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As Alzheimer’s disease (AD) is featured with degeneration and irreversibility, the
diagnosis of AD at early stage is important. In recent years, some researchers have tried
to apply neural network (NN) to classify AD patients from healthy controls (HC) based on
functional MRI (fMRI) data. But most study focus on a single NN and the classification
accuracy was not high. Therefore, this paper used the random neural network cluster
which was composed of multiple NNs to improve classification performance. Sixty one
subjects (25 AD and 36 HC) were acquired from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. This method not only could be used in the classification, but also
could be used for feature selection. Firstly, we chose Elman NN from five types of NNs
as the optimal base classifier of random neural network cluster based on the results
of feature selection, and the accuracies of the random Elman neural network cluster
could reach to 92.31% which was the highest and stable. Then we used the random
Elman neural network cluster to select significant features and these features could be
used to find out the abnormal regions. Finally, we found out 23 abnormal regions such
as the precentral gyrus, the frontal gyrus and supplementary motor area. These results
fully show that the random neural network cluster is worthwhile and meaningful for the
diagnosis of AD.

Keywords: random neural network cluster, fMRI, classification, Alzheimer’s disease, functional connectivity

INTRODUCTION

Alzheimer’s disease (AD) is degenerative and irreversible which results from the cognitive decline.
The progress of AD increases with age and the disease easily triggers the other psychiatric diseases,
and eventually causing dementia. In 2006, the number of AD patients is 26.6 million all around
the world and the number would be quadruple by 2050. Therefore, it is meaningful for clinician
to track its progression and diagnose the disease. Currently, there have been many different
neuroimaging techniques which can be applied to diagnose AD, such as ElectroEncephaloGram
(EEG) (Engels et al., 2015), Single Photon Emission Computed Tomography (SPECT) (Prosser
et al., 2015), Positron Emission Tomography (PET) (Pagani et al., 2017), Magnetoencephalographic
(MEG) (Engels et al., 2016), and functional magnetic resonance imaging (fMRI) (Griffanti et al.,
2015). Among these techniques, fMRI is widely used in the diagnosis of AD, because it adopts
a non-invasive way and could be used to find the differences of brain regions between AD and
healthy controls (HC) (Challis et al., 2015).

Machine learning is a method of pattern recognition and has been used for the study of AD in
recent years (Moradi et al., 2015; Khazaee et al., 2016). Among many machine learning methods,
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artificial neural network (ANN) is a useful classification method
which evolves from human brain (Er et al., 2016). Several
previous studies showed that neural network (NN) was able to
be applied to diagnose neurological disease. Suk et al. (2016)
proposed a method that combined deep learning and state-space
model to classify Mild Cognitive Impairment (MCI) patients
from HC, and the accuracy was 72.58%. Gao et al. (2017)
employed an advanced convolution neural network (CNN) with
2D and 3D to diagnose AD, and the average accuracy reached
to 87.6%. Ortiz et al. (2016) used deep learning architectures to
classify AD patients from HC, and the accuracy approximately
reached to 90%. Ortiz et al. (2013) used Learning Vector
Quantization (LVQ) algorithm to classify AD patients from HC,
and the accuracy was close to 90%. Luo et al. (2017) applied
CNN to classify AD patients from HC, and the sensitivity and
specificity of classification was 1 and 0.93 respectively. Suk et al.
(2014) used deep learning to classify AD patients from HC, and
the accuracy was close to 93.35%.

In existing studies, a single NN is often used to classify
patients with neurological diseases and HC, and the accuracy
of classification is considerable which indicates that NN
is a powerful classification model (Hirschauer et al., 2015;
Anthimopoulos et al., 2016). As the features of neuroimaging data
are characterized by high dimension, significant information of
original variables would be lost in the process of dimensionality
reduction in traditional methods such as principal component
analysis, local linear embedding and linear discriminate analysis
(Mattioni and Jurs, 2003; McKeown et al., 2007; Mannfolk et al.,
2010). In this paper, the method of the random neural network
cluster is proposed to classify AD from HC. This method not
only could be used in the classification, but also could be used
for feature selection. The procedure of this method is as follows.
Firstly, we chose Elman NN as the optimal base classifier from five
types of neural networks [Back Propagation (BP) NN, Elman NN,
PNN, Learning Vector Quantization (LVQ) NN and Competitive
NN] based on the results of feature selection, and the accuracies
of the random Elman neural network cluster could reach to
92.31% which is the highest and stable. Then we used the random
Elman neural network cluster to select significant features and
these features could be used to find out the abnormal regions.
Finally, we found out 23 abnormal regions, such as the precentral
gyrus, the frontal gyrus and supplementary motor area. These
results fully show that the random neural network cluster is
worthwhile and meaningful for the diagnosis of AD.

MATERIALS AND METHODS

Subjects
The experimental data was collected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1 dataset which includes
a variety of neuroimaging data. The ADNI study was approved
by Institutional Review Board (IRB) of each participating site.
All ADNI subjects together with their legal representatives should
have written informed consent before collecting clinical, genetic

1http://adni.loni.usc.edu/

and imaging data. The following two criteria need to meet when
selecting data. One criterion is that the selected data should be
resting-state fMRI data. Another criterion is that the selected data
should have mini-mental state examination (MMSE) and clinical
dementia rating (CDR) scores, and this criterion ensures that the
selected data is homologous. Finally, 61 subjects were selected
which consisted of 25 AD patients and 36 HC.

Data Collection and Preprocessing
Scanning images were acquired on a Philips Medical Systems
3 Tesla MRI scanner. Acquisition parameters included: pulse
sequence = GR, TR = 3,000 ms, TE = 30 ms, matrix = 64∗64, slice
thickness = 3.3 mm, slice number = 48, flip angle = 80◦.

To decrease the influence of signal-to-noise ratio of the
fMRI images, the selected data should be preprocessed. The
data was preprocessed based on the Data Processing Assistant
for Resting-State fMRI (DPARSF) software (Chao-Gan and
Yu-Feng, 2010; Wang et al., 2013). The process of the data
preprocessing included: converting DICOM format into NIFTI
format; removing first 10 time points; slicing timing (Sarraf et al.,
2016); realigning (Jenkinson et al., 2002); normalizating images
into the echo planar imaging (EPI) template (Misaki et al., 2010);
temporal smoothing; removing the effect of low-level (<0.01 HZ)
and high-level (>0.08 HZ) noise by a high-pass temporal filtering
(Challis et al., 2015); removing covariates such as the whole brain
signal and cerebrospinal fluid signal.

Functional Connectivity of Brain
After the preprocessing steps, the analysis of the functional
connectivity of brain was followed. In this paper, we chose
functional connectivity as the sample feature. The extraction
of the functional connectivity is as follows. Firstly, the images
of brain were divided into 90 regions defined by Automated
Anatomical Labeling (AAL) brain atlas (Rolls et al., 2015).
Secondly, the time series of each region were extracted. Thirdly,
the Pearson correlation coefficient between two separated brain
regions could be defined as the functional connectivity (Friston
et al., 1993). Finally, 4,005 (90 × 89/2) functional connectivity of
each subject were taken as their features.

The Random Neural Network Cluster
The 4,005 functional connectivity belongs to the high-
dimensional feature which causes the problems of computation
difficulty and dimensions of disaster. Moreover, the high-
dimensional features are likely to result in numerous redundant
and irrelevant features which may decrease the classification
performance. Therefore, the irrelevant features are needed to be
removed by feature selection (Azar and Hassanien, 2015).

There are many methods of feature selection, such as
principal component analysis, local linear embedding and linear
discriminate analysis. However, in these methods, the process of
selecting features may cause the loss of the original information,
and the classification performance may be unsatisfactory (Zhou
et al., 2015; Jolliffe and Cadima, 2016; Alam and Kwon, 2017).

To solve the problem above, this paper proposes the random
neural network cluster by randomly selecting samples and
features. The random neural network cluster could be used
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to classify AD patients from HC and select features. In
addition, the new method could achieve the purpose of reducing
dimensionality, avoid losing significant information and improve
classification performance.

The Design and Classification Accuracy
of the Random Neural Network Cluster
The basic thought of the random neural network cluster is
ensemble learning whose basic classifier is neural network. The
detailed process of establishing the random neural network
cluster is as follows. Firstly, the sample dataset D is randomly
divided into a training set N1 and a test set N2, where
D = N1 + N2. The real label of HC and AD is +1 and −1
respectively. Secondly, we randomly select n samples from the
training set and m features from the 4,005 features. Thirdly, the
selected samples and features are used to establish a single NN
and the process of the second and third step is repeated for k
times. Thus, k NNs are obtained which construct the random
neural network cluster. It can be seen from this process that the
method and the conventional process are essentially not the same
in essence. Figure 1 shows the formation of the random neural
network cluster.

When a new sample enters the random neural network cluster,
we could obtain k class labels from kNNs and the majority of class
label is made as the predicted label of the new sample. Similarly,
we could get the label of each sample in the test set N2. Then the
predicted label is compared with the real label to judge whether
they are consistent, and we assume C as the number of consistent
situations. The accuracy of the random neural network cluster
equals to C/N2.

Extracting Features From the Random
Neural Network Cluster
As the features are randomly selected, the NNs constructed by
these features have different characteristics. In this paper, the
accuracy of each NN is used to evaluate the significance of
selected features. The features that make significant contributions
to the accuracy of the NN are called the “significant features”. The
process of extracting significant features is as follows.

Firstly, the test samples are used to obtain the accuracy of each
NN in the random neural network cluster. If the accuracy of a
NN is high, the corresponding features are significant. Next, the
features in each NN with high accuracy are extracted to form a
feature matrix. Finally, we count the frequency of each feature in
the feature matrix, and extract the features with high frequency
which are called as “significant features.” Figure 2 shows the
process of selecting “significant features.” The significant features
tremendously contribute to the accuracy of a NN, thus they also
make great contributions to the accuracy of the random neural
network cluster. In this paper, we use the significant features to
find the difference between AD patients and HC.

The Abnormal Brain Regions
As mentioned above, the significant features make great
contributions to the accuracy of the random neural network
cluster, thus we could find the difference between AD and HC

FIGURE 1 | The formation of the random neural network cluster.

FIGURE 2 | The flow of significant feature extraction.

through these significant features. In this paper, the significant
features are regarded as the abnormal functional connectivity. As
the functional connectivity is defined as the relationship of two
brain regions, the extracted significant features could be used to
find the abnormal brain regions between AD and HC. In order
to estimate the abnormal degree of a brain region, the number
of features related to a certain region is considered as the weight.
When there is no functional connectivity related to a certain brain
region, the weight of the region is 0. When the weight is greater,
the abnormal degree of the brain region is higher.

Experiment Design
The process of the experiment involves six steps in this paper.

Step 1. Building the random neural network cluster. Firstly, 61
subjects are divided into a training set and a test set according
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to the proportion of 8:2. Thus, the number of training samples
and test samples is 48 and 13 respectively. Then, 45 subjects are
randomly selected from 48 training samples and 120 features are
randomly selected from 4,005 features to build a NN. Similarly,
we build 1,000 NNs to construct the random neural network
cluster. The result of the random neural network cluster is
calculated by using neural network toolbox.

Step 2. Selecting significant NNs. We select the NNs whose
accuracy is >0.6 from the 1,000 NNs and call these NNs as
significant NNs.

Step 3. Selecting significant features. The features
corresponding to the significant NNs form the feature matrix.
Then we count the frequency of each feature, and sort the
features with a descending order. Finally, we retain the first 240
features which are regarded as the original significant features.

Step 4. Determining the optimal number of the significant
features. We change the number of original significant features
from 140 to 240 features with a step of 10 as the new significant
features, thus there are 11 types of numbers of new significant
features. Then we select 120 features from the new significant
features to construct a NN. We select 120 features from the
original significant features, and change the number of significant
features from 140 to 240 features with a step of 10. Thus, we could
obtain 11 random neural network clusters. The number of the
significant features corresponding to the random neural network
cluster with highest accuracy is the optimal number.

Step 5. We repeat the step1-step 4 by using five types of NNs.
They are BP NN, Elman NN, PNN, LVQ NN, and Competitive
NN. Then we choose one of them as the best base classifier who
has the highest accuracy in step 4.

Step 6. Finding abnormal brain regions through the significant
features in step 4 based on the best base classifier.

RESULTS

The Demographic Information of
Participants
In this study, the selected 61 subjects include 25 AD patients and
36 HC. The gender and age difference between the AD group and
HC group data are examined by two-sample t-test and chi-square
test respectively. The result is shown in Table 1. It is referred that
the two groups have no statistical significance in the gender and
the age.

Classification Results
In this study, five different types of NNs are applied to construct
five different types of random neural network clusters. The

TABLE 1 | The information of participants.

Variables (Mean ± SD) AD (n = 25) HC (n = 36) P-value

Gender(male/female) 12/13 20/16 0.784

Age 74.59 ± 7.03 77.00 ± 6.61 0.177

AD, Alzheimer’s disease; HC, Healthy Control.

number of significant features in each random neural network
cluster changes from 140 to 240 and the step is 10. Therefore,
we can obtain 11 results for each type of random neural network
cluster, and their parameters have been made appropriate
adjustments to get better results. The accuracies of five types
of random neural network clusters are shown in Figure 3. It
is referred that the accuracies of random Competitive neural
network cluster are not stable; the accuracies of random Elman
neural network cluster and random Probabilistic neural network
cluster are high, and their highest accuracy reaches to 92.31%;
the accuracies of random BP neural network cluster and random
LVQ neural network cluster are lower than the random Elman
neural network cluster. The accuracies of the random neural
network cluster changes when the number of features changes.
As the highest accuracies of the random Elman neural network
cluster are relatively stable and high, this paper chooses Elman
neural network as the best base classifier. From Figure 3 we can
learn that when the number of significant features is 180, the
accuracy is the highest. Therefore, 180 is the optimal number of
significant features.

In order to better compare the performances of the random
neural network cluster and a single NN, we display the
corresponding 1,000 NNs’ accuracies of five types of random
neural network clusters in the Figure 4. From Figures 3, 4 we
could learn that the accuracy of random neural network cluster is
higher and more stable than a single NN except for the random
Competitive neural network cluster. In addition, we also show
the training errors, test errors and running time of five types of
random neural network clusters in Table 2.

The Abnormal Brain Regions
The first 180 features constitute the optimal feature set which is
used to find the abnormal brain regions between AD patients
and HC. Table 3 shows the abnormal brain regions with higher
weight, their abbreviation and volume. Figure 5 shows the
abnormal degree of brain regions by using the Brain-NetViewer2.

2http://www.nitrc.org/projects/bnv/

FIGURE 3 | The accuracies of five different types of random neural network
clusters.
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FIGURE 4 | The corresponding 1,000 NNs’ accuracies of five types of
random neural network clusters.

The node represents the brain region. The size of a node
represents the weight of the brain region and it also indicates the
abnormal degree of the brain region.

In this paper, we focus on the brain region whose weight is
>17. Figure 6 shows the functional connectivity between the
23 brain regions in the optimal feature set. Figure 7 shows the
functional connectivity between PreCG and other brain regions.
The node in Figures 6, 7 also represents the brain region and the
size of a node represents the weight of the brain region. Besides,
the line represents the functional connectivity between two brain
regions.

DISCUSSION

Classification Performance
A number of researchers have tried to classify and diagnose AD
patients from HC in the past few years. For instance, Khazaee
et al. (2016) applied machine learning methods to classify MCI
patients, AD patients and HC, and the accuracy of AD and HC
is 72%. Kim et al. (2016) applied DNN to classify schizophrenia
(SZ) patients and HC based on fMRI image, and the accuracy
is 85.8%. Zhang et al. (2014) proposed a kernel support vector
machine decision tree (kSVM-DT) to classify MCI patients, AD
patients and HC based on the MRI data, and the accuracy of AD
and HC is 96%. However, there were several disadvantages in
these studies. For instance, as the features of neuroimaging data
are characterized by high dimension, significant information of

TABLE 2 | The errors and running time of five types of random neural network
clusters.

Base classifier
(Mean ± SD)

Training errors Test errors Time (hour)

BP NN 0.2764 ± 0.0375 0.2797 ± 0.0388 2

Probabilistic NN 0.1709 ± 0.0712 0.1678 ± 0.0672 10

Elman NN 0.1782 ± 0.0519 0.1748 ± 0.0497 12

LVQ NN 0.2645 ± 0.0604 0.2587 ± 0.0622 48

Competitive NN 0.4627 ± 0.1532 0.4615 ± 0.1538 18

original variables would be lost in the process of dimensionality
reduction in traditional methods.

In this paper, the new method was proposed to avoid the
loss of information and improve classification performance. We
used five different types of NNs as the base classifier to build
five different types of random neural network clusters. In the
five types of random neural network clusters, the classification
accuracies of the random Elman neural network cluster and the
random PNN cluster could reach to 92.3%. As the resting-state
fMRI data dynamically changes in a period of time and the Elman
NN is able to deal with the time and spatial domain data, the
Elman NN is more suitable for the fMRI data. The accuracies
of the random Probabilistic neural network cluster could also
reach to 92.3%, but the running time of the PNN is long which
makes it not suitable for the base classifier of the random neural
network cluster. Thus, we finally choose the random Elman
neural network cluster as the best base classifier. To solve the
problems caused by the high-dimensional data, the traditional
methods suffer from the loss of some information in the process
of reducing dimensionality. In this paper, we proposed a random
neural network cluster which could be a good solution in dealing
with the calculation of large samples and high-dimensional data.
Moreover, the highest accuracies of the random Elman neural
network cluster could reach to 92.3%. Therefore, this method
could process high-dimensional data without information loss
and improve classification performance.

The basic classifier used in this paper is the neural network.
This classifier is indeed an existing classifier, and it is not the
innovation point of this paper. The innovation of this article is
the integrated cluster, which is the innovation in structure.

This paper researches on fMRI image, there is no innovation
in the classification indicators of this article. But the classification
indicators have been used in research. We used the random
neural network cluster to classify the subjects and feature
selection, and we got good results. That is the innovation in
application.

The Additional Details of the Random
Neural Network Cluster
In the part of method, we have introduced many elementary
details in our method and in this part we would introduce some
additional details.

In order to make the random neural network cluster less
complex, each NN occupies the same weight in the random
neural network cluster. When determining the label of a
new sample, each NN in the random neural network cluster
predicts the label of the sample. The majority of class label is
made as the predicted label of the sample which is equivalent
to that the weight of each NN is the same. From Figures 3, 4
we could learn that the accuracy of a single NN is lower than
the accuracy of the random neural network cluster. Moreover,
when the number of significant features changes, the accuracies
of five types of random neural network clusters are high and
stable except for the random Competitive neural network cluster.
This fully demonstrates that the robustness of the random neural
network cluster is good.

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2018 | Volume 12 | Article 60

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00060 September 6, 2018 Time: 18:23 # 6

Bi et al. Analysis of AD in fMRI

TABLE 3 | Abnormal brain regions.

Regions Abbreviation Volume Weight

The precentral gyrus PreCG.L [−39 −6 51] 19

The middle frontal gyrus MFG.L [−33 33 35]

The olfactory cortex OLF.L [−8 15 −11]

The orbital part of superior frontal gyrus ORBsup.R [18 48 −14] 18

The triangular part of inferior frontal gyrus IFGtriang.L [−46 30 14]

The supplementary motor area SMA.L (−5 5 61)

The orbital part of superior frontal gyrus ORBsup.L [−17 47 −13] 17

The orbital part of middle frontal gyrus ORBmid.L [−31 50 −10]

The precentral gyrus PreCG.R [41 −8 52] 16

The dorsolateral of superior frontal gyrus SFGdor.R [22 31 44]

The orbital part of middle frontal gyrus ORBmid.R [33 53 −11]

The orbital part of Inferior frontal gyrus ORBinf.L [−36 31 −12]

The orbital part of Inferior frontal gyrus ORBinf.R [41 32 −12]

The olfactory cortex OLF.R [10 16 −11]

The middle frontal gyrus MFG.R [38 33 34] 15

The rolandic operculum ROL.L [−47 −8 14]

The rolandic operculum ROL.R [53 −6 15]

The dorsolateral of superior frontal gyrus SFGdor.L [−18 35 42] 14

The opercular part of inferior frontal gyrus IFGoperc.L [−48 1319]

The opercular part of inferior frontal gyrus IFGoperc.R [50 15 21]

The triangular part of inferior frontal gyrus IFGtriang.R [50 30 14]

The supplementary motor area SMA.R [9 0 62]

The medial of superior frontal gyrus SFGmed.L [−549 31]

FIGURE 5 | The weight of brain regions.

In terms of the complexity of random neural network cluster,
it is mainly reflected in the following two aspects. One aspect
is that the number of base classifiers is large which makes
the process of constructing a random neural network cluster
complex. Another aspect is that we need to construct multiple
random neural network clusters during finding the optimal
feature set which also makes the method complex.

There are two types of parameters in our method. One type is
the parameters of the random neural network cluster which are
decided by the accuracy of the random neural network cluster
through hundreds of experiments. Another type is the parameters

FIGURE 6 | The functional connectivity between the 23 brain regions.

of the NN which are decided by the neural network toolbox that
automatically selects the optimal parameters.

The random neural network cluster is constructed by the
training set and the performance is tested by the test set. The
experimental results show that the random neural network
cluster not only performs well on the training set, but also
performs well on the test set. This fully demonstrates that
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FIGURE 7 | The functional connectivity between PreCG and other brain
regions.

the overfitting does not exist in the random neural network
cluster.

Abnormal Brain Region Analysis
The functional connectivity differences between AD and HC
could be used to find out the abnormal brain regions and we
finally detected 23 abnormal brain regions between AD and
HC. They are the PreCG, the OLF, the ORBsup, the IFGtriang,
SMA, the SFGdor, the ORBmid, the ORBinf, the SFGmed.L, the
IFGoperc, the ROL, and the MFG.

Previous studies have concluded that these abnormal brain
regions are associated with AD patients. Khazaee et al. (2015)
found that the lingual gyrus, the occipital gyrus and the superior
frontal gyrus are abnormal brain regions in AD patients.
Agosta et al. (2012) pointed out that the functional connectivity
changed in the default mode network (DMN) and frontal
networks in AD patients. Wang et al. (2007) discovered the
decreased abnormal functional connectivity in the prefrontal
and parietal lobes, meanwhile the increased abnormal functional
connectivity in the occipital lobe in AD patients. Greicius
et al. (2004) found that AD patients showed less deactivation
in the anterior frontal, precuneus and posterior cingulate
cortex. He et al. (2007) concluded that regional coherence of
AD patients significantly decreased in the posterior cingulate
cortex/precuneus. Binnewijzend et al. (2012) declared that the
abnormal brain regions of AD patients located in the precuneus
and posterior cingulate cortex. Golby et al. (2005) concluded
that impaired activation changed in the temporal lobe and
fusiform regions in AD patients. Grossman et al. (2003) found
the activation of AD patients in the left poster lateral temporal
and inferior parietal cortex. It is referred that our results are
consistent with previous studies. In this paper, we focus on
the precentral gyrus and the frontal gyrus which have larger
weights.

Precentral Gyrus (PreCG)
The PreCG has the greatest weight in the abnormal brain regions.
It is referred that the PreCG makes a great contribution to classify
AD and HC in the random Elman neural network cluster. The
PreCG locates in the primary motor area (Hopkins et al., 2017),
and the superior part of PreCG is responsible for motor hand
function (Yousry et al., 1997; Nebel et al., 2014).

Existing studies have found that the PreCG is abnormal
in AD patients. Kang et al. (2013) showed that AD patients
performed significant cortical thinning in superior and medial
frontal gyrus, left precentral gyrus, postcentral gyrus, paracentral
lobule, precuneus and superior parietal lobule. Bi et al. (2018)
proposed a method of random support vector machine cluster to
diagnose AD, and found out several disorder regions including
inferior frontal gyrus, superior frontal gyrus, precentral gyrus
and cingulate cortex. Zhang et al. (2015) pointed out that the
middle occipital gyrus, the postcentral gyrus, the PreCG and
precuneus were important in diagnosing AD. Brickman et al.
(2015) discovered that the PreCG and right middle frontal gyrus
were abnormal in AD patients based on T2-weighted MRI. Dani
et al. (2017) used white matter hypointensity (WMH) volume to
diagnose AD based on MRI and PET data, and they found out the
difference between the PreCG, and the right medial and anterior
part of orbital gyrus.

The abnormal functional connectivity between PreCG and
other brain regions may lead to the physical movement
dysfunction in AD patients. The above results revealed that
PreCG may be a clinical diagnosis of AD in future.

Frontal Gyrus (FG)
The FG had a relatively higher weight in the abnormal regions. It
is referred that the FG makes a great contribution to classify AD
and HC in the random Elman neural network cluster. The left
of inferior frontal gyrus is associated with language (Costafreda
et al., 2006). The superior frontal gyrus contributes to higher
cognitive functions and particularly the learning and working
memory (WM) (Boisgueheneuc et al., 2006; Carter et al., 2006).
Eliasova et al. (2014) explored that the improvement of attention
and psychomotor speed resulted from the abnormity of the right
IFG in AD patients.

Existing studies have found that the FG is abnormal in AD
patients. Schultz et al. (2015) found out several abnormal brain
regions in AD patients including the hippocampus, the posterior
cingulate, the anterior cingulate and the middle frontal gyrus.
Griffanti et al. (2016) pointed out that there was difference in
orbito frontal network between AD patient and HC. Yetkin
et al. (2006) evaluated brain activation in AD patients and HC
based on fMRI while performing a WM task and found that AD
group showed more activation in the right superior frontal gyrus,
bilateral middle temporal, middle frontal, anterior cingulate and
fusiform gyri. Karas et al. (2007) used voxel-based morphometry
(VBM) to examine AD patients, and they found out several
disorder regions including the left superior and inferior temporal
gyrus, and the left superior frontal gyrus. Our experiment results
are consistent with the existing studies.

The abnormal functional connectivity between FG and
other brain regions may lead to the memory dysfunction in
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AD patients. This abnormal brain region has significant effect
on the identification of potentially effective biomarkers for the
diagnosis of AD.

In this paper, the random neural network cluster is proposed
to classify AD patients and HC and the abnormal brain regions
are found out on the basis of fMRI data. Moreover, these findings
suggest that the random neural network cluster might be an
appropriate approach for diagnosing AD. This new method has
some advantages. Firstly, the NNs make different contributions to
the random neural network cluster which could make full use of
each NN’s characteristics, thus it could avoid losing information.
Secondly, it is able to effectively deal with a large dataset even
when there is many missing data. Finally, it is also able to
select significant features from high-dimensional features. The
new method presents a good classification performance with
accuracy of 92.3% and detects several abnormal brain regions
which would have influence in diagnosing AD. However, it has
several limitations. Firstly, this paper only used the fMRI data and
the future studies could integrate other imaging data to obtain
comprehensive brain activity. Secondly, this paper only studied
the brain activity, and the future studies could combine the brain
and cerebellum activity. Thirdly, this paper only studies the brain
difference between AD patients and HC, and the future studies
could focus on the brain relationship in AD patients. Finally,
the functional connectivity was regarded as feature in this paper,
and the future studies could choose other attributions of the
brain as feature such as clustering coefficient, degree and shortest
path.
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