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The morphology of a neuron is strongly related to its physiological properties, application
of logical product and thus to information processing functions. Optical microscope
images are widely used for extracting the structure of neurons. Although several
approaches have been proposed to trace and extract complex neuronal structures
from microscopy images, available methods remain prone to errors. In this study,
we present a practical scheme for processing confocal microscope images and
reconstructing neuronal structures. We evaluated this scheme using image data samples
and associated “gold standard” reconstructions from the BigNeuron Project. In these
samples, dendritic arbors belonging to multiple projection branches of the same neuron
overlapped in space, making it difficult to automatically and accurately trace their
structural connectivity. Our proposed scheme, which combines several software tools
for image masking and filtering with an existing tool for dendritic segmentation and
tracing, outperformed state-of-the-art automatic methods in reconstructing such neuron
structures. For evaluating our scheme, we applied it to a honeybee local interneuron,
DL-Int-1, which has complex arbors and is considered to be a critical neuron for
encoding the distance information indicated in the waggle dance of the honeybee.

Keywords: complex neuron segmentation, reconstruction, image processing, insect brain, confocal laser
scanning microscopic image

INTRODUCTION

Neuronal morphology is strongly related to neural function; neuron arborization reflects
the input and output regions, and morphological characteristics, such as branching pattern,
length and thickness, are related to signal transmission properties. Changes of neuronal
morphology have been observed in various nervous systems, especially as a consequence of
development or experience (Jan and Jan, 2003; Grueber et al., 2005; Yasunaga et al, 2010;
Luebke et al., 2015) and difference of brain regions (Jacobs and Scheibel, 2002). For cortical
pyramidal neurons, detailed analyses among different brain regions and species relating
morphological results of optical and electron microscopy, and response characteristics from
electrophysiological experiments have been performed (Elston, 2003; Spruston, 2008; Luebke,
2017). Under such circumstances, neuron segmentation and modeling is an effective way
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for quantitatively evaluating morphological properties of
neurons and can be shared among researchers as a common
resource (Halavi et al., 2008).

Neuron morphology is most commonly extracted from image
stacks that are obtained by scanning dye-filled neuron in
the brain under confocal laser scanning microscopes (CLSM).
Various software tools have been developed and applied on
neuron images. For light microscopy and confocal imaging
data, segmentation tools based on manual operations, such
as Neurolucida, NeuroExplorer, have been effectively used
for segmentation and parameterization of neuron morphology
(Benavides-Piccione et al., 2006; Bianchi et al., 2013; Magliaro
et al,, 2017). Semi-automatic and automatic segmentation tools
were developed and applied on electron microscopy images
(Lang et al,, 2011; Berning et al., 2015; Jones et al., 2015). To
extract and trace neuronal structure from CLSM images, we
developed the software SIGEN (Yamasaki et al., 2006; Minemoto
et al., 2009) and applied it for segmentation of neurons in
the insect brain. This program uses a simple algorithm called
single seed distance transform, which works effectively for the
segmentation of various types of neurons. We have previously
applied SIGEN to reconstruct several neurons in the moth brain,
which were collected into a database and were used for neuron
morphological analyses and network simulations (Ikeno et al.,
2012).

As is well known, automatic segmentation of neuronal
structure in CLSM images is one of the most challenging
themes in the biological image processing, and several projects
encompassing multiple research labs have been undertaken to
foster better algorithms (Acciai et al., 2016). The DIADEM
challenge (Brown et al., 2011) was a competition held to raise
awareness of this problem and spur development of automatic
reconstruction algorithms. In this project, a metric program
for comparing two digital morphological reconstructions was
developed (Gillette et al., 2011) and continues to be a widely
used measure. Recently, the BigNeuron project has been
conducted to develop automatic segmentation methods from
CLSM images (Peng et al., 2015). Although automatic neuronal
segmentation and reconstruction has significantly advanced by
these efforts, it is still difficult to correctly reconstruct complex
structured neurons. Hence, it can be useful to combine automatic
segmentation tools with manual operations for effective analysis
of neuronal structure.

One of the interesting application for neuronal structure
analysis is to investigate of the neural mechanisms for encoding
and decoding the spatial information to the profitable flower,
indicated by honeybee waggle dance (von Frisch, 1967).
Honeybees use a unique temporal pattern of vibration pulses
caused by wing beats for informing spatial information to
their hive mates. Airborne vibrations are received by sensory
neurons located in Johnston’s organ of the antenna of the
receivers. These sensory neurons mainly project their neurites
into the dorsal lobes (DLs) in the brain (Ai et al., 2007).
Among several types of interneurons which are sensitive to
vibratory stimuli to the antenna (Ai et al., 2009, 2017), DL-Int-
1 is a major local interneuron arborizing in the DL (Ai et al,
2009). This neuron shows tonic inhibitory responses during a

train of vibratory stimuli applied to the antenna which has the
same temporal structure as that received by receivers during
waggle dance, suggesting the DL-Int-1 is one candidate for
encoding the distance information to the location of flower
indicated by waggle dancer (Ai et al., 2017). The soma is located
close to the dorsal central body in the posterior protocerebral
lobe (PPL), and a primary neurite extends into the DL. In
the DL, two thick branches, called dorsal branch (DB) and
ventral branch (VB), emerge from the primary neurite (Ai
et al, 2009). These two branches overlap densely in the DL
(Ai, 2010), which makes it difficult to separate them by any
automatic segmentation process. To make a segmentation of
the morphology of this interneuron, we have developed and
applied a practical scheme, which combines a manual extraction
and mask filtering of neuronal branches with an automatic
segmentation by using SIGEN (Minemoto et al., 2009). In
this study, we evaluated its performance by applying our new
scheme to fruitfly interneurons and honeybee DL-Int-1 and
found out that our new scheme are useful in segmentation of
the neurons of which several arborizations overlap in the same
region.

MATERIAL AND METHODS

Neuronal Segmentation and its Evaluation
Our scheme for segmentation of CLSM image starts with
deconvolution by Fiji (RRID: SCR_002285; Figure 1A). We used
the “Iterative Deconvolve 3D” plugin along with the point spread
function (PSF) that was generated by the “Diffraction PSF 3D”
plugin with default parameter values (Dougherty, 2005). This
is an effective process for decreasing blurring and distortion
in CLSM images. Next, we conducted neuron segmentation
by SIGEN (RRID: SCR_016284), which was applied to the
deconvolved images. Segmentation results were obtained in SWC
format, which is widely used as a standard data format to describe
neuronal structure (Ascoli et al., 2007).

To evaluate the performance of our scheme based on
SIGEN, we compared segmentation results with those of other
available segmentation tools. The BigNeuron project! provides
a huge collection of image data containing singly stained
neurons along with corresponding gold standard segmentation
results. The gold standard results were manually segmented
from image data and were used as reference morphologies
when comparing different algorithms. We used 40 samples
from the package “p_changed7_janelia_flylight_partl,” which
includes neurons of various shapes from fly brain imaged using
CLSM, as in our experiments. Parameter values for segmentation
by SIGEN were as follows. Only those fragmented segments
with volumes larger than 30 voxels were included in the
segmentation (VT = 30). Further, fragmented segments whose
distance from the main branch, after rounding to the nearest
voxel, was less than 30 voxels (DT = 30), were connected to
the reconstructed neuron. Segmentation results were evaluated
using the DIADEM metric value (Gillette et al., 2011). DIADEM
metric was developed and provided by the DIADEM Challenge

Uhttps://alleninstitute.org/bigneuron/
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FIGURE 1 | (A) Our basic neuron segmentation scheme from a confocal laser scanning microscopes (CLSM) image. The CLSM image was deconvolved by image
processing software. Neuronal branches were extracted by the neuron segmentation software SIGEN and stored in SWC format. (B) Our revised segmentation
scheme incorporating a process for manually separating overlapping neurites. After the CLSM image was deconvolved by image processing software, masked
image data were generated by tracing partial neuronal branches on the deconvolved image data. A partial branch image was obtained by applying AND image
operation between the deconvolved image and the mask image. Another part of the neuronal branch image was generated by exclusive-or (EOR) image operation
between the deconvolved image and the partial branch image. Neuronal segmentation software was applied on these two branch images independently. Whole
neuron structure was reconstructed by combining these two reconstruction results.

project for evaluation of neuronal segmentation results by and branching state, with a value of 1 indicating a perfect
comparison to gold standard reconstructions. The DIADEM  matching.

metric value ranges from 0 to 1 depending on the degree Metric values of segmentation results of an algorithm can
of matching of several features, such as node positions varylargely depending on the morphological complexity of input
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image data. In particular, when multiple neuronal branches
spread their dendrites into the same region, it can be extremely
difficult to accurately extract their structural connectivity by
automatic segmentation. To apply our segmentation software
to such complicated neuronal structures, we propose a revised
scheme incorporating a process for manually separating
overlapping neurites (Figure 1B). In our newly revised
segmentation scheme, we traced the neurites manually to
create a mask image for separating branches extending in
the same region. For manual tracing, we used the 3D
segmentation software, ITK-SNAP (Yushkevich et al, 2006;
RRID:SCR_002010). The manual tracing operation started from
a clearly separated neuronal branch point. Neuronal segments
were connected with the branch point and its connected
terminals by characteristics of the image, such as direction
of intensity changes in a voxel cluster and characteristics of
connectivity and bifurcation from the start point to peripherals.
Since this process requires a certain level of skill, it causes a
possibility of human error. However, the manual tracing of the
partial neuronal branches often provides more reliable separation
than the automatic tracing. Then, a partial neuronal image
containing one of the overlapping branches was obtained by
application of logical product (AND) image operation between
the manual traced branching image and the deconvoluted

neuron image. The image of the other overlapping branch
was obtained by exclusive-or (EOR) image operation between
the deconvoluted neuron image and the previously obtained
partial neuron image. Since the EOR image operation results
in the background value (0) when the values of voxels of the
two images are the same, an image excluding the branches
previously obtained from the original image is obtained. For
the case where more neurites are densely concentrated in
one region, the same procedure can be recursively applied by
separating neurites into individual partial structures at each
step.

The whole branching structure was obtained by conjunction
of segmentation results of partial neurites. Finally, the segmented
neuron structure was stored by the software in SWC and VTK
formats. Thus, the results could be displayed and edited by other
tools such as Vaa3D (Peng et al., 2010; RRID:SCR_002609),
NeuTube (Feng et al., 2015), or ParaView (Ayachit, 2015;
RRID:SCR_002516).

Acquiring the CLSM Image of DL-Int-1 and

its Segmentation

Neuron images of DL-Int-1 in the honeybee brain were
obtained experimentally. The details of intracellular recording
and staining procedures were described in Ai et al. (2009, 2017)
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FIGURE 2 | Three examples of segmentation by our original software, SIGEN, on samples provided by the BigNeuron project. Top row, 2D projected image data of
neurons. Middle row, the manually segmented gold standard results, provided by BigNeuron. Bottom row, segmentation results by SIGEN. The difference between
gold standard and automatic segmentation results was measured by the DIADEM metric, whose value ranges from O (completely unmatched) to 1 (perfectly
matched). A neuron with a complex branching structure was reconstructed well, as shown in sample (A; DIADEM value: 0.850). Even from the low contrast image,
neuronal structure was reconstructed with relatively well (B; DIADEM value: 0.597). In contrast, the neuron shown in sample (C) was reconstructed with a low
DIADEM metric value of 0.458, due to the presence of many tiny neurites that were difficult to be extracted, which was also seen in the gold standard resullts.

DM: 0.597
GMR_57C10_AD_01-1xLwt_attpa0_4a
stop1-f-A01-20110325_3_A6-
left_optic_lobe.v3draw.extract_2

DM: 0.458
GMR_57C10_AD_01-
Two_recombinase_flipouts_A-f-
A-20111108_1_CA4-
right_optic_lobe.v3draw.extract_3
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FIGURE 3 | The average values of the DIADEM metric for 40 samples in the package “p_changed7_janelia_flylight_part1” of BigNeuron. Error bars indicate standard
deviation, and the numbers in parentheses at the top of the graph are the number of samples for which no DIADEM value was obtained for the segmentation result.
Abbreviations are segmentation software names: SIG, SIGEN; AAu, axis analyzer updated; FSu, fastmarching spanningtree updated; NeuT, neuTube; NTu, neuTube
updated; ADV, Advantra; ADu, Advantra updated; STR, smartTracing; LCM, LCMboost; LCMu, LCMboost updated; SNK, snake; XYZ, All-path-pruning; MST,
MOST; APP1, All-path-pruning1; APP2, All-path-pruning2; APP3, All-path-pruning3; XY3D, XY_3D_TreMap; GPST, NeuroGPSTree; Tu170, Tubularity model_S MST
tracing th170; Tu200, Tubularity model S MST tracing th 200; NST, NeuroStalker; MST, MST Tracing; NCh, NeuronChaser updated.

and we describe them here briefly. Honeybees (Apis mellifera L.)  they hatched from brood cells. Their ages were recorded in days,
were reared in hives at the Fukuoka University campus. Forager ~ and those less than 3 days old were used in our experiments.
of worker bees, which collected pollen on their hind legs, were  For the experiment, a bee was anesthetized by cooling and was
caught at the hive entrance and were used in this study. In  mounted in an acrylic chamber. The bee was fed with 1 M sucrose
addition, newly emerged juveniles were isolated in a cage when  solution and kept overnight in the dark with high humidity at

FIGURE 4 | An example of segmentation of a neuron with several arborizations spatially overlapping. (A) Projection image of the neuron. The primary neurite from the
soma extends and arborizes in the region indicated by the yellow arrow. A secondary neurite runs parallel with the primary neurite. (B) Two neurites (the soma and
the primary neurite are shown in red, and the secondary neurite in green) were separated by manual operation in our revised scheme. (C) The gold standard of
segmentation. (D) Segmentation result by our basic scheme (Figure 1A). (E) Segmentation result by our revised scheme (Figure 1B). In the result of our basic
scheme in (D) there are segmentation errors on major connecting points of neurites (yellow arrows in D) most of which were rectified in the revised scheme in (E).
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FIGURE 5 | Segmentation of a vibration sensitive interneuron in the honeybee brain, DL-Int-1. (A) The whole morphology of DL-Int-1 in the honeybee brain. The
soma (arrowhead) is located below the calyx of mushroom body (MB). A long primary neurite extends ventrally through posterior protocerebral lobe (PPL) and
arborizes in the dorsal lobe (DL). (B) Typical unique electrophysiological response pattern of DL-Int-1. Tonic inhibitory response was observed by a continuous

265 Hz vibration stimulus to the antenna. The upper trace shows the action potentials of the DL-Int-1 (bottom trace: vibration stimulus). (C) Arborization of neurites
of DL-Int-1 in the dorsal lobe. ny is the point at which the primary neurite bifurcated into the dorsal branch (DB) and ventral branch (VB), which are difficult to be
spatially separated. The DB started from the branching point np. The VB started from the branching point ns.

20°C. The head of the bee was fixed with wax. The frontal surface
of the brain was exposed by cutting away a small rectangular
window between the compound eyes. The glands and tracheal
sheaths on top of the brain were removed. The mouthparts,
including the mandibles, were cut off to expose and remove the
esophagus. Small droplets of a honeybee physiological saline were
applied to wash away the residue of the esophagus and to enhance
electrical contact with a platinum ground electrode placed in the
head capsule next to the brain.

Glass electrodes were filled at the tip with 3% Lucifer
Yellow CH Dilithium salt (L0529, Sigma-Aldrich, Tokyo, Japan)
dissolved in 100 mM KCl, with Dextran, Tetramethylrhodamine,
3000 MW, Anionic, Lysine Fixable (D3308, Thermo Fisher),
or with Alexa 647 hydrazide (A20502, Thermo Fisher, Tokyo,
Japan) yielding DC resistances in the range of 150-300 M. The
electrode was inserted into a region of the DL after the neuronal
sheath and a small area of the brain’s neurilemma had been
scratched. Electrical signals were amplified with an amplifier
(MEZ 8301, Nihon Kohden, Tokyo, Japan) and displayed on
an oscilloscope. After identifying DL-Int-1 by their unique
response patterns to the vibration stimuli applied to the antenna,
the fluorescent dyes were injected iontophoretically into the
neuron.

Thereafter, the brains were removed from the head capsule,
fixed in 4% paraformaldehyde for 4 h at room temperature,
and then rinsed in phosphate buffer solution, dehydrated and
cleared in methyl salicylate for subsequent observation. The
cleared specimens containing intracellularly stained neurons
were viewed from the posterior side of the brain under a

CLSM (LSM 510, Carl Zeiss, Jena, Germany) with a Zeiss
Plan-Apochromat 25x/0.8 NA oil lens objective (working
distance 0.57 mm). Alexa 647 was excited by the 633-nm line
of HeNe lasers, Dextran, Tetramethylrhodamine by 543-nm line
of HeNe lasers and Lucifer yellow by the 488-nm line of an
argon laser. More than 250 optical sections were taken at 1 um
thickness throughout the entire brain depth of each specimen.
The image resolution of each section was 1024 x 1024 pixels and
each pixel size covered 0.36 um x 0.36 pm in square.

RESULTS

Evaluation of Semiautomatic

Segmentation Scheme

To confirm the performance of our basic segmentation tool
SIGEN, we applied it on samples provided by the BigNeuron
project?. Neuron images with gold standard segmentation data
can be downloaded from the site. We used samples in the subset
“p_packed7_janelia_flylight-partl,” of the gold166 package.
A neuron with complex structure was reconstructed well
by SIGEN, resulting in a DIADEM metric value of 0.850
(Figure 2A). Even from the low contrast image, neuronal
structure was reconstructed with relatively high DIADEM
metric value of 0.597 (Figure 2B). In contrast, the metric
value was relatively low for a neuron with simpler structure
(Figure 2C). In this case, although thick and long branches
were reconstructed well, SIGEN had difficulty tracing small

Zhttps://github.com/BigNeuron/Data/releases
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dense neurites located in the lower right part of the image.
However, experts also had difficulty manually tracing these
dense arborizations, as seen from the gold standard results.
The average value of the DIADEM metric value of SIGEN
for 40 samples was 0.717 £ 0.163. Higher average values
compared with other software and small values of variance
indicate that neuronal morphology can be reconstructed stably
by SIGEN (Figure 3). This package contains images of
various shapes of insect neurons. Because SIGEN was able
to successfully handle such neuron images, the software is
considered to be suitable for the reconstruction of neuronal
morphology.

In the image set used above, some of the samples have
multiple neurites mixed in one region. In such cases, all software
approaches failed to extract good reconstructions. For example,
the neuron “GMR_57C10_AD_01-Two_recombinase_{flipouts_
A-f-A-20111108_1_C4-right_optic_lobe.v3draw.extract_3” has
a primary neurite extending from the cell body with neurites
spreading in a certain region (arrow in Figure 4A). Furthermore,
a secondary neurite from the dendrite runs along the primary
neurite (Figures 4A,B). It is important to grasp the state
of extension of such a neuron accurately, and in the gold
standard by manual extraction, the primary neurite folded near
the secondary neurite was accurately extracted (Figure 4C).

However, in the reconstruction generated from our automatic
segmentation software SIGEN (Figure 1A), the halfway and
terminal points of the neurites were erroneously connected
(compare Figures 4C,D yellow arrows). The structure was
significantly different from the gold standard, resulting in a
DIADEM metric value of 0.488. The wrong interpretation of
the neurite form was not limited to SIGEN. The DIADEM
metric values for other automatic segmentation software were
comparatively low, with a maximum of 0.544 and an average of
0.151. By applying our revised segmentation scheme (Figure 1B),
neurites elongating in different directions were separated and
extracted, and then synthesized (shown in red and green in
Figure 4B). It became possible to accurately extract the major
cell structure, as shown by the large improvement of DIADEM
metric value from 0.488 to 0.825 (Figure 4E). Therefore, for
cases where multiple dendrites extend to the same area, our
proposed method is more effective than all compared automatic
segmentation methods. It is important to grasp the principal
connection state of the neurites in constructing highly accurate
morphological models and obtaining the characteristics of
neurons. For complex branching structures, it is necessary to
acquire knowledge about the connection in this part by a detailed
analysis, such as tracing on locally acquired high resolution
images. The information can be utilized for separation of major

image. Green and red skeleton traces show VB and DB, respectively.

FIGURE 6 | Reconstruction of neurite arborizations of DL-Int-1 by using our revised segmentation scheme. (A) 2D projection image of DL-Int-1 in the dorsal lobe.
The white arrow indicates the point that SIGEN could not extract the correct connection by our basic scheme. (B) 2D projection image of a manually traced 3D mask
filter for separation of VB and DB. (C) The extraction result of the VBs obtained by application of the mask filter (B) on the whole arborization image (A). (D) The DBs
obtained by the EOR image calculation between whole branching (A) and VBs (C). (E) Skeleton traces of reconstruction overlapped with the original 2D-projected
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arrows).

FIGURE 7 | Comparison of distances from the root point on segmentation results by our basic (A) and revised (B) schemes. The distance from root points were
indicated by pseudocolors. The enlarged views show locations where the connection is different between by the basic scheme and by our revised scheme (white

Distance (pm)

branched and has important meaning for understanding the
structure of the whole neuron.

Segmentation of a Vibration Sensitive

Interneuron in Honeybee Brain
In this study, we focused on the morphology of DL-Int-1
arborizations of DB and VB in the DL (n; and n3 in Figure 5C,
respectively). To obtain the whole arborizing image, separately
captured CLSM image stacks were stitched in 3D space using Fiji
(Preibisch et al., 2009; Schindelin et al., 2012).

A neurite terminal was automatically selected as the start
segment (root point) of segmentation by SIGEN. After obtaining
the neuronal structure by our segmentation tool, we changed
the root point on the branching node of the neurite (n; in
Figure 5C) toward the soma. Shapes of neuronal branches
were extracted well, but several connections among the branch
segments were incorrect even at the major branching points,
which connect to thick branches (white arrow in Figure 6A). To
reconstruct the major neuronal structure correctly, we applied
our revised segmentation scheme (Figure 1B). We generated a
mask image for extracting the VB (Figure 6B) from the whole
neuron image. The manually-traced mask image of VB was
applied by AND image operation on the deconvoluted image to
obtain the VB image (Figure 6C). The DB image was extracted
by EOR image operation between the deconvoluted image and
the VB image (Figure 6D). Segmentation and reconstruction
of neuron morphologies were generated from these VB and
DB images independently. The whole neuronal structure was
reconstructed by connection of these two reconstructed results
(Figure 6E). Although the overall shape of neuronal branches

obtained by the automatical (Figure 1A) and our revised schemes
(Figure 1B) was similar, connections of branches and distance
from the root (start) point were quite different between the
methods (Figure 7). As shown in the enlarged view, the thick
VB neurite bifurcating into two neurites. One branch extends
to the dorsal side and the other extends to the ventral side and
branches again. Such a structure could be extracted correctly, as
shown in Figure 7B, because the revised scheme had grasped the
whole structure in advance. In contrast, it could not be extracted
by SIGEN alone, and it was disconnected just after branching
(Figure 7A). By our revised segmentation scheme, we obtained
reconstruction results from eight foragers (F; Figure 8A) and
seven age-controlled juveniles (J; Figure 8B). Detailed analyses
based on morphometric features, such as branching patterns,
branch segment length and diameter, could be addressed in
future research to assess morphological differences between ages.

DISCUSSION

We applied the segmentation software SIGEN to CLSM images
for reconstructing morphological models of neurons. It achieved
high scores on benchmark tests of the BigNeuron samples. Its
segmentation results demonstrated its reliability in extracting
the major structure of a neuron without human bias. Various
approaches to develop automatic and semi-automatic neuron
segmentation software are being undertaken in fields including
neuromorphometric research and neural computation (Lu et al.,
2009; Simbiil et al., 2016; Li et al., 2017).

In this study, we also developed a segmentation scheme
for neurons with complex arborizing patterns that performed
better than the compared existing approaches. Preprocessing
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FIGURE 8 | Segmentation results of DL-Int-1 for adult worker. (A) Forager (F).
(B) Age-controlled juvenile (J). The following numbers of F and J indicate the
sample index number. In (B) the numbers in parenthesis indicate the age

in days.

CLSM images was useful to separate the neuron image from
the background. The main difficulty in extracting structures like
that of DL-Int-1 was caused by multiple arborizations extending
and overlapping in the same region. Hence, it was difficult to
identify and connect them from fragmented images. We applied
state-of-the-art automatic segmentation tools, such as App2 and
SmartTracing (Chen et al, 2015), on these neurons. The
reconstruction result involved many erroneous branches caused
by noise and the background brain image. Although our revised
scheme requires a user to conduct manual tracing to apply a
mask filter, it produced more accurate segmentation results for
structurally complex neurons. Manual tracing can introduce a
problem with reproducibility, but at the present time it provides a
more accurate result than fully automated techniques. Moreover,
in our scheme the manual step is represented by the mask
filter, which can be saved as objective documentation of the
intervention.

Regarding the extraction of neurites, first, staining method
and image quality have a great influence, and it was shown
that more accurate morphology can result from images acquired
by optical microscopy for specimens treated by DAB (Elston,
2007; Elston and Fujita, 2014). Comparison and evaluation with
extraction results from confocal images acquired by confocal
laser microscopy or two-photon microscopy are also important.
Furthermore, the accuracy of extraction of morphology is highly
dependent on the morphology of the neurons. Due to anisotropic
resolution (usually the resolution in the Z direction is poor),
extraction accuracy is often bad for a specific direction. Even
in such a case, it is effective to acquire detailed connection
information by manual segmentation, and reflect the result
in the extraction of the whole neuron. In this respect, it
could be effective to combine manual operation and automatic
segmentation.

The DL-Int-1 interneuron is considered to play a key role
in the primary auditory center for vibration signal processing.
In this study, we have obtained more than 15 reconstructions
of DL-Int-1 from foragers and newly emerged juveniles. Future
research could apply detailed morphometric analyses to the
segmentation results and evaluate the similarity and differences
of neuronal morphologies with age.

CONCLUSION

Automatic or semiautomatic segmentation techniques have
become quite useful for morphometric analysis of neurons. In
this study, we combined manual masking and filtering with an
existing software for semi-automated dendritic segmentation of
interneurons with complex structures. The efforts to develop
segmentation techniques will benefit from new algorithms for
image processing and machine learning in the future. However,
this process is ongoing because segmentation results depend
on various factors such as neuron form and image quality.
Therefore, there is a continuing need to develop better automatic
segmentation software tools. Until such a new tool is obtained,
we think that it is best to respond flexibly by a combination
of automatic segmentation software and manual operation, as
proposed here. By using our developed procedure, we could
proceed to analyze age- and labor-dependent morphometric
change of critical interneuron related with deciphering dance
communication in honeybee.
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