cannot be achieved until a series of such

causes have been tracked down and resolved is in itself disconcerting, as it reveals

unreported model dependencies on specific implementation choices that either were

not clear to the original authors, or that they chose not to disclose. In either case,

such dependencies diminish the credibility of the model’s claims about the behavior

of the target system. To demonstrate these issues, we provide a worked example of

reproducing a seminal study for which, unusually, source code was provided at time

of publication. Despite this seemingly optimal starting position, reproducing the results

was time consuming and frustrating. Further examination of the correctly reproduced

model reveals that it is highly sensitive to implementation choices such as the realization

of background noise, the integration timestep, and the thresholding parameter of the

analysis algorithm. From this process, we derive a guideline of best practices that

would substantially reduce the investment in reproducing neural network studies, whilst

simultaneously increasing their scientific quality. We propose that this guideline can be

used by authors and reviewers to assess and improve the reproducibility of future network

models.
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1. INTRODUCTION

Reproducing computational models of networks of spiking point
neurons seems like it should be easy. Neuron and synapse
models are described as systems of ordinary differential equations
with a few additional conditions and constraints. By specifying
the parameters, the initial conditions, and any stimulus to the
network, the dynamics of any reproduced network should be at
least statistically equivalent, or even identical if external sources
of random numbers are handled appropriately.

However, this optimistic attitude rarely survives the
experience of trying to reproduce a model from a paper.
As contributors to the NEST simulator (Gewaltig and Diesmann,
2007), the authors have reproduced a variety of models to
create examples. A major source of frustration is inadequate
specification of numbers. Parameters are sometimes missing
from the description in the paper. This can be in an overt
manner, e.g., τm occurs in the neuron model equations but its
value is not stated anywhere, or occur covertly, such that the
parameter is not even mentioned in the text. Another common
issue with parameters is that the value used in the paper is not the
value used for the simulation. Sometimes the number is rounded
to a smaller number of decimal places, sometimes it is plain
wrong, sometimes the unit is wrong, and sometimes the author
fails to mention, for example, a multiplicative factor. Similarly,
initial conditions can be incompletely or incorrectly specified,
for example the authors state that the initial values for a given
parameter are drawn from a certain random distribution, but fail
to mention it is truncated.

A further area of divergence is inadequate specification of
implementation. One example of this would be for the truncated
distribution mentioned above, the authors do not state the
behavior when a number is drawn outside of the bounds: clip
to bounds or re-draw? Other examples include the choice of the
numeric solver of model dynamics and issues to do with event
ordering in plastic synapse models – if a pre- and post-synaptic
spike arrive simultaneously at a synapse implementing spike-
timing dependent plasticity, which happens first, depression or
facilitation?

It is worth noting that the two types of insufficient
specification are of quite different natures and cannot necessarily
be addressed by the same approach. For the majority of current
spiking point neuron models, the number of parameters to be
specified is large but not ridiculously so. Thus it is reasonable
to expect that they all be mentioned explicitly in the main text
of a manuscript or in its Supplementary Material. This issue
was partially addressed by Nordlie et al. (2009), who developed
a break-down of network models into components (e.g., neuron
model, connectivity, stimulus etc.) which can then be expressed
in tables with a standardized layout. The experience of the
authors is that the exercise of filling out these tables brings
parameters to light that might otherwise have been overlooked,
however it does not provide any protection against wrong values

or secret multiplicative factors as discussed above.
In contrast, a complete specification of the implementation

cannot be sensibly captured in tables, as it is “how” rather than

“what” information. Whereas some aspects can be explained in

the text of a manuscript, comprehensive coverage cannot be
expected, firstly because it would make manuscripts technically
dense to the point of unreadability, and secondly because human
readable language is rife with ambiguities that would hamper an
accurate reproduction of the described model. Because of these
specification issues it is often not possible to reproduce a model
from a paper without contacting the authors and extracting more
information.

Clearly, then, sharing model code should be seen as part
of a modeler’s obligation to enable reproducibility of his or
her study. This is easily achieved on a variety of platforms.
However, downloading a model code from such a platform
and running it on your own machine does not constitute
reproducing a study in the strong sense. Using the definitions
proposed by the Association for Computing Machinery (2016),
we will refer to this as replication, i.e., different team, same
experimental set-up (see Plesser, 2018 for a summary and
analysis of different technical definitions for reproduction and
replication). At best, it simply shows that the model code is
portable and generates the reported results. At worst, it does
nothing, since availability of code does not entail that this
code can be run on your machine, as tragically documented
by Topalidou et al. (2015) and on a more industrial scale (but
outside the neuroscience context) by Collberg and Proebsting
(2016).

The ReScience Initiative (Rougier et al., 2017) seeks to address
this issue by providing a home for reproductions of model
studies (i.e., different team, different experimental set-up). The
reproductions published there are open-source implementations
of published research that are tested, commented, and reviewed.
However, it would be preferable if the original publications were
intrinsically reproducible, rather than requiring intense post-
publication efforts by others. To achieve this, it is important
not only for researchers to put greater effort into making their
code available and comprehensible, but also for reviewers to be
able to quickly evaluate any factors that might undermine its
reproducibility.

In this article, we develop a guideline for spiking neuronal
network modelers to present their work in such a way as to
minimize the effort of other scientists to reproduce it. As we
believe that concrete illustrations are necessary to convincingly
motivate recommendations, we provide these by reproducing a
seminal study in computational neuroscience, aminimal network
generating polychronous groups (Izhikevich, 2006). We analyze
which features of the model and analysis code (and description in
the manuscript) support, and which hinder, the reproduction of
the study. From each of these features, we derive a corresponding
recommendation that, if followed by future studies, would
increase their reproducibility.

The choice of this source material is motivated by the
following considerations. Firstly, the author took the (then)
highly unusual step of making the model code available, both
in the manuscript itself (MATLAB) and in downloadable form
(MATLAB and C++). Secondly, despite the availability of the
code, the model is rather challenging to reproduce, due to a
number of non-standard models and numerics choices, thus
making it a fruitful source of recommendations.
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We would like to emphasize that the choice is purely
demonstrative, and almost any study with published code could
have been used for our purposes; indeed the authors’ own work
has not come up to the standards we propose. Furthermore, we
point out that many of the technical solutions we propose were
not available at the time the source material was published.

In the first phase (section 2.2), we establish a baseline by
downloading the author’s C++ code and carrying out some
minimal modifications to enable it to run locally. In the second
phase we demonstrate that our best-effort initial attempt to
reproduce the study’s results using a NEST implementation of
the network fail (section 3.2), and focus our efforts on creating
an implementation capable of reproducing results identical on
the level of individual spikes and synaptic weights. For this
implementation, various artifacts (e.g., connectivity matrix) need
to be exported from the original implementation into NEST.
Therefore, in the the third phase we develop a stand-alone
NEST implementation and investigate how well it reproduces the
original results (section 3.3). We demonstrate that the original
network has a second activity mode unreported in the original
study.

In section 3.4, we manipulate the stand-alone NEST
implementation to investigate various issues with respect to
numerics and model features that we discovered in the preceding
phases, and in section 3.5 we perform an analogous investigation
of the main analysis algorithm provided as part of the original
code. In this way, we uncover unreported major dependencies
on coding errors and implementation (rather than conceptual)
choices such as the background noise, the resolution of the
neuron update and the thresholding parameter of the analysis
algorithm. The series of recommendations that we derive from
reproducing the original model and investigating its sensitivity
to parameters and implementation details are gathered and
discussed in section 3.6.

Our results demonstrate that putting effort into code
presentation and study design to boost its reproducibility does
not just make it easier for future researchers to independently
confirm the results and/or extend the model. It also increases the
scientific quality of the study, by reducing the risk that results
have been distorted by avoidable coding errors, inappropriate
choices of numerics, or highly specific parameter settings.

2. METHODS

Our implementation of the model and all materials used for this
study are publicly available on GitHub1 under MIT license.

2.1. Polychronization Network Model
The polychronization network model as described in Izhikevich
(2006) is inspired by a patch of cortical tissue. The networkmodel
contains 1, 000 neurons, of which 800 are modeled as excitatory
and 200 modeled as inhibitory, as described in Izhikevich (2004).
Throughout the simulation the neurons are stimulated by the
unusual method of randomly selecting one neuron in each

1https://github.com/INM-6/reproducing-polychronization

millisecond step, and applying a direct current of 20 pA to it for
the duration of that step, reliably evoking a spike.

The neurons in the original network model are connected
as follows: for each inhibitory neuron, 100 targets are selected
from the excitatory population, not permitting multapses or
autapses. Inhibitory synaptic connections are static with a weight
of −5 mV and argued to be local, and thus have a delay of 1 ms.
For the excitatory neurons, the 100 targets are selected at random
from the whole network, also not permitting multapses or
autapses. Excitatory synaptic connections are plastic, the detailed
dynamics of which are described in section 3.4.2. The delays for
these connections are highly structured: they are evenly spread
between 1 and 20 ms, i.e., exactly five outgoing connections of
each neuron have the delay 1 ms, exactly five connections have
the delay 2 ms, and so on. Themodel parameters are summarized
in tables in the Supplementary Materials.

2.2. Preparing the Polychronization
Network Model for Replication
We downloaded the C++ source code poly_spnet.cpp

from the author’s website2 and installed it locally. The original
code could not be compiled with the standard g++ compiler
under Ubuntu 16.04 LTS. Some minor adjustments were
necessary to make the code compile and run, which are given in
the Supplementary Material. We note that there are differences
between the MATLAB code published in Izhikevich (2006) and
that available for download, and between bothMATLAB versions
and the C++ code. Unless stated otherwise, all remarks on
features of “the original code” refer to the C++ version used as
the basis of this study.

The source code is a single standalone script that comprises
both simulation and the analysis, including identification of
polychronous groups. In order to later compare the statistics of
groups found by the original simulation code and by the NEST
re-implementations, we re-structured the code to separate the
analysis from the simulation, writing the neural activity (spike
times and membrane potentials) in NEST-formatted text files,
and the network connectivity in JSON format.

We checked that using the separated versions of the
simulation script and analysis script serially yields identical
results to running the downloaded code with integrated
simulation and analysis. This enabled us to run the same analysis
on data produced by the original code and by implementations in
NEST, rather than having to chase down disparities in simulation
and analysis code simultaneously. In the following, we refer to
this slightly modified version of the downloaded code as the
“original network model”.

The recommendations that we compile in section 3.6.1 are
mostly inspired by this initial process of assessing and adapting
the original source code.

2.2.1. NEST
Network simulations are either carried out using Izhikevich’s
homebrewed network simulator written in C++ or using NEST
2.14. (Peyser et al., 2017). The source code for the Izhikevich

2https://www.izhikevich.org/publications/spnet.htm
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synapse model is publicly available on GitHub in a branch of
a fork of the NEST repository. Due to the model’s multiple
idiosyncrasies and numerical issues reported on in this article
(see section 3.2.2 and section 3.4), it does not fulfill the quality
standards for NEST and so will not be merged to the master
branch of the main repository and included with future releases
of NEST.

2.3. Experiments
2.3.1. YAML
In order to investigate the dynamics of the model under study,
we defined several experiments described in section 3.4. In
the experiments we varied parameters such as stimuli, delay
distributions and numeric resolution. For each experiment we
wrote a distinct parameter file in YAML (“Yet Another Markup
Language” or “YAML Ain’t Markup Language”) which makes the
workflow very clear and modular. All YAML files are available in
the repository and in the Supplemental Material in tabular form.

2.3.2. Polychronous Group Finding Algorithm
For our data analysis we used two different versions of the
algorithm which finds polychronous groups. For the first version,
we extracted the original algorithm from Izhikevich’s C++ code
and adapted it such that it uses our JSON data format. We
confirmed that our adaptation does not change the original
results by comparing the found groups on a given dataset.

This C++ version of the algorithm finds groups by running
a full network simulation, in which a specific group of neurons
is stimulated and the network response recorded. As the delay
distribution is hardcoded in the structure of the algorithm and
the integration timestep is fixed to 1 ms, it is not possible to
apply this algorithm to experiments in which we changed these
parameters. We therefore wrote a second algorithm in Python
that runs a NEST simulation, in which we can easily alter the
integration timestep or delay distribution.

For the Python version of the algorithm we tried to be as
close as possible to the original C++ version, but generalized
to be applicable to all parameter sets. Starting from a pivot
neuron, we iterate over all triplets of neurons (“anchor neurons”)
forming synapses with at least 95% of the maximal weight to this
pivot neuron. We then determine all other neurons which are
targeted by this triplet, start a NEST simulation, and stimulate
the targeted neurons in the order of their delay relative to the
pivot neuron, with the corresponding weight from the triplet.
We record the network response and consider the triplet and
all neurons emitting a spike during the simulation as part
of a polychronous group. After the NEST simulation finishes
we scan the connectivity for connections between the neurons
participating in this group and define the “layer of a neuron”
as the length of the chain of pre-synaptic neurons within the
group. Finally, following the original algorithm, the group is only
considered to be relevant if the longest path is larger than seven
layers and all three anchor neurons participate in the activation of
the group.We point out that setting theminimum layer threshold
lower than seven leads to a rapid increase of the number of
groups. The Python version deviates from the original C++
code, as we found errors in the original code that we fixed in our

version. For example, for large groups, the original code exhibits
an array index overflow, leading to erroneous spike delivery
during group detection. Moreover, the original code often misses
one last spike in the network response; this reduces the group size
and longest path by one, leading to a reduced number of relevant
groups.

Compared to the original algorithm, our Python version
typically finds twice as many polychronous groups. However,
conceptually the two algorithms seem to be approximately
equivalent as nearly all (>99%) groups found by the original
version are also found by the Python version. Thus, we consider
the Python version to be a “generous” evaluation of the number of
groups with respect to the original version. A detailed discussion
of the group finding algorithm and the definition of polychrony
can be found in section 3.5.

2.3.3. Activity Metrics
To estimate firing rates, we binned the spikes of all excitatory
(inhibitory) neurons in bins of 5 ms. We then divided by
the number of excitatory (inhibitory) neurons to calculate the
average rate of one neuron in the population fpop in spks/s.
The single neuron variability is expressed by the coefficient
of variation (CV) of the inter-spike interval distribution,
CV = σ (ISI)/µ(ISI). The synchrony of the network dynamics
is calculated as the Fano factor (FF) of the population averaged
spike counts N(t) with FF = σ (N(t))2/µ(N(t)). To estimate
the spectral characteristic of the network, we applied a Fourier
transformation on the population rate fpop of the excitatory
neurons, following Izhikevich (2006). We calculated the peak
frequency in the range between 20 − 500 Hz and categorized
the network activity as having a low gamma peak if its maximum
amplitude fell in the range 35− 50 Hz, and a high gamma peak if
the maximum amplitude fell in the range 50− 100 Hz.

2.3.4. Snakemake
Snakemake is a script based workflow management system
which allows reproducible and scalable data analysis (Köster and
Rahmann, 2012). The complexity of our simulations, involving
several different versions of neuron, synapse and network
models as well as analysis scripts was massively eased by using
snakemake. It allows its users to run their analysis on laptops and
clusters, visualize the workflow (see Figure 1) and manage the
data in a consistent and efficient way. Using a workflow manager
enables us to keep track of the files generated by the original code,
the slightly modified version of the original code and the various
experiments conducted in sections 3.4 and 3.5. Snakemake links
the version of the program to the data it created, such that it can
re-run specific sections of a workflow depending on what parts
were changed.

2.4. Workflow
In order to investigate the dynamics and performance of
the model under study on different sets of parameters (see
our recommendations in section 3.6.3), we simulated the
model many times under different conditions which led to a
rather complex workflow. This is illustrated in Figure 1 for
the example of comparing the bitwise reproduction to the
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FIGURE 1 | Example visualization of the snakemake workflow for comparing the bitwise reproduction and the qualitative model. Shown are the rulenames defined

and their input output relationships.

qualitative reproduction. Shown are the rulenames (labels in
the boxes) defined and their input-output (arrow between
boxes) relationships, for example collect_data where the arrows
indicate that the defined rule uses input, i.e., a data file from
run_nest_model and its output is used by plot_dynamics.

First, to prepare the simulations we have to compile
and install all dependencies including the original model in
C++ (compile_model), the tools for reformatting the original
data to JSON (compile_reformat), the original algorithm to
find polychronous groups (compile_find_polychronous_groups)
and NEST (install_nest). Next, we run the original model
(original_bitwise_reproduction) and reformat the produced data
to use the JSON dataformat (reformat_izhi). The output of the
original model is used to initialize the neurons, connectivity
and stimuli in the NEST bitwise reproduction. We run the
bitwise reproduction (run_nest_reproduction) and the qualitative
reproduction (run_nest_model), which is independent of the
output of the original model. Afterwards we collect all data
(collect_data) and run the algorithm for finding polychronous
groups (find_groups and find_groups_nest). Finally we calculate
group statistics (calc_stats) and activity statistics and plot the

relevant data (plot_dynamics). The box with label all is a dummy
target used to define all files that should be produced by the
workflow. This is used by Snakemake to generate the dependency
tree in Figure 1. This workflow is repeated automatically 10 times
for all experiments and 100 times for bitwise reproduction and
qualitative reproduction using Snakemake. After generation of
the necessary files, the plots for the single neuron dynamics
(Figure 9), group analysis (Figure 8) and the bi-modal dynamic
states (Figures 5, 7) are produced.

3. RESULTS

3.1. Replicating the Polychronization
Network Model
The polychronization network model was proposed by
Izhikevich (2006) as a minimal spiking neural network model
capable of exhibiting polychronization, consisting of randomly
coupled point neurons expressing STDP (see section 2.1 for a
detailed network description). In addition to the network model,
an algorithm for detecting polychronous groups was provided
in this study. A polychronous group is a group of neurons
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connected in such a way that neural activity propagates in a
reliable and stereotypical fashion due to the interplay between
synaptic delays and the activation times of neurons. Izhikevich
(2006) illustrates the concept of polychrony in a comprehensible
way and links to higher neural processes such as cognition,
computation, attention and consciousness.

Our execution of the original network model, prepared
for execution on our system as described in section 2.2,
successfully replicates the main results reported in that study.
Executing the original network model on our system results in
18,000 s of network activity, exhibiting slow oscillations and
gamma rhythms (interpreted by the original study as “sleep-
like” and “implicated in cognitive tasks”). After simulation, the
original polychronous group finding algorithm (see section 2.3.2)
identifies 4, 305 polychronous groups in the connectivity of
the network model. The final weight distribution and power
spectrum can be seen in Figure 2.

3.2. Identical Reproduction
In order to reproduce a network model in machine precision it is
not enough to parameterize the network model identically. The
issue of reproducibility goes deeper than the model specification

itself. For example the choice of compiler, the order in which
numerical operations are executed or the underlying hardware
themodel is run on can lead to rounding errors; these accumulate
over a long simulation time and therefore lead to different results.
Without providing the original code with provenance tracking
and raw data, a model can therefore not be reproduced identically
as there is no possibility to compare the exact results, i.e., every
spike and every weight (Ghosh et al., 2017).

The original raw data was not provided, but given that the
original code is written in C++, as is NEST, we determined
that it should be possible to replicate the results yielded by
the original C++ version on our machines with a NEST
version on the same machine. This is not what is normally
understood as “reproduction of a neural network model,” which
would typically only aim for statistical equivalence of aggregate
findings, e.g., firing rates, mean number of groups, etc. For such
measures, environmental features such as the operating system
or compiler version should not play a role; if they do, this
suggests the model is inherently excessively sensitive. However,
we take this step here to ensure we have captured all details
of the neuron and synapse model used in the original network
model.

FIGURE 2 | Comparison of initial NEST network model with original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the final 10 s

(17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) Final weight distribution (frequency plotted on a logarithmic scale) for the original (dark gray)

and NEST (light gray) simulations. Inset: rate distributions over the final 10 s displayed as box plots for the excitatory and inhibitory populations in the original and

NEST simulations, colors as above. (C) Power spectrum of the rate envelope over the final 10 s for the excitatory population in the original (orange curve) and NEST

(blue curve) simulations.
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3.2.1. Initial Iteration
The Izhikevich neuron model (Izhikevich, 2004) used in the
original code already existed in the NEST code base, but we
needed to implement the synapse model based on the text
description in Izhikevich (2006) and the modified version of
source code as described in section 2.2.

The original network model has three sources of randomness:
the selection of which neurons to connect, the initial values of the
membrane potentials, and the noise stimulation, implemented as
a direct current delivered to one randomly selected neuron in
each millisecond. We therefore modified the original version to
save the connectivity matrix, the initial values of the membrane
potentials and the order of neuron stimulation to file; these are
then read in and applied by the NEST simulation. Additionally,
wemodified the original to allow the seed for the randomnumber
generator to be set as a parameter, thus enabling multiple runs
of the model to be carried out in our snakemake workflow (see
section 2.4).

Figure 2A shows a raster plot of the spiking activity in the
final 10 s of simulation in our initial iteration of trying to
replicate the original model identically; the rate distributions are
strikingly different, in particular the inhibitory rate of the NEST
model is low compared with the original version (see Figure 2B,
inset). The power spectra (Figure 2C) reveal that the strong
gamma peak exhibited by the original model is not present in
the NEST simulation. The weight distribution is also different;
whilst still maintaining a bimodal character, the NEST simulation
has a larger number of maximum weights (Figure 2B). Using the
original algorithm to find polychronous groups we were able to
find five groups in ten iterations with different random seeds.

These results show that despite the best, good-faith attempt of
a group of researchers with considerable experience in developing
neuron, synapse and network models, it was not possible
to reproduce the neuron and synapse dynamics described in
Izhikevich (2006) in one pass, even though the source code was
available for inspection. Our first iteration fails to reproduce
the key findings of the original study, either in terms of
network dynamics or in terms of the generation of polychronous
groups. Not only does this demonstrate that reproduction of
computational models can be challenging even for experienced
modelers with access to the original model code, it also raises the
possibility that the aforementioned key findings are dependent
on implementation details of the synapse and neuron models.

3.2.2. Final Iteration
It took a great investment of time to iteratively adapt the NEST
simulation described above such that it yielded identical results
to the original version. There were a number of disparities in
the respective neuron and synapse models, including priority
assigned to simultaneous events in the synapse model, ordering
of neuron update, implementation of exponential functions, and
ordering of mathematical operations.

These algorithmic and numeric aspects are (understandably)
not discussed in the text description of the manuscript,
underlining once again the importance of sharing the code.
However, neither can they be readily found by examining the

C++ code, as it is rather hard to comprehend in detail for the
following reasons:

• It is uncommented (or commented only with the
corresponding lines from the MATLAB version of the
code)
• It exhibits low encapsulation; neuronal and synaptic updates

are mixed throughout the simulation code, and synaptic
interactions rely on long nested sequences of indexing rather
than meaningfully named functions
• Numerics are not always standard, e.g., multiplication by 0.95

in each time step rather than using an exponential function
• Parameters are not always given meaningful names and

defined in one place, such as the beginning of the script or
in a separate parameter file; moreover, some appear as “magic
numbers” in the middle of the code

We note that the MATLAB code is somewhat better commented,
but the discrepancies between the sources mean that comments
in one do not necessarily help to understand the other. However,
even with a perfectly structured and commented source code it
would be difficult to find all disparities, as there are many special
cases in the particular synaptic plasticity algorithm used in the
original network model. It would be very challenging to think of
all possible special cases and check by mental simulation of the
two codes whether each one would be handled identically.

Consequently, it was necessary to write several specific tests
for the neuron and synapse model in both the original version
and the NEST implementation in order to progressively eliminate
discrepancies until they all came to light (see section 3.6.2 in
the recommendations). By comparing their responses to identical
input, especially border cases, it was possible to track down the
algorithmic differences between the models. In the case of NEST,
writing scripts to test a synapse or neuron with a particular
input is easy, because it is a modular simulation tool written in a
general purpose fashion, i.e., not optimized for a specific network
model. In contrast, as the homebrewed original version is neither
modular nor general, testing the behavior of individual elements
required some creative modifications (see our recommendations
in section 3.6.2).

The main discrepancies between the original version and our
initial attempt, which we resolved in the bitwise reproduction,
were as follows:

• The STDP spike pairing in the original model is of type
nearest-neighbor, whereas the default pairing in NEST is all-
to-all (see Morrison et al., 2008 for a review)
• The original neuron model processes incoming spikes at the

beginning of a timestep, rather than the end, as in NEST,
leading to a shift in delivery times of 1 ms and thus overall
weaker synapses (see STDP windows of the initial and bitwise
reproduction in Figure 4)
• For border cases, e.g., synchronous spiking of pre- and post-

synaptic neurons, the original synapse model applies the LTP
and LTD in a different order from our initial reproduction
• The original C++ model applies a decaying term to the

eligibility trace before adding it to the synaptic weights,
whereas our initial attempt (and the MATLAB version)
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applied it afterwards:
wdev← wdev * 0.9;
weight← weight + 0.01 + wdev;

Note that the C++ and MATLAB versions of the code diverge in
their handling of the eligibility trace, and the variables wdev and
weight (the buffered weight changes and the current synaptic
weight), are known as sd and s in the original code.

These four disparities in the synapse model lead to the largest
differences in the two models. However, even after aligning these,

we observed that the spike trains of the original and our re-
implementation could be identical for several hours of simulation
before some small differences in spike timings ultimately led to
complete divergence. This was due to some extremely small (i.e.,

aroundmachine precision) deviations, which were inflated by the

instable numerical integration. We therefore had to additionally
adjust all numerical operations to be in the same order as in the
original code, and reverse any conversions to standard numerics.

• In the eligibility trace, replace exp(−1t/20) by 0.951t

• In the neuron update, replace
0.04 * v * v + 5 * v + 140. - u + I

by
(0.04 * v + 5) * v + 140. - u + I

• In the synapse update, replace
wdev*= 0.9; weight += 0.01 + wdev;

by
weight += 0.01 + wdev * 0.9;

Finally, after detailed investigation and adjustments to the NEST
implementation of the neuron and synapse model, the NEST
simulation yielded identical results to the original version over
the entire 18,000 s simulation period. Figure 3 shows a raster plot
of the spiking activity in the final 10 s of simulation for a NEST
network model that replicates the original model identically. It
is unquestionable that if the original study had complied with
the recommendations in section 3.6.2, the process of identically
reproducing the results would have been far less complicated.

The rate of the inhibitory population is high compared to the
NEST network activity shown in Figure 2, and the oscillations in
the gamma band are more strongly represented, as can be seen
in the power spectrum in the bottom right panel. The bottom
left panel demonstrates, for an example inhibitory neuron (top)
and an example excitatory neuron (bottom), that the spike times
of the NEST simulation coincide with those of the original. The
membrane potential in the NEST simulation is recorded after
the numeric update step, but before spikes are detected and the
membrane potential set back to resting potential. This leads to the

FIGURE 3 | Comparison of bitwise identical NEST network model to original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the final

10 s (17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) membrane potential for a selected inhibitory neuron from the NEST simulation and

spike times of corresponding neuron from original code. (C) As in (B) for a selected excitatory neuron. (D) Power spectrum of the rate envelope over the final 10 s for

the excitatory population from the NEST (blue curve) and original (orange curve) simulation.
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FIGURE 4 | STDP windows of alternative STDP implementations: initial

implementation (green), bitwise identical implementation (blue) qualitatively

equivalent implementation (orange). Our initial attempt is similar to the bitwise

identical reproduction, but shifted by 1 ms to positive delays. The windows of

the bitwise identical and qualitatively equivalent implementations coincide.

membrane potential reaching values of above 100 mV, frequently
reaching values of around 1, 000 mV (Figure 9). This indicates
numerical instabilities when simulating the neuron model with a
resolution of 1 ms, which we investigate further in section 3.4.4.

The original study showed an analysis of the polychronous
groups for exactly one run. To investigate the properties
of the distribution of groups, we performed 100 runs of
the bitwise identical NEST simulation using different random
seeds. Surprisingly, we discovered that the network model
does not converge to a single dynamic and structural state, as
demonstrated in Figure 5. In the majority of cases (87%), the
network activity results in a power spectrum with a high gamma
peak around 60 Hz, as previously shown in Figures 2C, 3D.
However, the rest of the simulation runs result in a lower peak
at 40 Hz, an eventuality not reported in the original study. The
full collection of power spectra is shown in Figure 5A. The two
dynamical states correspond to two alternate structural states. For
the high gamma state, the maximum weight of 10 mV occurs for
delays between 12 and 14 ms and for the low gamma state, this
maximum occurs for a delay of 20 ms (Figure 5B).

Analyzing the polychronous groups (Figure 5C) reveals that
the two dynamical/structural states described above develop
significantly different numbers of groups. The distribution of
numbers of groups detected is shown in Figure 5C. For the high
gamma state, the mean number of groups detected was 2, 500
with a inter quartile range (IQR) of 1,300, with a minimum of
1, 200 and a maximum of 23, 000 over the 87 trials resulting in
that state. For the 13 low gamma runs, a mean of 1, 600 groups
with an IQR of 1,400 were detected (minimum: 700; maximum:
29, 000). Notably, both distributions are lower than the figure of
5, 000− 6, 000 reported in the original study.

3.3. Qualitative Reproduction
The network model developed in section 3.2 replicates the
original results precisely, but this does not coincide with
the common understanding of reproducing a model. Firstly,

requiring equality of floating-point numbers at machine
resolution is too strict, and generally not practicable - here we
had the advantage that the original code and the code of the target
simulator NEST are both in C++, and so identical sequences of
mathematical operations will be compiled into identical machine
code. Secondly, all pseudorandom elements need to be extracted
from the original code in order to initialize the code used for
reproducing the model.

We therefore developed a network model that reproduces the
original in the commonly understood sense, i.e., all concepts of
the original are faithfully translated into the new framework.
Specifically, the sources of randomness (connectivity, membrane
potential initialization and neuron stimulation) are replaced
with analogous routines within the NEST simulation script,
and hence there is no dependence on output from the original
model. Moreover, the numerics of the synapse model comply
with standard forms, and the simulation is parallelized for
multithreaded execution.

It could be argued that such a qualitative reproduction should
also integrate the neuron dynamics at a finer resolution than
the 1 ms used in the original version, as the resolution of a
simulation or the algorithm chosen to numerically solve the
dynamics should not be considered a conceptual element of a
model. However, it turns out that the numerical integration of the
dynamics is critical for the model behavior, which we examine
in greater detail in section 3.4. We therefore remained with the
original numerical choices to create the qualitative reproduction
of the model.

Figures 6, 7 demonstrates that the qualitative reproduction
captures the key features of the original model. The raster
plots are visually similar to those shown in Figure 3A, an
impression supported by the similarity of the rate distributions
(Figure 6B, inset) and the power spectra (Figure 6C) to those
of the original model. Likewise, the final weight distributions
(Figure 6B) overlap almost completely. In line with the bitwise
reproduction, simulations exhibiting a high gamma peak yield
more groups than the simulations exhibiting a low gamma
peak (median 2, 700, IQR 1,300 vs. median 1, 500 IQR: 800;
Figure 7C).

However, despite the apparent good match between the
qualitative reproduction and the original, analyzing the activity
from 100 simulation runs with different random seeds reveals
that the proportion of high gamma and low gamma states
have reversed (14 high gamma simulations, 86 low gamma
simulations) with respect to the bitwise identical reproduction
(compare Figure 5A and Figure 7A).

A full investigation of the mechanism by which the
network converges to one dynamic state or the other, and
the implementational differences between the bitwise identical
and qualitatively equivalent NEST simulations that cause a
differentiation in the respective likelihoods of these states, lies
outside the scope of the current manuscript. However, this result
does highlight the importance of the recommendation made in
section 3.6.3: performing multiple runs so that one can discover,
and report, alternate dynamical states for a network model. A
researcher may have implemented everything correctly, and yet
still fail to reproduce key results, if he or she was unlucky enough
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FIGURE 5 | Sensitivity of network dynamics of the bitwise identical NEST implementation to choice of random seed. (A) Power spectrum of the rate envelope over

the final 10 s for the excitatory population for 100 different seeds. Light blue curves indicate runs resulting in a high gamma peak (60 Hz), dark blue curves those with

a low gamma peak (40 Hz). Inset shows the proportion in which these two activity profiles occur. (B) The equilibrium distribution of weights (Maximum 10 mV, blue

curves; minimum 0 mV, green curves) as functions of the delay in the high (light) and low (dark) gamma dynamical states. (C) Relationship between dynamical state

and number of polychronous groups found. Boxes show median and interquartile range (IQR); whiskers show additional 1.5× IQR or limits of distribution.

FIGURE 6 | Comparison of qualitatively equivalent NEST network model to original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the

final 10 s (17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) Final weight distribution (frequency plotted on a logarithmic scale) for the original

(light gray) and NEST (dark gray) simulations. Inset: rate distributions over the final 10 s displayed as box plots for the excitatory and inhibitory populations in the

original and NEST simulations, colors as above. (C) Power spectrum of the rate envelope over the final 10 s for the excitatory population in the original (orange curve)

and NEST (blue curve) simulations, colors as above.
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FIGURE 7 | Sensitivity of network dynamics of the qualitatively equivalent NEST implementation to choice of random seed. (A) Power spectrum of the rate envelope

over the final 10 s for the excitatory population for 100 different seeds. Light blue curves indicate runs resulting in a high gamma peak (60 Hz), dark blue curves those

with a low gamma peak (40 Hz). Inset shows the proportion in which these two activity profiles occur. (B) The equilibrium distribution of weights (Maximum 10 mV,

blue curves; minimum 0 mV, green curves) as functions of the delay in the high (light) and low (dark) gamma dynamical states. (C) Relationship between dynamical

state and number of polychronous groups found. Boxes show median and interquartile range (IQR); whiskers show additional 1.5× IQR or limits of distribution.

to select a random seed that caused the network to converge to an
unreported, but completely valid, dynamical regime.

3.4. Generalizing Reproduction
Creating a scientific model by necessity requires making
simplifying assumptions. In order to draw credible conclusions
on how the brain works from the results of simulating a
simplified model, it is therefore important to be vigilant that
it is not precisely those simplifying assumptions that cause the
reported phenomena. Moreover, when a mathematical model
is implemented in code for simulation, this introduces the
risk that the numerical approach chosen is not suitable to
evaluate the model dynamics with adequate accuracy. If the
numerics are not suitable, the reported phenomena may be
contaminated with misleading numerical artifacts. Even if the
simplifying assumptions are valid, and the numerics well-chosen,
the selection of parameters may give results that are a special
case, and not representative either of the model or of the targeted
physical system.

Obviously, it is generally not practicable to test the generality
of the results with respect to every aspect of the model. However,
it is certainly possible to analyze a network model to identify
conceptual, parameter and numeric choices that have a high
risk of being critical, and examine those with greater rigor
(see our recommendations in section 3.6.3). To demonstrate
this, we pinpointed a number of such choices during the
process outlined in the previous sections, and modified the
qualitative reproduction developed in section 3.3 accordingly to
test them. Each modification is quite simple, and either relaxes
an assumption (hidden or otherwise), shifts a parameter or alters
the numerics of the dynamic components of the network model.
On the basis of these generalizing reproductions of the original
model, we can then determine to what extent the originally
reported results are dependent on these. For all modifications, we

made sure that the network dynamics are similar to the original
model. The average network firing rate in the final 10 s is in
the range between 2 and 8 Hz (compared with 2–5 Hz of the
original). Raster plots, weight distributions, power spectra and
parameters can be found in the Supplementary Materials. The
results are summarized in Figure 8.

3.4.1. Stimulus
In the original network model, the neurons are stimulated
throughout the simulation by the unusual method of randomly
selecting one neuron in each millisecond step, and applying a
direct current of 20 pA to it for the duration of that step. We
replace this stimulation model with a more widely-used and
biologically plausible scenario, in which each neuron receives
an independent Poissonian spike train with synaptic weight of
10 mV and rate of 40 Hz, tuned such that the excitatory and
inhibitory rates in the final second of simulation are closely
matched to the original values (∼ 3 spks/s).

In comparison to the original results, this scenario yields
significantly different results in respect to the group statistics.
Although the statistics for the longest path remain similar to the
original results (data not shown), the number of found groups are
reduced by around 90% to a median of 291 with an IQR of 24 (see
Figure 8A Poisson Stimulus).

3.4.2. Plasticity Model
Izhikevich describes the plasticity in the original model as STDP
with a time constant of τ+ = τ− = 20 ms, A+ = 0.1 mV and
A− = −0.12 mV without dependence on the current strength
of the synapse, i.e., of the form described by Song et al. (2000),
amongst others. This form of additive STDP is known to yield
bimodally distributed synaptic strengths which does not fit well
to experimental observations. Clearly, an STDP rule resulting in
a unimodal distribution of weights would generate qualitatively
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FIGURE 8 | Sensitivity of number of groups found to various parameters.

Number of groups found for (A) the original group finding algorithm, (B) the

Python group finding algorithm. Note the different scales; the Python algorithm

find about twice as many groups (see section 2.3.2). Boxes show median and

interquartile range (IQR); whiskers show additional 1.5× IQR or limits of

distribution. Group statistics are measured over 100 realizations in the case for

bitwise reproduction and qualitative model in (A) and over ten realizations

otherwise. Colors indicate type of experiment: Bitwise reproduction (green),

qualitative reproduction (blue), altered connectivity (violet), altered plasticity

mechanism (yellow). The IQR of the number of found groups for the bitwise

reproduction are indicated by vertical dashed green lines; indicates

algorithm failure due to too many groups (memory consumption exploded).

different results, but this is well known and does not need to be
examined in this context. Instead, we turn our attention to several
assumptions and parameters, for which biological motivation is
not always easily identifiable:

1. In order to calculate the weight change the pre- and post-
synaptic activity is filtered with an exponential kernel using
the time constants stated above. In the default STDP synapses

in NEST, the LTP/LTD traces are increased by A+/A− leading
to an “all to all” matching between pre- and post-synaptic
spike pairs. The synapse model presented by Izhikevich (2006)
caps the traces to a maximum value of A+/A−, leading to a
“nearest neighbor” matching.

2. Synaptic weights are not updated directly after the occurrence
of pre- and post-synaptic spikes. Instead, weight changes are
accumulated in a separate buffer for one biological second. At
the end of each simulated second, weight changes are applied
to all plastic synapses simultaneously.

3. Before applying the buffered weight changes to the synaptic
strengths, the buffered values are multiplied with 0.9. This
reduced value is applied as an increment to the corresponding
synapse and also kept as a start value for the next second.
Although this mechanism lacks any biological counterpart, we
refer to it as the “eligibility trace” as it introduces a very long
time constant of 10 s to the model. The stated intention is to
have smoother development of the synaptic weights instead of
the rapid and volatile development in additive STDP (Gütig
et al., 2003).

4. Additionally to the weight update due to STDP, each synapse
is strengthened every second by a constant value of 0.01 mV.
The stated motivation is to reactivate and strengthen silent
neurons.

We relax these assumptions in the following ways:

1. We change the “nearest neighbor” matching to “all to all”
matching. Notably, the STDP windows for a single pre/post
pair look exactly the same in both cases. Interestingly, the
version with “all to all” matching finds maximally 11 groups
which underlines the sensitivity of the model to the exact
implementation of STDP (Figure 8A STDP window match).

2. We vary the duration of buffering the synaptic changes in
both directions. For a duration of 10 ms the simulation yields
considerably more groups (median: 11, 200, IQR: 910 see
Figure 8A Buffer length 10 ms). The model also seems to be
sensitive to larger buffering times, as the number of groups
exploded for an increased buffer duration (10 s) such that
a quantitative analysis was not possible: all runs crashed due
to memory limitations of our cluster (Figure 8A Buffer length
10 s).

3. We replace the multiplication with 0.9 with an exponential
decay and run the simulation for two extreme choices
for the time constant: 2 s and 1,000 s, translating to a
multiplicative factors of roughly 0.6 and 1.0. For the 2 s
version we find 27, 000 groups in median with a high variance
expressed in an IQR of 21, 600 groups (Figure 8A Eligibility
trace 2 s).
The 1, 000 s time constants yields 13, 500 groups with an IQR
of 11, 200 (Figure 8A Eligibility trace 1,000 s). In both cases the
network is exclusively in the high gamma state. In a further
experiment we disabled this eligibility trace completely. To
this end, we updated the weights with the full value of the
buffer after 1 s, and reset the buffered values to zero. This
experiment also yields significantly more groups (10, 000)
than the original model with an IQR of 2, 000 (Figure 8A No
eligibility trace).
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We conclude that the model results are rather sensitive to
this parameter, for which we can ascertain neither a plausible
biological motivation nor a reason why 0.9 would be a good
choice. Presumably this factor is needed to make the groups
more stable over time, which is one of the main findings of the
original manuscript.

4. We investigate the role of the constant additive value by
setting it to zero. This seems to be completely irrelevant as
the group statistics (median 2, 400 and IQR 1, 600) hardly
changes with respect to the original model (Figure 8A No
additive value). We criticize this parameter as unnecessary,
introducing additional complexity to the plasticity model
adding, to our understanding, no benefit.

3.4.3. Connectivity
The delays in the connections are highly structured: they are
evenly spread between 1 and 20 ms, i.e., exactly five outgoing
connections of each neuron have the delay 1 ms, exactly five
connections have the delay 2 ms, and so on. Izhikevich (2006)
argues that this very wide distribution is biologically motivated,
because connections between remote neurons, that have to
pass through white matter, can easily be so long. However,
this is incompatible with the connection probability of 0.1,
which suggests a population of neurons within the same cortical
microcircuit, and thus a distribution of delays up to, at most,
2 ms.

We relax the assumptions on the connectivity in two ways.
First, we simulate with a uniform distribution of delays, i.e., each
delay is randomly selected between 1 and 20 ms. Second, we
additionally restrict the upper limit to 15, 10, and 5 ms.

Unfortunately, the original group finding algorithm is not able
to analyze this data as this particular delay distribution is hard
wired in the C++ code, as is the integration timestep investigated
in the next section. It was therefore necessary to create a more
general version of this algorithm in Python, instantiating a NEST
simulation, thus allowing us to perform equivalent analysis on
all of our data. Due to errors in the original code which we did
not re-implement in Python, our version of the algorithm finds
around twice as many groups, including almost all (>99%) of
the groups found by the original algorithm. A description of the
Python implementation can be found in section 2.3.2, and we
provide an in-depth discussion of the errors and definition of
polychrony in section 3.5. If the original code had been designed
in a flexible way allowing for potential changes to the model
and its implementation, as suggested in our recommendations
in section 3.6.2, the time-consuming re-implementation of the
group finding algorithm would not have been necessary.

In the experiments mentioned above, we find only a weak
dependence of the group statistics on the delay distribution in
the range between 10 − 20 ms. In the cases of 20, 15, and
10 ms, the simulations yield 2, 200, 900, and 7, 000 groups in
median with IQRs of 700, 400, and 500 respectively (Figure 8B
delay 20 / 15 / 10 ms). In the case of 5 ms, the group
statistics exhibit an extremely high median number of 35, 000
with IQR of 1, 800 (Figure 8B delay 5 ms). In all cases the gamma
oscillations are lost, meaning (in Izhikevich’s interpretation) that

the network model stays “sleeping” and never “wakes up.” For
the simulation with 5 ms maximal delays, the network exhibits
strong synchronization around 27 Hz. We thus conclude that the
choice of delay range beyond that found within a local cortical
area is critical for the model behavior, and as such should be
clearly reported.

3.4.4. Neuron Integration and Resolution
The neuron model in the original version is integrated in 1 ms
steps using a form of forward Euler integration scheme:

v[i]+=0.5*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);

v[i]+=0.5*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);

u[i]+=a[i]*(0.2*v[i]-u[i]);

where v represents the membrane potential and u a membrane
recovery variable. This is a symplectic, or semi-implicit scheme,
i.e., the update of u is based on an already updated value for v.
We note several unusual features of this scheme that may result
in numeric artifacts. Firstly, the forward Euler integration is a
first order method, which, whilst computationally inexpensive, is
less accurate than higher order methods. Secondly, the choice of
1 ms as the integration time step is ten times longer than usual
in computational neuroscience models, and may give inaccurate
results on the single neuron level, especially in combination
with the first order integration scheme. Finally, the variable v is
integrated in two 0.5 ms steps whilst u is integrated in one 1 ms
step. On the network level, forcing spikes onto a 1 ms time grid
may result in artefactual synchrony (Hansel et al., 1998; Morrison
et al., 2007), which would in turn affect the STDP dynamics.

To consider the results of a simulation to be representative
of the dynamics of the underlying model, we would expect
them to show no qualitative changes if the model is re-run at a
higher resolution. However, the numerical integration used in
the original code is not sufficiently stable, as evidenced by the
membrane voltage frequently reaching values around 1, 000 mV
(see Figure 9A). Consequently, simply reducing the timestep to
0.1 ms may well change the single neuron dynamics, and, in
turn, the network dynamics. Therefore, to investigate whether the
1 ms timestep induces artefactual synchrony, we have to carefully
control for all the model features that are affected by the choice
of timestep.

We first adapt the neuron model to separate the numerical
instability issue from the locking of spikes to a 1 ms grid,
by introducing integration substeps, see also Trensch et al. (in
press) for an in-depth analysis of increasing the accuracy of
integration of the Izhikevich model by this method. Thus the
original configuration is simulated with 1 ms resolution and one
integration substep: (1.0, 1). We also examine a configuration in
which the numerics are integrated at a higher resolution using ten
0.1 ms substeps: (1.0, 10). For this configuration, if themembrane
potential crosses threshold in any substep, no further substeps
are carried out in that 1 ms timestep. The spike is emitted at the
end of the timestep, along with the corresponding update/reset
of the dynamic variables u and v. We call this the “locked”
configuration, as the dynamics is integrated with high resolution
but the spikes and associated neuron reset is locked to the lower
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FIGURE 9 | Comparison of the evolution of the membrane potential v (top) and the membrane recovery variable u (bottom) for three different configurations of the

adapted Izhikevich neuron. The original configuration is simulated with a 1 ms timestep (blue curves). The locked configuration performs the integration of the

dynamics with a 0.1 ms timestep, but spikes can only be emitted on the 1 ms grid (green curves). The high resolution configuration is simulated with a 0.1 ms timestep

(orange curves). Insets depict applied currents. Dashed black line depicts action potential threshold. (A,B) Constant input of 4 pA. (C,D) Two synchronous spikes of

maximal weight arriving at 50 ms and evoking an action potential. (E,F) One spike of maximal weight arriving at 50 ms which does not evoke an action potential.

resolution grid. As a comparison, we also investigate a “high
resolution” configuration, in which the dynamics integration
and the spike generation and reset occur on a 0.1 ms grid:
(0.1, 1).

As the synaptic interaction in the original is modeled as a
direct current for the duration of the 1 ms timestep in which it
arrives, simply decreasing the timestep for the high resolution
configuration would decrease the effect a spike has on the
postsynaptic neuron. To adjust the synaptic weights and plasticity
accordingly, we apply three criteria:

• Two synchronous incoming spikes of maximal weights elicit a
post synaptic spike (as defined in Izhikevich, 2006)
• The post synaptic potential (PSP) evoked by a spike with

maximal weight is conserved
• The STDP windows match

The adjusted parameters are summarized in Table 1, and the
single neuron dynamics for the three configurations is illustrated
in Figure 9. Unlike the original configuration, the high resolution
and locked configurations exhibit a stable integration with no
excessive peaks in the variables u and v when stimulated by
a constant input current (Figures 9A,B). The firing rates of
all three configurations are very close (see Table 1), but the

locked and high resolution configurations exhibit a coefficient
of variation two orders of magnitude lower than the original.
The high coefficient of variation can therefore be ascribed to the
numerical instability in the integration. All three configurations
fit to the firing scheme of regular spiking as described in
Izhikevich (2004).

The responses of the three configurations to spiking input
(Figures 9C–F) indicate that the first two criteria stated above
have been fulfilled (data not shown for third criterion), indicating
that the three configurations can be meaningfully compared in a
full network simulation. Note that the curves for the locked and
high resolution configurations are still distinguishable, because
the high resolution configuration can emit spikes on a 0.1 ms
grid whereas the locked configuration can only emit them on a
1 ms grid.

To remove synchronization artifacts in the full network
simulation of the high resolution configuration due to the
distribution of delays in multiples of 1ms, we draw the
delays for the excitatory-excitatory connections from a uniform
distribution between 1.0 and 20.0 ms with a resolution of 0.1 ms.
To allow the fairest comparison, for all configurations we use
the original input stimulus (one neuron made to fire randomly
selected to fire each millisecond by current injection of an input
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TABLE 1 | Comparison between the parameters, dynamics, and number of groups found for the original, locked, and high resolution neuron configurations.

Original Locked High resolution

PARAMETERS

Resolution 1.0 1.0 0.1

Integration steps 1 10 1

Delay distribution ∈ [1, 20] 1 ms steps ∈ [1, 20] 1 ms steps ∈ [1, 20] 0.1 ms steps

Initial synaptic weight 6 mV 6 mV 50 mV

Max synaptic weight 10 mV 10 mV 85 mV

LTP 0.1 0.1 0.85

LTD −0.12 −0.12 −1.02

Const add value 0.1 mV 0.1 mV 0.85 mV

SINGLE NEURON DYNAMICS (4pA CURRENT INPUT)

Firing rate 6.83 spks/s 7.10 spks/s 7.13 spks/s

CV 0.124 0.004 0.003

NETWORK DYNAMICS (LOW GAMMA)

Firing rate 3.28± 0.36 spks/s 2.73± 0.04 spks/s 2.84± 0.04 spks/s

CV 0.39± 0.04 0.43± 0.02 0.43± 0.01

Fano factor (1.0 ms bin) 2.21 2.29 1.89

Fano factor (0.5 ms bin) 12.20 12.34 2.91

Spectral peak ≈ 40 Hz ≈ 27 Hz ≈ 25 Hz

GROUPS FOUND

4, 300± 2, 900 13, 000± 1, 100 151± 25

current of twice maximal synaptic weight), as we previously
showed in section 3.4.1 that a Poissonian stimulus reduces the
number of groups found by around 90%. The network activity
for the full network simulations of the locked and high resolution
exhibits average firing rates that are very close to each other
and slightly lower than the original; the coefficients of variation
are comparable across all three configurations (around 3 spks/s
and 0.4, respectively, see Table 1). The spectral peak is found
at around 40 Hz for the original, but around 25 Hz for the
locked and high resolution configurations.We thus conclude that
the gamma band oscillation is an artifact of the low resolution
of the integration step. In terms of synchrony, the Fano factor
measured with a binsize of 1.0 ms yields slightly higher values
for the original and locked configurations (2.21, 2.29) than for
the high resolution configuration (1.89). However, with a bin size
of 0.5 ms the synchrony induced by the 1.0 ms spike locking
is clearly visible. The original and locked configurations have
a much increased Fano factor of around 12, whereas the high
resolution network simulation increases only slightly to around 3.

Applying our Python reproduction of the polychronous
group finding algorithm to the network results of all three
configurations yields 4,300 (IQR 2,900) groups for the original,
13, 000 (IQR 1,100) groups for the locked, and 151 (IQR 25)
groups for the high resolution configuration. These results are
indicated by the labels Improved integration and Resolution
0.1 ms in Figure 8B.

Thus, in summary, the key difference between the original and
the locked configuration is that the latter integrates the dynamics
without the numerical instabilities of the former. Resolving this
issue causes an increase in the number of groups by a factor of

three. The difference between the locked and the high resolution
simulation is that spikes and delays occur on a 0.1 ms grid rather
than a 1 ms grid. This decreases the number of groups found by
a factor of 90 (and by a factor of 30 from the original).

We therefore conclude that the number of groups found is
strongly influenced by the choice of a 1 ms timestep and delay
resolution, although the network dynamics, in terms of firing
rate and coefficient of variation, is not. In particular, the original
study significantly overstates the number of groups to be found
in such networks, due to the artificial synchrony induced by
these implementational (rather than conceptional) choices. Using
standard numerics or testing the robustness of the results for
a higher simulation precision as recommended in section 3.6.3
could have prevented this misinterpretation in the original study.

3.5. Definition of Polychrony
In section 3.4, we examined the sensitivity of polychronous group
generation to parameter settings and model assumptions, given
comparable network dynamics. We now turn our attention to the
group finding algorithm itself. As stated in the previous section,
it was necessary to re-implement the original analysis script in
order to investigate the effects of alternative choices of delay
distribution and integration timestep.

In this process we found several aspects of the original
algorithm, briefly outlined in section 2.3.2, that warrant further
discussion and investigation. First, we note that the identification
of a polychronous group is based on an analysis of the
connectivity, rather than the activity. The original manuscript
reports that ∼ 90% of the groups which are found to be stable
over 24 h of simulation time can also be found to be active in the
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FIGURE 10 | Number of groups identified by the original algorithm as a

function of the proportion of excitatory synapses that are strong. Realizations

of the bitwise identical reproduction; black dots. Surrogate data with

connections randomly selected to be strong (excitatory-excitatory synapses

only—all excitatory-inhibitory synapses are strong); blue curve. Surrogate data

with connections randomly selected to be strong (all excitatory); green curve.

spiking activity. However, this part of the analysis is not part of
the available online materials, and so we were not able to confirm
this relationship.

Second, we found three major errors in the C++
implementation of the algorithm:

• During the simulation phase, the spike delivery buffer often
overflows, leading to a spike being delivered at the wrong time.
Although thismainly happens in large groups, we consider this
to be a critical error as exact spike timings are necessary to
reliably activate groups.
• A group is only valid if the maximum layer, the longest chain

of neurons within the group, is greater than, or equal to seven.
However, the calculation of layers depends on an arbitrary
sorting of neuron ids and also on the time of activation of those
neurons. This leads to errors in which neurons are assigned to
the wrong layer. If this results in a sub-threshold number of
layers, the group will be considered invalid and not counted.
• The maximal duration of the simulation is set to 1 ms after the

last spike delivery, however two simultaneous spike arrivals
lead to a postsynaptic spike generation of up to 4 ms later. This
last spike is thus overlooked in the original algorithm. This is
a crucial error, as missing the last spike can result in a reduced
number of layers identified for a group, and therefore to the
group being considered invalid (i.e., less than seven layers).

In our re-implementation of the algorithm we fixed these errors;
as a result, our algorithm finds around twice as many groups,
but including more than 99% of those found by the original
algorithm.

Thirdly, we note that the motivation for many of the
conditions underlying the definition of a polychronous group
is unclear; for example, the exclusion of weak synapses from
the analysis, or the classification of groups that are activated
by only one or two neurons as invalid. In particular, the
analysis algorithm sets the seemingly arbitrary conditions that
a polychronous group has to consist of at least six neurons

and seven layers. The choice of the number of layers has a
profound effect on the number of groups found. Reducing it to
five increases the number of groups found in the original model
from 4, 305 to 27, 116, whereas increasing it to ten decreases the
number to 608. As no scientific justification is given for the choice
of seven, we speculate that it was chosen for aesthetic reasons. In
any case, the strong dependence of the results on the choice of
thresholding parameter indicate that it should be explicitly stated
as a model critical parameter, even though it is not a parameter of
the network model.

To get an understanding of how many groups are found
with respect to those expected from a network with random
connectivity, we performed a surrogate analysis. The original
C++ code provides a similar functionality, by shuffling the
excitatory-excitatory connections. However, it is not clear why
the number of groups found with this shuffling defines the
null hypothesis, given that the excitatory-inhibitory connections
also adapt during the course of the simulation (and almost
all become strong). Regarding the strength of these as a
given introduces a bias. Moreover, the functionality does not
allow the proportion of strong synapses to be considered as
an independent variable. We therefore developed a surrogate
analysis in which excitatory connections (either just excitatory-
excitatory, or all excitatory) are randomly drawn with a
given probability of being strong. The results are shown in
Figure 10.

In line with the original findings, networks with randomly
selected strong excitatory-excitatory synapses exhibit fewer
groups (using the original group finding algorithm) than those
where the strong synapses develop due to network activity.
The proportion of random strong synapses must be increased
to around ∼ 50% in order to find as many groups as
in the “grown” networks, where the proportion of strong
synapses is around ∼ 45%. Note that in this setting, 20% of
synapses are automatically strong, being the excitatory-inhibitory
connections. However, if the strong synapses are randomly
selected from all excitatory synapses, the opposite tendency is
found: only around ∼ 40% strong synapses are required for the
group finding algorithm to identify as many groups as in the
grown network. Hence, the algorithm finds either more or fewer
groups in grown networks than random networks, depending on
what assumption is used to generate the latter.

We therefore conclude that the provided analysis script
is an additional factor undermining the reproducibility of
the original study. It contains coding errors that distort
the results, making it likely that a researcher trying to re-
implement the analysis would generate substantially different
numbers of groups, even if the network model had been
reproduced identically. These errors could have been avoided,
or at least made more visible, by clean code features such
as encapsulation and commenting, as discussed in section
3.2.2 and summarized in section 3.6.2. Moreover, there is
an unstated strong dependence on an apparently arbitrary
threshold parameter, and the null hypothesis from which
positive results are to be distinguished is not well motivated.
For future research into polychronous groups, we would
therefore suggest following a different analytic approach. Some
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alternative methods (none of which were available at the time
of publication of the original study) are discussed in section
4.3.

3.6. Recommendations
In carrying out the steps outlined in sections 2.2–3.5, we
identified which features of the code and the methodology of the
original study support reproducing the results, and which hinder
it. From these we derive a series of recommendations that, if
followed, would not only increase the reproducibility of a given
study, but also its scientific credibility, by reducing the risk that
results are dependent on implementational details.

These can be roughly divided into three categories, although
of course there is overlap. On the most basic level, it is
important to make the code available and executable. This
includes topics such as sharing and providing an installation
guide, as well as information about the versions used of
model code and any dependencies. On the next level, we
provide recommendations on how to make it comprehensible
and testable. This covers topics from low-level artifacts like
commenting and naming of parameters and functions, to more
abstract issues such as appropriate organization of the code
and unit tests for components. Finally, our work revealed
that computational models may easily contain undesirable
implementation dependencies. Whereas it is not feasible to
comprehensively test for all of them, we emphasize the
importance of using existing standards as much as possible, both
for accuracy and comprehensibility. In addition, we uncovered
an alternative dynamical mode of the original network, with a
lower peak in the power spectrum, which occurs in a minority
of simulation runs. This illustrates the importance of carrying
out multiple runs of models to uncover any dependency on the
random seed used.

3.6.1. Make Code Available and Executable

Recommendation: share the code
We would certainly not have been able to reproduce the
simulation results either identically or qualitatively if the author
had not provided the complete source. This applies not only to
the network model but also to the analysis of the results. As there
are many options for sharing the code in a sustainable fashion,
as listed below, “available from the author on request” should not
be considered an adequate fulfillment of this recommendation.
Moreover, the code should be accessible for the reviewers when
an article is submitted to a journal, and not deferred until
publication, so that the reviewers can form an opinion of its
reproducibility.

ModelDB. ModelDB3 is a database for computational and
conceptual models in neuroscience. One can choose to share the
code on ModelDB itself or as a weblink to the code. ModelDB
provides a direct link between publication and source code of the
model. Additionally, the database can be searched by keywords,
for example for specific neuron models, types of plasticity or
brain regions. Since a model can even be entered into ModelDB

3https://senselab.med.yale.edu/modeldb/

as a link to another hosting platform, there is really no reason not
to make an entry.

Zenodo. Zenodo4 makes it possible to assign a DOI to a certain
version of the code. The code version will also be archived on the
CERN cloud infrastructure. The model code can be stored in a
github repository and then linked and archived via Zenodo.

GitHub, GitLab, Bitbucket. Web-based hosting services such
as GitHub, GitLab, and Bitbucket5,6,7 are mainly based on
git, a standard and widely used tool in collaborative software
development. The advantage of sharing model code through git
is that it facilitates opening up the code to the community.

Open Source Brain. The Open Source Brain platform is a web
resource for publishing and sharing models in the field of
computational neuroscience with a strong focus on open source
technologies. The submitted models can be visualized and their
parameter spaces and dynamics can be explored in browser-based
simulations (Gleeson et al., 2018).

Collaboratory. The collaboratory is a web portal designed within
the Human Brain Project intended to improve the quality of
collaboration between many possibly international parties (Senk
et al., 2017). It allows scientists to share data, collaborate on
code and re-use models and methods, and enables tracking and
crediting researchers for their contributions.

Recommendation: provide an installation guide
The single stand-alone C++ program downloaded for this study
was easy to install. However, more complicated set-ups with
dependencies on other applications (e.g., simulation or analysis
tools) require more work. An installation guide takes (most of)
the guesswork out of it. An installation guide should not only
include the exact steps and commands to install the software, but
should also name the platform and operating system on which
the authors tested the installation steps. Additionally, it should
mention a complete list of software dependencies.

Recommendation: use a version control system
In the current investigation, the downloaded script did not match
the paper, and the C++ and MATLAB versions did not match
each other. Therefore it was not clear which version of the code
had been used to generate the reported results. More generally,
models are often developed further after being published, which
leads to increasing divergence between the description in the
manuscript and the current version of the model. A version
control system such as git, SVN or Mercurial helps to keep
different versions accessible, and enables users and scientists to
understand the changes to the implementation of a model.

Recommendation: provide provenance tracking
To reproduce the study, we used specific versions of NEST and
various Python packages. However, sometimes different versions

4https://zenodo.org/
5https://github.com/
6https://gitlab.com/
7https://bitbucket.org
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of software applications vary significantly in their performance
(Gronenschild et al., 2012) or just have non-compatible APIs. The
manuscript and the installation guide should be specific about
which versions of software were used to generate the results.

3.6.2. Make Code Comprehensible and Testable

Recommendation: modularize the code
Separating simulation and data analysis makes it possible to
use the two independently. In this study, it allowed us to
apply a new analysis to the original simulation results and,
vice versa, the original analysis code to our implementation of
the model. Without the possibility to apply exactly the same
analysis to different implementations, we would not have been
able to discover the causes of the disparities between the original
network model and our initial attempts to reproduce it.

Recommendation: encapsulate the code
Encapsulation gathers data and the methods that operate on it
into cohesive units. This is a similar principle to modularization.
Using methods with meaningful names rather than operating
directly on data makes the code easier to comprehend; compare:
I[i]+=s[firings[k][1]][delays[firings[k][1]][t-firings[k][0][j]];

and
deliver_spike(post_neuron,weight(pre_neuron, post_neuron))

Further, it makes the code less error prone, as complex
access/operation routines are defined in one place and
parameterized, rather than repeated throughout the code.
Finally, it facilitates testing, see below.

Recommendation: write flexible code
Code flexibility is a precondition for efficient testing of
model robustness toward changes on both the implementation
level (e.g., smaller integration time step) and the modeling
level (e.g., different parameter values). Testing the generalized
reproducibility of the model (see section 3.4) was a tedious and
time-consuming process due to several model features being
hardwired into the simulation and analysis code. Routines should
be written as general as possible to avoid these problems; using
standard tools (see next section) will tend to mitigate this issue
automatically.

Recommendation: provide tests
Reproducing the synapse model was challenging, because there
were discrepancies between our initial model and the original
and handling specific combinations of pre- and post-synaptic
spikes that were not defined in the original publication. To avoid
this situation, novel network elements such as neuron, synapse
or stimulus models should be accompanied by tests that define
the output of the model for representative or critical inputs. This
documents the behavior of the model, especially for border cases,
in much greater detail than it would be reasonable to include in a
text description.

Recommendation: comment the code
Using comments substantially increases the comprehensibility of
the code, and thus the ability of a researcher to re-implement it in
a different framework. Comments should explain what complex

code sections are doing, but often straightforward code sections
are greatly enhanced by a comment explaining why they are
performing their operations.

Recommendation: parameterize meaningfully and

consistently
Parameters should be given meaningful names such that they
can be understood when they occur in an expression. Parameter
definitions should be gathered in parameter files, or at the
beginning of a stand-alone script, rather than spread throughout.
Raw numbers (other than 0 and 1) should not appear in
expressions, as this reduces the comprehensibility of the code,
and they are easy to overlook as parameters that influence the
behavior of the model.

Recommendation: use parameter files
Models often rely on a set of parameters which should be
either declared in the beginning of the source code, or, if
there are more than a few parameters, in a separate file. To
aid comprehensibility, if there is more than one experiment
conducted with one model there should be a dedicated parameter
file for each experiment, with a corresponding human-readable
table as proposed by Nordlie et al. (2009).

Recommendation: use tables to communicate parameters
It is easy to overlook a parameter when writing a text description
of a network model. Use of structured tables, such as those
proposed by Nordlie et al. (2009) acts as a reminder to record
all the model parameters and their values, and present them in a
comprehensible and easily referable fashion for the reader.

3.6.3. Reduce Risk of Implementation Dependencies

Recommendation: use standard tools
Tools that are created and maintained by a group of developers
over a period of time and have a substantial user base will
generally have more consistently applied coding standards,
documentation and tests than a homebrewed single-purpose
application. All these aspects increase the comprehensibility
of the code and reduce the risk that it contains numeric or
algorithmic errors. Given the current excellent availability of
open source tools for simulation and data analysis, using standard
tools should be preferred over homebrew as far as possible.
Novel network elements (e.g., neuron model) or analyses should
ideally be handled by contributing features to open source
tools, or at least formating them as compatible patches. The
use of homebrewed simulation or analysis tools should be
clearly motivated, and such code should comply with the
recommendations set out here.

Recommendation: use standard numerics
Using standard numerics lowers the risk of introducing rounding
or other numeric errors and alsomakes it easier to understand the
code.

Recommendation: perform multiple realizations
A robust model will generate statistically equivalent results for
different choices of the random seed. Variable behavior should be
reported; this is not only relevant for a reader’s ability to evaluate
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the explanatory power of the model, it is also important for
reproducibility to be aware that the model can yield substantially
different results.

Recommendation: test model robustness
Proofs of model robustness with regard to implementation
details, parameter values, and higher-level modeling choices
boost the quality and credibility of the presented scientific
results. A basic requirement of model robustness is that an
outcome of a simulation that is reported as model behavior
should not change qualitatively if the simulation is repeated
with higher precision. In case of the model that we investigate
here, increasing the simulation resolution significantly affects the
number of polychronous groups found (see section 3.4.4), and
hence, renders the main result of the study questionable. Such
checks should always be carried out if there is a risk that the
results might be distorted by artificial synchrony or numeric
instabilities.

4. DISCUSSION

In this article, we have demonstrated that even if model code
is available and can be executed on a local machine with only
minimal modifications (section 3.1), this is only a first step
toward enabling reproduction of a study. By taking the publicly
available model code of a well-known study (Izhikevich, 2006)
and attempting to reproduce it in NEST, we uncovered a variety
of barriers to reproducibility (sections 3.2, 3.3). From each of
these barriers, we derive a recommendation that would lower or
remove it.

These recommendations are explained in detail in
the previous section, and for convenience we have
gathered them into a checklist, which is available in the
Supplementary Material. This checklist can be used by
researchers to evaluate and improve the reproducibility of their
neuronal network model before submitting an article. Similarly,
a reviewer can use it to rapidly assess the likely reproducibility of
a submitted model, without having to expend considerable time
trying to actually reproduce it.

Beyond the practical steps that can be taken to improve the
quality of model code and related artifacts, in the course of
our study we have identified several unusual assumptions and
numerics choices in the original simulation and analysis code,
and investigated to what extent the reported model behavior
depends on them (sections 3.4, 3.5).

With regards to the model code, in the case of the
implementation of background noise (random selection in each
millisecond of a neuron to fire), the non-standard features of
the plasticity model, and the extremely long range of delays,
making a choice that was better biologically founded (or at
least removed complexity that did not have a clear biological
foundation) resulted in a reduction or increase in the number
of groups found by an order of magnitude. In the case of
the simulation resolution, despite careful matching of network
and single neuron dynamics, in a network running at a higher
resolution of 0.1 ms, we found a massive reduction of groups
compared to either the original network, or one with 0.1 ms

integration but spikes locked to a 1.0 ms grid. This last finding
is of particular concern, as it demonstrates that the majority of
the polychronous groups reported in the original study can be
attributed to artificial synchrony brought about by an unsuitable
choice of numerics (low resolution).

Similarly, with regards to the analysis code, we discovered a
series of coding errors that distorted the findings, and strong
dependencies on both a thresholding parameter (lacking a
biological motivation) and the assumptions defining the null
hypothesis.

Thus we conclude that the main reported results of the
original study generalize very poorly. The number of groups
found varies substantially with each aspect we investigated, with
the exception of the additive factor in the plasticity model, which
seems to have no effect. We argue that had the dependence of
the findings on a very specific configuration of modeling and
implementation choices been apparent, the original study would
not have been as influential as it has been.

Clearly, it is not possible to check for all parameter and
implementation choices, and it is reasonable to assume that the
authors of the current study have more computational resources
at their disposal for such analyses than were available to the
author of the original. This notwithstanding, we note that it is the
obligation of authors to evaluate their choices and assumptions
critically, and to be transparent about which ones are necessary
for the reported results. Analogously, it is the obligation of
reviewers to use their expertise to identify potential dependencies
and request additional simulations to uncover them.

As discussed in the next section, following the set of
recommendations laid out in section 3.6 would not only increase
the ability of researchers to independently verify the findings
of neuronal network studies, but would decrease the likelihood
that such findings are subject to highly specific parameter and
implementation choices.

4.1. Relationship of the Reproducibility
Guideline to Scientific Quality
The reproducibility guideline is divided into three categories. The
first category contains recommendations that allow researchers
to reproduce identical results, which includes also the case
where a researcher wants to rerun a simulation at a later
point in time. The second category of recommendations
facilitate qualitative reproduction by others, primarily through
effective communication of the model code and parameters.
The recommendations of the third category principally address
model robustness. All three categories are important for the
quality and credibility of the presented scientific results, but on
different levels. By following the recommendations of the first
category, a researcher can be transparent about exactly what
experiments were carried out using which software. Following
the second category provides evidence to other researchers
that the study was conducted in a structured way. Moreover,
a study that follows these recommendations invites other
researchers to investigate the model independently. A study that
follows the third category of recommendations demonstrates
the researchers’ ability to critically assess their own work,
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their willingness to disclose limitations, and their openness to
potential refutation of the results by other researchers in future
studies.

4.2. Limitations of the Reproducibility
Guideline
The reproducibility guideline developed in the course of this
study is not intended as a definitive document, and the
authors welcome suggestions for further recommendations
to increase the currently poor record of reproducibility
in neuronal network modeling studies. In particular, our
guideline is aimed at the reproducibility of networks of
point (or few-compartment) neuron models. Where as much
of it is likely applicable to networks of biophysical neuron
models with thousands of compartments (commenting code
is never a bad idea), some recommendations are likely to be
inappropriate (e.g., using tables to communicate parameters)
and some important aspects that boost reproducibility may
well have been overlooked entirely. The adaptation of the
guideline to such models lies outside the expertise of the
authors. We suspect that domain specific languages such as
NEUROML (Gleeson et al., 2018) have an important role to
play here, as they provide unambiguous, standardized, and
machine-readable representations of complex neurons and their
connectivity.

4.3. Alternative Methods for Detecting
Polychronous Groups
Izhikevich (2006) introduces a method to find polychonous
groups in the connectivity data of the presented spiking neural
network model. Although the concept is fruitful in this very
specific case, it does not generalize to other means. More general
methods (e.g., Torre et al., 2013; Quaglio et al., 2017; Russo and
Durstewitz, 2017) have recently been developed for the detection
of repeated precise spike sequences in electrophysiological
recordings. Such methods do not use any assumption of the
underlying connectivity and could be applied to the simulated
spiking activity in order to find active patterns without the prior
detection of potential polychronous groups in the connection
profile. With these methods the same kind of analysis could
be performed as in Izhikevich (2006) with the advantageous
possibility of comparing the results to experimental data in order
to confirm the validity of the model.

5. CONCLUSION AND OUTLOOK

Based on our work to reproduce the network presented by
Izhikevich (2006), we conclude that the more points in the
guideline are adhered to, the easier it will be to reproduce
a study of a network of spiking neurons, and the higher
quality the study will be. Whereas journals are beginning
to take issues such as availability of model code more
seriously than before, the current study clearly demonstrates
that this is a necessary but not sufficient condition for
reproducibility. We propose that the editorial boards of journals
in computational neuroscience go considerably further, and
provide their reviewers with clearly defined reproducibility
criteria, for which we provide a draft. Only in this way can we
achieve a substantial change in attitude and approach in our
field.
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