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Neuronal network models and corresponding computer simulations are invaluable tools

to aid the interpretation of the relationship between neuron properties, connectivity,

and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating

across the cortical surface as observed experimentally can for example be described by

neuronal network models with layered geometry and distance-dependent connectivity.

In order to cover the surface area captured by today’s experimental techniques and

to achieve sufficient self-consistency, such models contain millions of nerve cells. The

interpretation of the resulting stream of multi-modal and multi-dimensional simulation

data calls for integrating interactive visualization steps into existing simulation-analysis

workflows. Here, we present a set of interactive visualization concepts called views for

the visual analysis of activity data in topological network models, and a corresponding

reference implementation VIOLA (VIsualization Of Layer Activity). The software is a

lightweight, open-source, web-based, and platform-independent application combining

and adapting modern interactive visualization paradigms, such as coordinated multiple

views, for massively parallel neurophysiological data. For a use-case demonstration

we consider spiking activity data of a two-population, layered point-neuron network

model incorporating distance-dependent connectivity subject to a spatially confined

excitation originating from an external population. With the multiple coordinated views,

an explorative and qualitative assessment of the spatiotemporal features of neuronal

activity can be performed upfront of a detailed quantitative data analysis of specific

aspects of the data. Interactive multi-view analysis therefore assists existing data analysis

workflows. Furthermore, ongoing efforts including the European Human Brain Project aim

at providing online user portals for integrated model development, simulation, analysis,

and provenance tracking, wherein interactive visual analysis tools are one component.

Browser-compatible, web-technology based solutions are therefore required. Within this

scope, with VIOLA we provide a first prototype.

Keywords: interactive visualization, visual data analytics, coordinated multiple views, 3D visualization, neuronal

network simulation, spiking neurons, spatiotemporal patterns, data analysis workflow
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1. INTRODUCTION

One common technique to capture brain activity on the
neuronal level is to record extracellular potentials in cortical
tissue (Buzsáki et al., 2012; Einevoll et al., 2013). The low
frequency (.100Hz) part of the signal, often referred to as
the local field potential (LFP), remains difficult to interpret
as thousands to millions of proximal and distal neurons
contribute to the signal (Kajikawa and Schroeder, 2011; Lindén
et al., 2011; Łeski et al., 2013). From the high-frequency
band (&100Hz), however, one can detect sequences of spikes,
the transient extracellular signatures of action potentials in
single neurons nearby the recording electrode. The number
of reliably identified neurons (through spike sorting, Quiroga,
2007) per recording session is low compared to the number
of neurons in vicinity of the recording device, even if the
experiment is performed with hundreds or more electrode
contact points (Einevoll et al., 2012). The Utah array from
Blackrock Microsystems1, for example, resolves with 10 × 10
electrodes on 4 × 4mm2 little more than a hundred distinct
neurons. Also optical methods for measuring neuronal activity
have seen continuous improvements. As recently demonstrated,
non-invasive three-photon fluorescence microscopy facilitates
functional imaging at high optical resolution as deep as 1mm
(Ouzounov et al., 2017). While the method simultaneously
images a comparably large number of neurons, the recordings
lack the temporal resolution to reliably detect individual action
potentials. Ouzounov et al. (2017) record from as many as 150
neurons inmouse hippocampal stratum pyramidale within a field
of view of 200× 200µm2.

The rapidly improving parallel recording technology increases
the need for suitable analysis methods for high-dimensional
and dynamic data streams. Nevertheless, the recordings will
remain to be characterized by a massive undersampling for
some time. Therefore, detailed full scale models of the cortical
tissue are required to understand the microscopic dynamics (van
Albada et al., 2015) and to relate the microscopic activity to
mesoscopic measures like the LFP. For this program to succeed,
neuroscientists not only need to analyze model data in the
same way as experimental data, but to explore data sets with
orders of magnitude more channels and more modalities than
experimentally available.

Networks of model neurons incorporating varying levels
of biophysical and anatomical detail reproduce a number of
features of experimentally obtained spike trains. For networks
of point- or one-compartment neuron models, this list of
features includes irregular spike trains (Softky and Koch, 1993;
van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997;
Shadlen andNewsome, 1998), asynchronous spiking (Ecker et al.,
2010; Renart et al., 2010; Helias et al., 2014; Ostojic, 2014),
correlation structure (Okun and Lampl, 2008; Gentet et al., 2010;
Helias et al., 2013), self-sustained activity (Ohbayashi et al.,
2003; Kriener et al., 2014), realistic firing rates across cortical
lamina (Potjans and Diesmann, 2014), single-neuron spiking
activity of different cell types (Izhikevich, 2003; Kobayashi

1http://blackrockmicro.com

et al., 2009; Yamauchi et al., 2011) and responses under “in
vivo” conditions (Jolivet et al., 2008; Gerstner and Naud,
2009). Relating point-neuron network activity to population
signals such as the LFP is, however, not straightforward.
Approximations (see Mazzoni et al., 2015) or forward-model
based schemes (Hagen et al., 2016) are required to bridge the gap
to experimental electrophysiological data which predominantly
reflects population activity.

The focus of this study lies on visualization methods
for activity of spatially extended neuronal network models.
Incorporation of spatial structure is a prerequisite for models
aiming to explain experimentally observed spatiotemporal
patterns of activity (Rubino et al., 2006; Denker et al., 2011; Sato
et al., 2012; Muller et al., 2014; Townsend et al., 2015). Such
models have an arrangement of neurons in one-, two-, or three-
dimensional (1D, 2D, or 3D) space and connection rules which
typically depend on the distance between (parts of) the neurons
(Mehring et al., 2003; Coombes, 2005; Yger et al., 2011; Bressloff,
2012; Voges and Perrinet, 2012; Kriener et al., 2014; Keane and
Gong, 2015; Rosenbaum et al., 2017). Although we primarily
focus on model data, the same visualization methods can be
applied with experimentally recorded data.

Decades of research in computational neuroscience have
left the field without widely used visualization platforms
and standards (Lansner and Diesmann, 2012). This is unlike
the situation for simulation technology in computational
neuroscience. Here, mature and sustainable codes have
emerged and are in continuous development and use by
large communities (Carnevale and Hines, 2006; Gewaltig and
Diesmann, 2007; Goodman and Brette, 2009). The origins of
this discrepancy may have technological, sociological, as well as
funding aspects and an in-depth analysis is beyond the scope of
the present manuscript. However, the architectural changes over
the years and the progress in visualization concepts reported
here may already shed some light on the deeper question.

As a reference implementation of this conceptual study, we
introduce the interactive visualization tool VIOLA, an open-
source, platform-independent, and lightweight web-browser
application. The tool is designed for initial visual inspection
of massively parallel data generated primarily by simulations
of spatially organized spiking neuronal networks. VIOLA is
designed around general principles of information visualization
(Shneiderman, 1996; Wang Baldonado et al., 2000) and its
2D and 3D visualizations support the exploration of neuronal
activity across space and time. The software can display raw
spiking output as well as spatiotemporally binned data that
may represent instantaneous spike counts gathered from nearby
groups of neurons. Spike and LFP data can be displayed
simultaneously, thus allowing for a multi-modal analysis.

The manuscript is organized as follows: In Section 2 we
present different visualization types and their application. In
Section 3 we subsequently describe their implementation in the
visualization tool VIOLA, an example network model, and the
phenomenological model for the LFP signal. Finally, in Section
4, we conclude our work and discuss general limitations of
frameworks for explorative visualization and potential future
developments. Readers primarily interested in the use of each
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visualization type may hereon choose to skip directly to
Section 2. Next, we review common visualization methods for
activity in neural networks and the history of visualization in
computational neuroscience to provide the background for our
considerations.

1.1. State-of-the-Art and Historical
Perspective
We here consider typical visualization of activity in an example
spiking point-neuron network consisting of an excitatory (EX),
an inhibitory (IN), and an external stimulus (STIM) population.
EX and IN units are positioned randomly within square domains
while STIM units are randomly positioned within a circle at the
center. A schematic representation of the network connectivity is
shown in Figure 1A. We use connectivity pattern tables (Nordlie
and Plesser, 2010) for source populations X (rows) and target
populations Y (columns). The images indicate the “connection
intensities” for each connection, defined as the product between
averaged pairwise connection probabilities ǫYX(rij) and synapse
strengths gYXJ. The distance between a source and a target
neuron is denoted by rij. Pairwise connection probabilities decay
with horizontal distance between EX and IN units according
to a Gaussian profile, while STIM units only connect locally to
the EX population restricted by a cut-off radius. The geometry
of one network instantiation is depicted in Figure 1B. EX (blue
dots), IN (red dots), and STIM (gray dots) units are placed
in separate layers. The distance dependency is illustrated by
outgoing excitatory connections (blue lines) from single units
in the STIM and EX populations and outgoing inhibitory
connections (red lines) from single units in the IN population.

The visualization of neuronal activity data poses challenges
due to the high dimensionality and time dependence of the data.
Historically, electrophysiological data have been recorded from
few electrodes or from many electrodes with undefined relative
and absolute spatial coordinates (see, for example, the pioneering
work of Krüger and Bach, 1981). This is not a limitation for
recordings within the local cortical network where a neuron
can form a synapse with any other neuron and there is little
spatial organization. Furthermore, the fundamental interaction
in a neuronal network is considered to be a dynamics on a graph;
nodes solely interact via the edges of the graph. In this picture the
spatial embedding of the graph is arbitrary as the dynamics are
not constrained by the dimensions of physical space. Therefore,
neuroscientists developed concepts for visualizing correlation
structure and time dependence of neuronal activity in multi-
channel recordings in ignorance of spatial properties. A temporal
segment of activity of our example network is visualized in
Figure 2. Figure 2A is the spike raster diagram or dot display
in use for decades (explained in Abeles, 1982). Each row shows
the spike train of one neuron where spike times are marked
by dots. The rows either represent data of the same neuron in
several trials or, as here, data of simultaneously recorded neurons
in a single trial (Grün, 1996, Figure 6.2). The spike trains are
vertically arranged by neuron ID and in addition color coded by
population. The spike raster highlights global features of network
activity and generations of neuroscientists have been trained to

visually inspect these diagrams. For example, network synchrony
appears as a stripy vertical pattern even if individual neurons
only rarely participate in a synchronous event. The activation
of the stimulus population is reflected in the other populations
as an increased density of the dots. Epping et al. (1984) extend
the concept of the raster diagram by assigning a unique color
to the dots of a neuron. In this way multi-channel activity
observed over multiple trials can be superimposed. Figure 2B
shows spike counts along the temporal axis over neuronal units
demonstrating that the per-neuron spike count is similar for
the excitatory and the inhibitory populations. The spike count
along the vertical axis in Figure 2C is called the post-stimulus
time histogram (PSTH, Perkel et al., 1967a), originally computed
for an individual neuron observed over several trials. Later the
display was also called peri-stimulus time histogram. Here the
histogram is computed over simultaneously recorded neurons in
a single trial. The display uncovers the fluctuations of population
activity in time.

The development of adequate visualization concepts for
multi-channel neuronal data is an ongoing endeavor (Allen
et al., 2012). The cross-correlation function (Perkel et al., 1967b)
exposes the time-averaged relationship between the spike times
of two neurons. The snowflake diagram generalizes the concept
to three neurons (Perkel et al., 1975; Czanner et al., 2005).
Gravitational clustering (Gerstein and Aertsen, 1985; Gerstein
et al., 1985; reviewed in Chapter 8 of Grün and Rotter, 2010)
attempts to identify the emergence of correlated groups of
neurons, so called cell-assemblies, and the temporal dynamics
of the changing membership of individual neurons in such
groups without averaging over trials. The joint peri-stimulus
time histogram (JPSTH, Aertsen et al., 1989) generalizes the
cross-correlation function to visualize the dynamics of the
correlation between the spikes of two neurons in reference
to a stimulus. Later Prut et al. (1998) used the idea to
investigate the occurrence of spatiotemporal patterns in the
spike trains of three neurons, where “spatio” refers to the
abstract space of neuron IDs instead of physical space. Because
of the difficulties in determining statistical significance, Grün
et al. (2002) restricted the scope to patterns in the space of
IDs and for visualization mapped significant events, so called
unitary events, back into the spike raster diagram. Progress
in the theory of neuronal networks showed that propagating
spiking activity due to the stochastic nature of neuronal activity
is likely to exhibit in each instance a random sub-pattern
of spikes of some superset of neurons. Therefore, Schrader
et al. (2008) designed a matrix spanned by binned ongoing
time in both dimensions where matrix-elements represent the
cardinality of the intersection set of the neurons spiking at
the two respective time bins. With color-coded cardinality, in
this matrix repeatedly occurring propagating spiking activity
appears as a diagonal stripe on a noisy background. Torre et al.
(2016a) recently added assessment of statistical significance to the
method. Kemere et al. (2008) employ multi-channel recordings
to construct the time course of a multi-dimensional vector of
spike rates. A suitable projection to a lower dimensional space
reveals differentiable trajectories of network activity depending
on the experimental protocol (reviewed in Cunningham and
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A B

FIGURE 1 | Geometry and connectivity of a layered point-neuron network. (A) Schematic illustration of distance-dependent network connectivity using connectivity

pattern tables (Nordlie and Plesser, 2010). Each row represents source populations X ∈ {STIM, EX, IN}, and each column target populations Y ∈ {EX, IN}. The color

coding in each image shows the connection intensity between presynaptic neurons j and postsynaptic neurons i located in (xj , yj ) and (xi , yi ) with origin (0, 0) at the

center. The connection intensities are defined as the product between pairwise connection probabilities ǫYX (rij ) and synapse strengths gYXJ for each respective

connection. Gray values denote connection intensities of zero. (B) Illustration of one network instantiation with randomly drawn neuron positions and outgoing

connections from a subset of neuronal units. The colored dots represent individual units at their (x, y)-coordinates. Gray dots denote units in a stimulus (STIM) layer,

blue dots excitatory (EX) units, and red dots inhibitory (IN) units. Blue and red lines denote excitatory and inhibitory connections respectively, from a source unit (white

circles) onto neurons within the same or another layer.

Byron, 2014). Another line of work attempts to cope with the
combinatorial explosion of patterns in multi-channel spike trains
while maintaining sensitivity by the construction of a pattern
spectrum: a two-dimensional histogram spanned by the number
of spikes in a pattern, called pattern complexity, and the number
of occurrences of the particular patterns (Gerstein et al., 2012;
Torre et al., 2013).

Today, electrodes can be inserted into the brain in spatially
well-defined arrangements and cover distances at which the
spatial organization of the tissue is exhibited as in our example
in Figure 2. Thus, neurons are identified not only by a unique
neuron ID anymore but additionally by their position in physical
space. Since the raster diagram in Figure 2A does not provide
the researcher with all available information about the recording
situation, Figure 2D modifies the diagram to arrange the spike
trains on the vertical axis according to the x-coordinate of
the position of the emitting neuron. In contrast to the regular
spike raster, we observe inhomogeneous spatiotemporal features
in network activity. The spatially binned spike counts along
the temporal axis in Figure 2E, however, do not reveal any
unexpected structure. Thus, taking into account one coordinate
of the neurons in physical space hints at some organization of
neuronal activity. Nevertheless, a higher-dimensional analysis
seems to be required to uncover its origin, as the features of
spatiotemporal patterns in 2D can only be conjectured.

The emergence of planar wavelike spiking activity in 2D
networks was shown by Voges and Perrinet (2012, Figures 3–
5), but a 2D spatial visualization of the data could not faithfully
capture intermediate mixed patterns such as rings and spiraling
waves. Temporal snapshots of spatial activity show the evolution

of patterns, as seen in Mehring et al. (2003, Figure 5), Yger
et al. (2011, Figures 2, 12), Voges and Perrinet (2012, Figure 6),
and Keane and Gong (2015, Figure 1). Series of such snapshots
combined in an animation or movie can be informative, but
require settings to be defined beforehand, leaving only little
room for interactivity. With such non-interactive visualization
methods, crucial decisions about a figure or an animation thus
have to be made before a sufficient intuition about the data exists.
Flexible, interactive visualization techniques identifying relevant
dynamical features present in the data would have the potential
to avoid the tedious and time-consuming loop of refining
parameters and regenerating snapshots, animations, or movies.
In addition, high-dimensional and multi-modal data demand
adequate workflows for analysis, from raw data to statistical
measures, where interactive visual analysis methods can play a
major role. It is for example essential to get a basic understanding
of the datasets to better decide what statistical methods to use for
more elaborate analysis. Furthermore, interactive visualization
allows for explorative data analysis, including dimensionality
reduction of complex datasets, highlighting of data points, and
direct changes to visualization parameters.

For the development of supportive visual analytics tools,
Shneiderman (1996) introduced the so-called “information-
seeking mantra.” It describes the steps of common visual analysis
workflows: “overview first, zoom and filter, details on demand.”
The first step provides a superficial “overview”of the data. In
the second step, “zooming” into the dataset allows the user to
get a more detailed view on a chosen data subset. Application
of “filters” implies a change in dimensionality of the data or
the extraction of particular features. Finally, Shneiderman (1996)

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2018 | Volume 12 | Article 75

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Senk et al. VIOLA

A

C

D E
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FIGURE 2 | Spiking activity of a layered point-neuron network model. (A) Spike raster plot for STIM (gray dots), EX (blue dots), and IN (red dots) units from a

simulation of the network instantiation depicted in Figure 1B. Each individual dot corresponds to a unit ID vs. spike time; only the spikes of every fifth neuron are

shown in the raster. The color coding for each population is reused in the subsequent panels. (B) Spike count histogram across units in each population, calculated

using a bin width of 625 units, sorted by neuron index j. (C) Spike count histogram for each population across time, computed using a temporal bin width 1t = 1ms.

(D) Sorted spike raster where dots correspond to the spatial location (projected onto the x−axis) and spike times of each unit. The raster-plot density is diluted as in

(A). (E) Spike count histogram across spatial bins with a width 1l = 0.1mm.

proposes that visualization tools should enable the user to access
all details of selected data points.

To not restrict the user to only one visual representation of
the data, Wang Baldonado et al. (2000) established the concept
of “coordinated multiple views.” Coordinated multiple views is a
paradigm for the implementation of visual analysis applications
that “use two or more distinct views to support the investigation
of a single conceptual entity” (Wang Baldonado et al., 2000, page
110). The paradigm has been applied in various contexts (see for
example Roberts, 2007). Basic coordination of views addresses
selection operations (e.g., whether to display only a subset of
the data) and also includes immediate control over animated
frames (e.g., animation time step and playback speed for time-
resolved data). In addition, each view may have an exclusive
(view-specific) set of user controls and settings.

The activity exhibited by our example network is characterized
by a non-trivial interplay between neuronal populations resulting
in non-stationary activity in time and space. Let’s assume: The
neuroscientist needs to identify the propagation of spiking
activity within and across individual layers over time and space,
and simultaneously observe population activity measures such

as the LFP. This is an opportunity to exercise the concepts
by Shneiderman (1996) and Wang Baldonado et al. (2000).
Visualization in most cases focuses on a specific aspect or
hypothesis to be tested by analyzing the corresponding data.
Therefore, for each task the neuroscientist combines a different
set of views. Particular views are frequently created ad hoc
specifically for the research question or experimental protocol,
as they may not be provided by the visualization framework in
use. Hence, the analysis software environment needs to facilitate
fast prototyping of visualizations and an interface to a computing
programming language used in the scientific domain. This focus
on a specific aspect under investigation by the neuroscientist
necessarily entails an individual level of reduction or aggregation
of the data. A particular visualization realizes this preprocessing
of the data with methods like binning of data points in time
or space, or by filtering out a certain subset of parameters of
each data point. For instance, the spike raster plot in Figure 2A

displays the individual spikes of all neurons whereas the bar chart
in Figure 2C visualizes the total number of spikes per time step.
The visualization abstracts away from the spikes of individual
neurons and turns the focus to the whole population. On the one
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hand the visualization simplifies interpretation by presenting less
detail, on the other hand the reduction increases the chance of
wrong or inaccurate conclusions. Historically, Vaadia et al. (1988,
Figure 4 middle) illustrate a potential misinterpretation of the
PSTH due to variability in the onset of the neuronal response:
a neuron observed over multiple trials exhibits in the PSTH a
smooth increase in spike rate, whereas the raster plots show in
each trial an abrupt increase in spike density with a variable onset.
Grün et al. (2002, Figure 8) demonstrate how suchmisalignments
can propagate to measures of statistical significance: with respect
to one trigger event the data show surplus spike synchrony simply
due to non-stationarity of spike rate, whereas with respect to
another trigger the rate is stationary and no excess synchrony
is detected. However, if a multi-view approach is implemented
that combines various visualizations, more than one aspect of the
data (more than one visual representation of differently processed
data) can be inspected simultaneously and can be put into
relation. By interactive addition and removal of certain views,
this process can be made flexible and thus address changes in the
analysis goals or to consider findings during the analysis. Finally,
we require a solution that allows for integration with platform-
independent web-based technologies to keep the accessibility of
the tool as high as possible.

A variety of coordinated multi-view applications for the
interactive analysis of activity data has been described in
literature, which generally follow the information-seeking
mantra. For models of neuronal systems, the NEURON
simulation environment (Carnevale and Hines, 2006) provides
a graphical user interface based on a modified version of
the discontinued InterViews library in addition to scripting
in HOC and Python (Hines et al., 2009). The software itself
offers the possibility of drawing multiple concurrent windows
with dynamic and interactive plots of voltages, currents,
morphology shapes, and phase planes that are updated while
simulations of single-neuron models or neuron networks
are running. 3D visualization is not directly supported, but
NEURON’s Python bindings also allow running simulations
to interact with modern visualization software, as for example
incorporated by NeuronVisio (Mattioni et al., 2012) that
relies on the OpenGL-accelerated Mayavi visualization toolset
(Ramachandran and Varoquaux, 2011). MOOSE2, another
neural simulation environment, has a scripting interface with
Python and graphical displays based on Matplotlib, PyQt,
and OpenGL. The simulation software for large-scale neuronal
network models NEST3 (NEural Simulation Tool, Gewaltig
and Diesmann, 2007) does not provide built-in interactive
visualization. The original authors state this in their first report
(Diesmann et al., 1995) as a design decision based on two
considerations. First, in 1995 the life time of graphics frameworks
and libraries appeared much shorter than the envisioned period
of relevance of a simulation code. Thus, only a software
stack with a strict separation of levels would ensure platform
independence and sustainability of NEST. Second, a basic idea
of the project is to contribute to a software environment for

2https://moose.ncbs.res.in
3http://nest-simulator.org

“in virtu” now often called “in silico” experiments (restated
in Diesmann and Gewaltig, 2002). In the concept of in virtu
experiments, the authors state, simulated data should be analyzed
with the same analysis tools as experimental data to maximize
comparability and reproducibility. At the same time researchers
at the department of Physiology and the Center for Neural
Computation of the Hebrew University in Jerusalem started
to work on an integrated analysis and visualization platform
based on Open Inventor4 called Neural Data Analysis (NDA)
but the project was abandoned with the advent of MATLAB
(Vaadia, 2017). Recently, Nowke et al. took on the challenge
to develop a simulator independent visualization platform for
brain-scale neuronal networks. The VisNEST (Nowke et al., 2013,
2015) framework visualizes the spiking activity of multi-area
network models (using as an example Schmidt et al., 2017) in a
virtual environment. The time-resolved activity data is mapped
onto a 3D brain model. The mapping enables the researcher
to interact with the model in 3D to expose otherwise occluded
parts of the brain and to relate brain activity to anatomy.
In a different view, a dynamic 3D graph represents the time
course of spike exchange between different cortical areas. This
representation of spatial information can be combined with
classic charts such as spike raster plots. The tool does presently
not account for the spatial organization of activity within brain
areas. Apart from VisNEST, other standalone interactive multi-
view applications have been developed for simulated spiking
data, for instance SNN3DViewer (Kasiński et al., 2009) and
ViSimpl (Galindo et al., 2016). SNN3DViewer focuses on 3D
neuronal networks by visualizing individual neurons and their
connections schematically, including interactive control over the
3D visualization (navigation, scale). ViSimpl combines a 3D
particle-system-based visualization of the simulated neuronal
network using color coding for the activity, supplemented by a set
of data charts for single neurons and populations. Geppetto5 is a
web-based modular platform for visualization and simulation of
complex biological systems including spiking neuronal networks.
Unlike the visualization concepts along which these tools have
been developed, we here focus on concepts that expose the spatial
organization of neuronal activity in layered networks and scale to
signals from several square millimeters of brain surface.

Beside the aforementioned softwares applicable with spike
data, general-purpose multi-view frameworks exist with different
design goals and contexts of use (Roberts, 2007). One generic
high-level example is GLUE6, a Python and OpenGL-based
multi-view framework. Another powerful framework is the now
neglected OpenDX7.

The present study aims at web-based visualization. Easy
access to libraries of common plotting functions and methods
(scatter, line, surface plots etc.) is provided for most common
programming languages (C++, Python, MATLAB, etc.).
Nevertheless, a large amount of time and resources is still
required to construct fully interactive visualization tools

4https://www.openinventor.com
5http://www.geppetto.org
6http://glueviz.org
7https://web.archive.org/web/20180305220332/http://www.opendx.org
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adhering to the principles outlined by Shneiderman (1996)
and Wang Baldonado et al. (2000). Including interactivity and
time synchronization between different visualizations may be
demanding in terms of software design and development time,
however, existing plotting libraries can be used to realize the
individual visualizations.

2. RESULTS

For the analysis of data, static figures can help to highlight
certain characteristics of the data or show results relevant
for a particular hypothesis. However, static figures hamper an
exploratory analysis of data as the adaption of data filters,
visualization parameters, or changes in the perspective (in case
of 3D visualization) require a re-rendering of the figure resulting
in a very slow visual analysis process. Interactive visualization
tools tackle these shortcomings by offering multiple views
on the same data simultaneously, for example by projecting
the data across different dimensions. This allows the user
to investigate data at different levels of detail, and to adapt
visualization parameters in a dynamic and explorative manner
as the rendering of the visualization is continuously updated.
Throughout this section, we use the spike output of a spatially
extended point-neuron network as an example to demonstrate
appropriate visualization types in an interactive and multi-view
framework (see alsoVideo 1 in the SupplementaryMaterial). The
example network is introduced in Section 1.1 with a network
illustration in Figure 1 and an example of conventional activity
visualization in Figure 2. Neurons in this network are placed in
2D sheets, and connections are drawn using distance-dependent
probabilities between pairs of neurons. The model represents
spatially heterogeneous neuronal activity across a 4 × 4mm2

cortical sheet. As we here focus on visualization methods in
VIOLA, we refer the reader to Sections 3.4 and 3.5 for the
details on our network implementation in NEST (Kunkel et al.,
2017), Python-based preprocessing steps and predictions of a
mesoscopic population signal, the local field potential (LFP). We
next describe in detail the different views of VIOLA and their use
cases.

2.1. Views of VIOLA
VIOLA incorporates two conceptually different visualization
types with two separate “views” each. The first visualization
type (view 1 and view 2 in Figure 3) focuses on instantaneous
snapshots of data across space. The second visualization type
(view 3 and view 4 in Figure 4) shows time series of data. We
first present the visualizations of preprocessed data described in
Section 3.1. Views 1–3 may also be used to visualize raw data
(non-preprocessed) as shown in Figure 5.

2.1.1. View 1: 2D Spike-Count Rate
The 2D spike-count rate view (Figure 3A, Video 2 in the
Supplementary Material) shows instantaneous activity data in
separate sub-panels for individual populations. The values in
each panel correspond to the instantaneous spike-count rate νβ

in one discrete spatiotemporal bin indexed by β = (lx, ly, k) in
our preprocessed data format (lx and ly denote spatial bin indices

along the x−and y−axes, and k denotes a temporal bin index).
In this format, each spike event is added to the corresponding
spatiotemporal bin as described in detail in Section 3.1. The
color bar denotes bin values in units of spike counts per second
(spikes/s) and is shared between all sub-panels. This view
provides a side-by-side comparison of the spatially resolved
activity in each individual population. For a larger number
of populations (than shown here), it is, however, difficult to
relate the activity of one population to another population by
visual observation. This problem can however be amended by
combining multiple population activities in a single scene.

2.1.2. View 2: 3D Layered Spike-Count Rate
In the 3D layered spike-count rate view (Figure 3B, Video 3
in the Supplementary Material), we combine the activity of all
network layers in one 3D-animated scene. The view incorporates
the possibility to show also other activity measures, for example
the population LFP. The layers in view 2 correspond to the
different sub-panels for each population in view 1. Different
populations are here assigned unique colors. We chose to
illustrate instantaneous spike-count rate νβ by dynamically sized
cubic boxes. The box sizes are by default scaled such that their
volumes are proportional to νβ at each time step, thus low-
activity bins may still be visualized simultaneously with high-
activity bins.

View 2 offers multiple possibilities for interactive adaptation
of the visualization. As suggested by the information-seeking
mantra (Shneiderman, 1996), the user can manually select which
part of the data to show, for example by switching on or off
individual layers that may occlude visibility of activity in other
layers or by setting the horizontal x− and y−limits of the layers.
It is also possible to reduce the opacity of the colored boxes or
to scale their side length linearly. The camera can be set either
to an orthographic or perspective-corrected projection mode.
Dependent on the projection mode, the camera can be moved
freely and allows for zooming, panning and rotating the scene.
One can easily reset the camera to its default position by the click
of a button or select different preset camera positions such as on
top or to the side.

The major benefit provided by view 2 over view 1 is the
possibility to visually relate the activity in one layer to other
layers as all layers are drawn in the same 3D scene. As box
volumes are computed from instantaneous spike-count rate
values, this view brings the attention of the user to spatial
regions of the network with high local activity. While views 1
and 2 offer flexible visualizations of instantaneous activity across
space, we next consider scenes capable of showing time-series
data.

2.1.3. View 3: Scrolling Spike-Count Rate Plot
The scrolling spike-count rate plot (Figure 4A, Video 4 in the
Supplementary Material) is a time-series representation of the
data that neglects spatial features of the network and its activity.
It shows the time evolution of the total spike-count rate νk (black
line), defined as the sum over the spike-count rates of all spatial
bins and populations divided by the number of bins, together
with the relative rate of each individual population (colored
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A

B

FIGURE 3 | View 1: 2D spike-count rate. (A) shows the instantaneous spike-count rates, defined as the number of spikes per second occurring within a

spatiotemporal bin, using 2D image plots spanning the spatial x− and y−axes of the network layers. One separate image plot is created for each network population

and denoted by the population name (EX, IN). The color map and corresponding color bar for instantaneous spike-count rate values are shared among all

populations. In this and subsequent panels, we show the screen shot of the view itself to the left and highlight its components to the right. View 2: 3D layered

spike-count rate. (B) combines the data shown in (A) in a single 3D scene by stacking the different population data on top of each other. The size of each cubic

marker denotes the magnitude of the corresponding bin-wise instantaneous spike count, and its position corresponds to the spatial positions of the respective bin.

Unique colors are assigned to each layer as indicated by the population names. Projections of the spike counts along the x− and y−axes are displayed toward the

corresponding edges. The optional bottom image plot layer shows the spatial variation in an LFP-like signal at the present time step of the rendering loop.

stacked plot). νk is defined as νk ≡ 1/(LxLy)·
∑

X

∑

lx

∑

ly
νβ with

β = (lx, ly, k) and where Lx and Ly denote the number of bins
along the x− and y−axes, and neuronal populations are denoted
X. The per-population spike-count rates can therefore be inferred
by multiplication of the total rate with the fraction of spiking in
individual sub-populations. The color coding of each population
corresponds to the one used in view 2, but can also be read from
the bar to the right. The plot is centered on the current time step
(vertical white line indicator) when scrolling through data points
in the animation. It allows for interactive change of the width of
the visible time window and also permits to manually select or
deselect individual populations to be displayed. View 3 provides
a temporal overview of the data and allows to identify time
intervals of interest, for example, due to an external perturbation.

2.1.4. View 4: Scrolling Spike-Count Rate Iso-Surface

Plot
The instantaneous spike-count rates of our example network
are time-series activity data with 2D spatial structure. In order
to visualize such data without loss of dimensionality, a 3D
representation is in general required (unlike for instance view
3). The scrolling spike-count rate iso-surface scene in Figure 4B

(and in Video 5 in the Supplementary Material) simultaneously
shows the evolution of network activity in space (as in views 1
and 2) and time (as in view 3). The rate iso-value surfaces of each
population is rendered using the computer-graphics algorithm
“marching cubes” (Lorensen and Cline, 1987). The color coding
of the individual populations matches the coding used in views
2 and 3. In terms of user interactivity, the user can set the
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FIGURE 4 | View 3: Scrolling spike-count rate plot. (A) is a time-series representation of the data across a user-variable time interval around the present time step

of VIOLA’s rendering loop, indicated by the vertical white line. The instantaneous total spike-count rate summed over all populations is drawn using a black line. The

relative fraction of spikes of each population to the total spikecount rate is shown as a stacked, normalized histogram. The population outputs are color coded as in

view 2. View 4: Scrolling spike-count rate iso-surface plot. (B) provides a 3D representation of the spatiotemporally resolved spike-count rates of one selected

network population across a user-variable time window. The spike-count rate is rendered as a closed iso-value surface in the color of the respective population and

extends in both space (x− and y−axes) and time (delay axis). The present time step in the visualization is indicated by a time lag of zero on the time-delay axis. At zero

time delay we also show the LFP signal corresponding to the present time step in the animation.

threshold (isolation) for the surfaces. Furthermore, the user can
select which populations to show, vary their opacity level, apply
a temporal offset to individual populations, change the width of
the time window, and take full control of the viewpoint in the 3D
scene as in view 2.

2.1.5. Raw Data Views
In addition to visualizing spatiotemporally binned, preprocessed
data, views 1–3 can also be used with raw simulation output
files formatted according to the description in Section 3.1. With
raw file output, view 1 (Section 2.1.1, Figure 5A) displays for
each animation time step a square marker for each spike time
tsj at the spatial location (xj, yj) of neuron j in population X.

The square marker color is population specific. Likewise, view
2 (Section 2.1.2, Figure 5B) shows boxes of equal size for each

spike event, colored according to population. The view allows,
as with precomputed spike-count rates, to show spiking activity
in each population in the same scene. We here show a snapshot
of the spiking activity in perspective mode, and top-down. The
main interactive feature of views 1 and 2 incorporated with
raw data files is the option to reduce the neuron density to
be displayed. Similar to the visualization of preprocessed data
with view 2, individual layers can be activated/deactivated, one
can switch between the orthographic and perspective viewing
modes, and the camera can be positioned freely. View 3 (Section
2.1.3) applied to raw data is shown in Figure 5C. The temporal
bin size of the animation is then equal to the simulation time
step dt (one spike therefore results in the spike count rate 1/dt
in units of spikes/s for that instant). The total spike count
(black line) is summed over all neurons, in contrast to the sum
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A B C

FIGURE 5 | Views 1–3 applied to raw data formats. (A) View 1: Each dot corresponds to a single spike event of a neuronal unit at its spatial location in the network.

(B) View 2: Perspective top-down view onto stacked layers of (A). (C) View 3: The stacked plot has the temporal bin-size of the simulation resolution. The black trace

shows the spike count of all neurons per time bin (in units of spikes/s).

over the population-averaged per-bin rates as in the case of the
preprocessed data. The relative spike count per population is
shown as a stacked plot normalized by the total amount of spikes
in each temporal bin.

2.2. VIOLA Use Case
Numerical model development representing a physical system
comprises implementation, simulation, analysis as well as
comparison, validation, and verification steps. Such model
development is important for building hypotheses and aiding
interpretation based on experimental data and observations.
We here demonstrate how the views described above can be
integrated with the development of a spiking point-neuron
network model. For this purpose, we can hypothesize that
transient external input to a layered spiking point-neuron
network model with distance-dependent recurrent connections
results in propagating spatiotemporal activity. We wish to
assess the spatial extent and temporal duration of the network
response to external perturbation and whether or not the
unperturbed network state is recovered. In this use case we
do this assessment by visual inspection prior to any detailed
numerical analysis, focusing on the importance of coordinated
multiple views (Wang Baldonado et al., 2000; Roberts, 2007)
and Shneiderman’s information-seeking mantra (Shneiderman,
1996). For our hypothesis above we will therefore use our
implementations of views 1–4 in VIOLA to rapidly analyze our
network activity. We show that a combination of the different
views is needed to asses the relevant aspects in the data, which
is the evoked response to a network perturbation.

The layered point-neuron network illustrated in Figure 1B

consists of an excitatory (EX) and an inhibitory (IN) neuronal
population plus one stimulus population (STIM). Each neuron
is placed randomly within square sheets. EX, IN and STIM
units are connected using distance-dependent rules as illustrated
in Figure 1A. The connectivity is periodic across boundaries
(torus connectivity). The detailed network description is given
in Section 3.4. The main simulation output is spike times of

individual neurons, neuron locations and a synthetic LFP signal
(see Section 3.5 for details). Our initial preprocessing steps and
corresponding data formats are described in Section 3.1.

2.2.1. Temporal Features of Evoked Network Activity
We first focus on ongoing activity of the network in the
time domain, as provided by view 3. This view implements a
scrolling spike-count rate plot which ignores spatial information.
Interactive control of the view’s time window allows for quick
identification of events of interest from the full duration of
the simulation (Figure 6A). One such event that is clearly
differentiated from other ongoing activity is the activation of
the external STIM population at the animation time step of
500ms. Pausing the animation at 504ms and zooming in onto
the event (Figure 6B) allows for a detailed look on how the
total spike-count rate (black trace) increases and oscillates while
the stimulus is active, and confirms that the stimulus duration
was 50ms. The color-coded stacked histogram reveals that
during stimulus activation a large relative fraction of spike
events is contributed by the STIM units (gray), while the
relative fraction generated by the recurrently connected EX
(blue) and IN (red) units is reduced. We may also conclude
that the transient onset of the stimulus results in temporally
brief imbalances between excitatory and inhibitory populations
in the network as the relative rate of the inhibitory population
drops with regular intervals during the stimulation period. The
imbalances occur at the stimulus onset and during each period
of the resulting network oscillation (from recurrent interactions
between excitatory and inhibitory neurons). This network spike-
rate imbalance is even more pronounced when the STIM activity
is hidden (Figure 6C). We note, however, that the rate balance
averaged over the stimulus duration is similar to time-averaged
rate balance in the non-perturbed state.

From the visualization we can also infer that the external
perturbation to the network does not result in a shifted network
state after the stimulus is switched off. Overall rate fluctuations
and relative fractions of spike-count rates appear comparable
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A B C

FIGURE 6 | Identifying a time interval of interest with view 3. (A) The spike-count rate summed over population-averaged rates and the relative contributions by

populations EX, IN, and STIM shown for a time window of ±500ms around the current time step of the animation. (B) Same as (A), but with a narrower time window

of ±70ms (indicated by the green frame in A), highlighting the activation of the STIM population and corresponding network response. (C) Same as (B), but with the

STIM contribution turned off.

before and after the stimulus period, unlike networks that
may display multi-stable patterns of activity (Litwin-Kumar
and Doiron, 2012; Miller, 2016) wherein their state can shift
from one attractor to another either spontaneously or due to a
perturbation.

2.2.2. Spatial Features of Evoked Network Activity
Having identified a time segment of particular interest (the
stimulus duration), we next exploit view 1, the 2D spike-
count rate view, and focus on spatial aspects of the evoked
network activity. Figure 7 shows a series of snapshots from the
instantaneous spike-count rate animation across space for the
EX (top row) and the STIM (bottom row) layers. Snapshots
are shown for successive bins of width 1t. The first three
columns in Figure 7 show spontaneous activity of the EX units.
Thereafter the STIM population is switched on, as seen in the
fourth column of the bottom row. The activity of the STIM
layer is by construction confined to a circle at the center of the
network. As the activity of the NSTIM units in the STIM layer
is governed by Poisson processes with rate expectations νSTIM,
its spike intensity remains fairly constant (except for the bin at
500ms as the time bin is centered on the time step). In layer
EX, the stimulus elicits an increase in activity spreading outwards
from the center. This response dies out after a few milliseconds
due to recurrent inhibition, but reoccurs regularly as reflected by
the oscillatory behavior observed in Figure 6B. The time step at
504ms highlighted by the green outline is the same as in Figure 7
and latter Figures 8 and 9.

2.2.3. 2D and 3D Views of Spatial Activity
In order to relate the spatial relationship between activity in
individual populations, we compare in Figure 8 three different
layer-wise animations of neuronal activity. View 1 (Figure 8A)
shows individual 2D image plots for the spike-count rates per
population, with a shared color bar coding for instantaneous
spike-count rate values. This view offers an accurate spatial
representation of network activity in temporal bins of width 1t,
showcasing the locality of the STIM layer activity and the wider
spread of evoked activity in the EX and IN layers. This view

does not, however, offer interactive features except time control
of the animation (shared with views 2–4) and global scaling of
the color-value mapping (sensitivity control, shared with views 2
and 3).

The 3D-scene provided by view 2 adds additional interactive
features and incorporates the layer-resolved data of view 1 in
one animation (Figures 8B,C). Figures 8B,C show the same
temporal snapshot of activity as in Figure 8A. The view shows
also the spatial variation of the LFP signal that we synthesized
from network activity. The LFP signal, here shown as image
plot with a color-coding reflecting its magnitude and sign, is
more difficult to relate to the ongoing activity, as it is inherently
a signal driven by past spiking activity (resulting of delayed
synaptic activation on postsynaptic neurons from spiking activity
in presynaptic neurons, cf. Section 3.5). We then compare rate
values of one spatial bin and one population to other spatial
locations and other populations through their different color
codings and cube sizes. An observation is that activity in the EX
and IN layers are typically confinedwithin the same spatial region
of the network, while a larger fraction of the network is quiescent
at the time. This observation can for example explain high
variability in interspike-intervals of individual neurons (Keane
and Gong, 2015), as neurons may fire frequently while fronts of
activity spread across the network and remain quiet until the next
burst of activity.

In terms of using interactive features offered in view 2, we
turn off the orthographic mode of Figure 8B and go back to its
default 3D perspective in Figure 8C. We also rotate the viewpoint
in order to directly focus on highly active parts of the network.
Furthermore, the different layers of the network and LFP are
offset vertically, with dynamic projections of the sum of spiking
activity across each respective spatial axis for each network layer.
From this setup of view 2, we can better infer the activity in
each individual layer, including that of the LFP layer, without
switching off individual layers.

2.2.4. Spatiotemporally Resolved Network Activity
We finally investigate network activity in space and time using
the 3D scene provided by view 4. Similar to the scrolling
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FIGURE 7 | From spontaneous to evoked activity, resolved in time and 2D space. Time frames of populations EX (first row) and STIM (second row) are captured from

view 1 every 1ms. After three frames showing spontaneous activity of population EX, the STIM layer is activated (first visible in the fourth column, at 500ms), resulting

in a repeated pattern of outward spread of activity in the EX layer. The time step highlighted by a green outline (at 504ms) corresponds to the animation time step in

Figure 6.

FIGURE 8 | Coordinated views on a temporal snapshot of the neuronal activity. (A) Instantaneous spike-count rates in layers EX, IN and STIM using view 1. The

animation time step of 504ms is identical to the one in Figures 6 and 7 in this and subsequent panels. (B) Orthographic top-down view onto stacked population

layers and LFP image plot with view 2. (C) Perspective view with large layer separation, including summed spike counts projected toward the layer edges in view 2.

spike-count rate plot of view 3, view 4 allows full control
of the time axis. The activity of all populations EX, IN and
STIM is displayed for a wide (200ms) temporal segment using
red, blue and gray iso-surfaces, respectively, in Figure 9A. We
have centered the current time step (at 504ms) on the evoked
activity in the STIM layer (highlighted in Figure 7). It is already
possible to identify activity patterns confined in space and
time. However, it remains difficult to assess how spontaneous
network activity changes in response to the stimulus due to
occlusion of one surface by another, an inherent issue with
multiple solid surfaces. In Figure 9B we therefore hide the
activity of the IN layer and focus on the activity in the EX layer.
The surfaces correspond to the bin-wise instantaneous spike-
count rates at an isolation threshold of 100 spikes/s. Increasing
this threshold to 360 spikes/s (Figure 9C) reveals that regular
bursts of high rates occur at the center of the layer, in the
period when the STIM layer is activated. In the other views,
these bursts may be seen as rate oscillations (Figure 6) or
pulsating spatial activity (Figures 7 and 8). We here show that

the attenuation of activity radiating outward from the center is
rather strong.

Using view 4, both the oscillation frequency and the outward
spread of activity in the EX population can be assessed. We
highlight the STIM activity by reducing the opacity of the EX
surfaces in Figure 9D. This reduces occlusion problems present
with multiple overlapping opaque surfaces, and thus allows
relating the activity in these two populations to one another. A
smaller time segment of the scene is shown in panels E and F
where we also demonstrate different camera positions. Rotating
the camera allows us to observe the synthesized LFP signal at the
current time step, and the corresponding network interactions
resulting in a strong LFP fluctuation. We also observe the
temporal offset between stimulus onset and a response in the EX
activity as shown in Figure 9F.

In contrast to the previously discussed applications of views
1–3, the 3D-scene of view 4 allows to relate both temporal
and spatial aspects of the spiking activity of different neuronal
populations and the LFP signal to one another. With this view,
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FIGURE 9 | Spatiotemporally resolved activity. (A) Spike-count rates across time and space of populations EX (blue), IN (red), and STIM (gray) shown with view 4 for a

time window of ±100ms around the present time step of the animation. The isolation threshold is set to a rate of 100 spikes/s. The animation time step is identical to

the one in Figures 6–8 in this and subsequent panels. (B) Same as (A), but with IN activity turned off. (C) Same as (B), but with an increased isolation threshold of

360 spikes per second. (D) Same as (C), but with reduced opacity of layer EX activity and an isolation threshold of 195 spikes/s. (E) A narrower time window

(±55ms) and shifted camera position (isolation threshold of 195 spikes/s). The image plot at a delay of 0ms shows the synthesized LFP signal across space.

(F) Same as (E), but with the camera position rotated around the vertical z−axis.

we can get an overview of a large time segment and several
populations and then use its incorporated interactive features
in order to explore the network activity under influence of the
stimulus. The focus of this view lies on highlighting qualitatively
interesting features of the data on spatiotemporal scales such as
the oscillating activity of EX population surrounding the STIM
location (as in Figure 9C) or the temporal offset between STIM
and EX seen in Figure 9F. Views 1 and 3, however, better resolve
quantitative rate values or temporal offsets, respectively, than
views 2 and 4.

3. METHODS

3.1. Data Formats
The data we consider for visualization are sequences Sj of spike
times tj = ∑

s∈Sj δ(t
s
j ) of a neuronal unit j ∈ X located at

coordinate (xj, yj), where X denotes a neuronal population of
size NX . Individual spike times tsj are constrained to a discrete

grid n · dt for n ∈ {0, 1, 2, ..., nsteps − 1}, where dt is the time-
resolution of spike acquisition and nsteps the number of time steps
in the acquisition period T. We assume that the raw spike data
to be visualized is available in two pure text files per population

X. The first file contains two columns with values separated
by a white space. Its first column contains integer numbers
representing “global neuron identifiers” (neuron IDs) j, while the
second column contains corresponding spike times tsj in units of

ms. This data format, first introduced for experimental data and
reviewed in Rostami et al. (2017), is the default output format
for spike data of the neuronal network simulator NEST (Kunkel
et al., 2017). While the floating point data type is sufficient for
displays and the computation of single-neuron and population
spike rates, the format is only safe for correlation analysis if the
time step is a power of two (Morrison et al., 2007, A.2). The latter
guarantees that spike times have a representation in the data type.
An alternative is to use the original definition of the format and
denote spike times by the integers n, thus expressing time in units
of the resolution of the grid. The second file contains three space-
separated columns. Its first column contains unit IDs j, while
columns two and three contain the corresponding coordinates
xj and yj in units of mm. NEST internally represents networks
as a graph where edges denote connections. Neurons cannot be
interrogated for their location and are only identified by their ID,
thus the information on the location must be defined and stored
explicitly.
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We consider another text-based data format for the
visualization of spike data that are preprocessed by a temporal
and spatial binning procedure. For the temporal binning we
define a temporal bin size 1t as an integer multiple of the
acquisition time resolution dt. For spatial binning of neuron
positions along the x− and y−axes we define the bin widths 1l.
The third spatial dimension (z−axis) is ignored. Assuming an
acquisition period T and the side length L of the centered square
network domain, the number of temporal bins is K = T/1t and
the numbers of spatial bins along each axis {Lx, Ly} = L/1l.
A spatiotemporal bin is indexed by the length-three tuple of
indices β = (lx ∈ {0, 1, ..., Lx − 1}, ly ∈ {0, 1, ..., Ly − 1}, k ∈
{0, 1, ...,K − 1}), spanning x ∈ [lx1l − L/2, (lx + 1)1l − L/2),
y ∈ [ly1l − L/2, (ly + 1)1l − L/2) and t ∈ [k1t, (k + 1)1t).
In each spatiotemporal bin, we sum for every population X the
number of spike events and divide by the temporal bin size 1t.
We refer to this measure as the instantaneous spike-count rate νβ

in units of 1/s. The preprocessed data is contained in one single
file per population with four space-separated columns. Indices
lx, ly, and k for each spatiotemporal bin are put in columns one,
two, and three, respectively, while the 4th column contains the
corresponding rate value. Rows are ordered in iteration running
order according to k ∈ [0, 1, ...,K−1] over all lx ∈ [0, 1, ..., Lx−1]
and finally over all ly ∈ [0, 1, ..., Ly − 1]. Row entries where
νβ = 0 are not written. The same data format is used to
represent the evolution of spatially organized analog data with
spatial resolution 1lφ . The unit of the data depends on the actual
measure, for example mV in case of the LFP.

3.2. Reference Implementation
We have made implementations of the visualization types
discussed throughout this paper available in the tool VIOLA
(VIsualization Of Layer Activity). Figure 10 illustrates the
web-based JavaScript framework integrating the different
visualizations we refer to as “views.” A central class named Main
carries out the initialization and coordination of the views.
The Graphical User Interface (GUI) is comprised of two main
components, the Setup Panel and the Main Panel. The
Main Panel also serves as a container for the views. The
Setup Panel is the first entity presented to the user when the
application is opened in a web browser. It serves mainly to specify
the data types to be loaded and the basic data features (spatial
dimensionality, time resolution) and visualization features such
as the colors for each neuron population. Parameters can be
set manually or be loaded from configuration files, for example
specifying whether to load raw or preprocessed data. These
configuration files are JavaScript Object Notation8 (JSON)
files specifying the format of the loaded data, file names, and
preset values for the visualizations. After confirming the entered
information, the Main.setup() function extracts the entries
and provides them globally to the other components. The Main
Panel shown afterwards is used to load the input data files
from the local file system using JavaScript FileReader, which
includes setting up the internal data structure giving a coherent
access to the data to be visualized. The Main.init() function

8http://www.json.org

then initializes the rendering loop, which is built into the web
browser and controls the rendering of the various views. The
Main.render() method is executed periodically by built-in
functionality of the browser, which is further used to synchronize
the rendering of all views. This is necessary as the rendering
of an individual time step needs different amount of time per
view. For example, rendering a complex 3D scene is slower
(because it need more computational resources) than rendering
a less complex 2D plot. All views must have finished rendering
before the next rendering step is triggered. Each rendering call
is triggered by updating the global timeStepIndex through
the browser. The update of the timeStepIndex calls the
rendering loop, which redirects the rendering call to all views.
For rendering the data, all views access the loaded simulation
data structure as part of the Main object.

The timeStepIndex variable can be controlled in two
modes. First, it can be manually set by the user via a slider
widget. The slider widget enables the user to scroll manually
along the time axis, thus offering a simple navigation through
the time series. Second, the user can start an animation of the
loaded data set by pressing a start button. This triggers a periodic
update of the timeStepIndex. As both manual and periodical
updates of the timeStepIndex trigger the same downstream
functionality for updating the views, manual navigation through
the time series can be combined with automatic updates of the
timeStepIndex. In case the animation is running, manual
intervention by the user overrides the periodic update of the
timeStepIndex, such that the shown data item (time step)
corresponds to that manually selected one. The animation is
continued from this manually selected time step.

All views offer view-specific selectors for visualization
parameters. These parameters are read in and used in each render
call.

3.3. 2D and 3D View Implementations
This section describes the visualization algorithms used with
the different view implementations in VIOLA as introduced
throughout Section 2. As the output data produced by the
simulation are scalars organized on a regular grid (related to
the neuron’s position), visualization methods applicable to scalar
data are employed as well as standard chart types (Hansen and
Johnson, 2011). View 1 implements a standard image plot in
which the color of each spatial bin represents a spike-count rate
value. The display maps a binned measure of neuronal activity
on a color by using a lookup table ranging from black to white
over red and yellow (often referred to as “red hot” or “white hot”
lookup table). We select this lookup table as it is widely used and
offers (if non-linear interpolated) equidistant colors according to
the CIE L*a*b* color space [EN ISO 11664-4 from 1976]9. This
color space is designed to represent equidistant colors according
to human perception: a color twice as light in CIE L*a*b* space
is also perceived twice as light by a human user (Fairchild, 2013).
Such a heat map (Spence, 2014) facilitates the representation of
the spatial structure of the data.

9https://www.vis4.net/blog/posts/mastering-multi-hued-color-scales
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FIGURE 10 | Flow chart of VIOLA’s components. VIOLA incorporates two main parts: “initialization” (top) and “run time” (bottom). The initialization procedure defines a

Setup and Main Panel in VIOLA’s GUI and the corresponding Main.setup() and Main.init() functions. The Main.setup() function is used for setting

initial values, while the Main.init() function allows for loading datasets with parameters that depend on setup values. The Main.init() function also

instantiates the different views in the application. The run-time component of VIOLA uses a rendering loop and time model provided by the web browser. The time

model is needed to synchronize the rendering of each view, such that at all times each view shows the same time step of the data and thus compensates for different

redering times of the views. By default, the timeStepIndex in the rendering loop is automatically updated by the browser (using the time model), but can also be set

by the user, e.g., by a slider widget. The browser time model is controlled using the “animate” widget, while a time bar is used for “manual” time selection. Each

update of the timeStepIndex triggers an execution of the Main.render() method and a corresponding update of all views. Parameters for the different views

can be modified during run time as each view offers its individual input widgets.

In the 3D visualization of view 2, VIOLA also implements
a geometrical mapping of activity data to a cube’s edge
length, resulting in a cubic mapping of the single scalar value
representing activity at each time step. The default scaling of the
cube’s edge length is such that the cube’s volume is proportional
to the data value in each bin.

In view 3, the concept of a stacked bar chart supports a global
perspective on the simulated model (Spence, 2014). Individual
populations in the model are color-coded to be separable in
the bar chart. An additional line graph added on top of the
bars shows the total spike-count rate as reference to the global
activity.

For view 4, in order to support the visual interpretation of
time series of spatially organized activity data, the 2D-organized
activity data (considering the neurons in one layer) are extracted
along the time axis resulting in a regularly structured 3D volume
of scalar values. Through contouring, partial sub-volumes with a
certainminimum threshold of activity get extracted and rendered
as geometry. By means of a selected iso-value Ith such geometry
gets extracted by applying the marching cubes algorithm for
implicit volume rendering (Lorensen and Cline, 1987). For
extraction of the geometry, the algorithm assumes that each data
point of the data set is mapped onto a vertex (corner point) of a
regular 3D grid, which can be subdivided into cells delimited by
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eight neighboring vertices each. Then, the algorithm calculates
for each vertex of a cell whether the associated data value of the
considered vertex lies inside or outside of the contour defined
by the iso-value Ith by comparing the data value with the iso-
value. If the data value of a vertex is smaller than the iso-value,
the vertex is assumed to lay inside of the contour. For each
possible combination of inside/outside states of the vertices of a
cell, the topology of the contour for each cell gets extracted from
a table by calculating a representative index. This table holds all
possible topological states of a cell, which are constructed under
the assumption that there is an infinite number of possibilities of
how a contour can pass a cell (for more details, please refer to, for
example Hansen and Johnson, 2011, Chapter 1). Finally, the exact
position of the contour gets calculated by interpolation along the
cell’s edges.

Views 2, 3, and 4 all use the same color coding to identify
the different neuronal populations. The implementation of the
algorithms and views uses native JavaScript. The 2D rendering
routine uses the HTML5 canvas element. The browser rendering
engine supports HTML5 and especially the functionality of the
canvas element, therefore no external libraries are required. 3D
renderings relies on the three.js10 wrapper for WebGL content
which is natively supported by the engine of modern browsers.
Node.js11 facilitates the communication between views and the
GUI for control.

3.4. Network Description
The example network is based on an implementation of a random
balanced network (Brunel, 2000) which is part of NEST as
an example (brunel_alpha_nest.py in NEST 2.12.0 by
Kunkel et al., 2017). The model is expressed using PyNEST
(Eppler et al., 2009) in Python12. The network consists of
NEX excitatory and NIN inhibitory spiking point-neurons which
are sparsely connected with connection probability c. Neurons
have fixed in-degrees of cNEX excitatory and cNIN inhibitory
incoming synapses with weights gY ,EXJ and gY ,INJ, respectively,
with Y ∈ {EX, IN}. The integrate-and-fire model neurons are
connected using static, current-based synapses with an alpha-
shaped time course (NEST neuron model: iaf_psc_alpha).
The intrinsic neuron parameters are identical for both neuron
types. In addition to the recurrent connections, each neuron
receives uncorrelated, external excitatory input from a Poisson
process of a fixed rate νext = ηνθ , where η denotes the
external rate relative to the threshold rate νθ which is defined
as νθ = (Vθ − EL)Cm/(exp(1)Jτmτs). The threshold rate is the
hypothetical external rate needed to bring the average membrane
potential of a neuron to threshold Vθ (in the absence of an actual
spiking mechanism). EL denotes the resting potential, Cm the
membrane capacitance, τm the membrane time constant and τs
the postsynaptic current time constant.

Unlike the original network implementation which has no
spatial information, we here place neurons randomly on a
square 2D sheet with side lengths L. The connection probability

10https://threejs.org
11https://nodejs.org
12http://www.python.org

between a presynaptic neuron j and postsynaptic neuron i
decays with increasing horizontal distance rij (using periodic
boundary conditions) while we preserve the in-degrees (number
of incoming connections). A Gaussian-shaped profile pYX

(

rij
)

is used with a standard deviation of σYX with X,Y ∈
{EX, IN}. We use ǫYX

(

rij
)

to describe the distance-dependent
connectivity profile assuming that the in-degree is preserved.
The transmission delay function dYX

(

rij
)

has a linear distance
dependency with an offset d0YX and a conduction velocity vYX .

In addition to the stationary external input to each population,
the network receives a spatially confined transient input
with a duration tSTIM. The input is provided by a size
NSTIM population of parrot neurons (NEST’s parrot_neuron
devices), positioned inside a circle of radius RSTIM around
(x, y) = (0, 0). Parrot neurons simply repeat input spike events
as output spike events. Each parrot neuron receives input from a
Poisson process with a rate expectation of νSTIM and connected
to KSTIM neurons of the EX population inside a connection mask
radius R from the parrot-neuron location. The Poisson input
starts at TSTIM and consequently the STIM units become active
after a delay of dSTIM.

Table 1 summarizes the network description with model
and simulation parameters listed in Tables 2A,B. The original
parameters for the EX–IN network in the NEST example are
modified for this VIOLA use case demonstration bringing the
network in a state with spatially confined network activity. For
this we increase the network’s neuron count, reduce the ratio
of inhibitory to excitatory weights gY ,IN and the membrane
capacitance Cm, while the postsynaptic amplitude J is increased.
The parameter J is originally defined in units of mV, but is here
re-defined in units of pA. Finally, the fixed conduction delay is
replaced by a distance-dependent one.

The data sets result from simulations of duration Tsim with
a temporal resolution of dt. We discard the startup transient
period Ttrans and record all spike times from all neurons. The
unprocessed spike times together with the corresponding neuron
positions are considered as raw output. The temporal and spatial
bin sizes used for preprocessing,1t and1l respectively, are given
in Table 2C.

3.5. LFP Predictions
3.5.1. Generation of LFP-like Data
The local field potential (LFP) is, due to its relative ease of
measurement, a common measure of neuronal activity (Buzsáki
et al., 2012; Einevoll et al., 2013). The LFP is, in general, assumed
to reflect synaptic activity and correlations of a large number of
neurons in vicinity of the recording electrodes (Kajikawa and
Schroeder, 2011; Lindén et al., 2011; Łeski et al., 2013). For the
purpose of demonstrating VIOLA’s functionality, we synthesize
LFP signals from network activity assuming a linear network-
population spike to LFP relationship HX ≡ HX( E1, τ ) derived
using a biophysical model. In this relationship, E1 denotes the
displacement between the center of a spatial bin and an electrode
contact point γ at rγ , and τ the time relative to a presynaptic
spike event (“lag”). Assuming linearity and homogeneous spike-
LFP responses of individual presynaptic neurons located within

the same bin of width 1lφ indexed by b = (l
φ
x , l

φ
y ) (see Section

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2018 | Volume 12 | Article 75

https://threejs.org
https://nodejs.org
http://www.python.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Senk et al. VIOLA

TABLE 1 | Description of the network model following the guidelines of Nordlie

et al. (2009).

A: MODEL SUMMARY

Populations Three: excitatory EX, inhibitory IN, external stimulus

STIM

Topology EX/IN: random neuron positions on square domain

of size L× L; STIM: random neuron positions inside

a circle with radius RSTIM at the center of the

domain; periodic boundary conditions

Connectivity Random (EX/IN: convergent, fixed in-degree; STIM:

divergent, fixed out-degree) connections described

by distance-dependent probability kernels and

cut-off masks

Neuron model EX/IN: leaky integrate-and-fire (LIF), fixed threshold,

absolute refractory time; STIM: parrot

Synapse model Static weights, EX/IN: alpha-shaped postsynaptic

currents, distance-dependent delays

Input Independent fixed-rate Poisson spike trains to all

neurons

Measurement Spike activity

B: NETWORK MODEL

Subthreshold dynamics EX/IN:

If t > t∗ + τref
dV
dt = − V−EL

τm
+ Isyn(t)

Cm

Isyn (t) =∑

j Jjα
(

t− t∗
j
− dj

)

with connection strength Jj , presynaptic spike

time t∗
j
and conduction delay dj

α (t) = t
τs
e1−t/τs2 (t) with Heaviside function 2

else

V (t) = Vreset

Spiking If V (t−) < Vθ ∧ V (t+) ≥ Vθ

1. set t∗ = t

2. emit spike with timestamp t∗

3. reset V (t) = Vreset

Distance-dependent

connectivity

Neuronal units j ∈ X at location
(

xj , yj
)

and i ∈ Y at
(

xi , yi
)

in pre- and postsynaptic populations X and

Y , respectively.

Distance between units i and j:

rij =
√

(

xi − xj
)2 +

(

yi − yj
)2

Gaussian kernel for connection probability:

pYX (rij ) = e
−r2

ij
/2σ2

YX

R is the radius of a cut-off mask.

Transmission delay function:

dYX (rij ) = d0
YX

+ rij/vYX

3.1), the signal φX at one contact γ of one population X is then
given by

φX(rγ , t) =
∑

b

(

(
∑

s

δ(tsb)) ∗ HX

)

(rγ , t) . (1)

Here, the term
∑

s δ(t
s
b
) represents a series of spike times ts

b
of

all presynaptic neurons in a bin b where δ denotes the Dirac
delta function, and ∗ a convolution. As contributions of different
populations X sum linearly, the total signal at each contact is

φ(rγ , t) =
∑

X

φX(rγ , t) . (2)

TABLE 2 | Simulation, network, and preprocessing parameters.

Symbol Value Description

A: GLOBAL SIMULATION PARAMETERS

Tsim 1, 500ms Simulation duration

dt 0.1ms Temporal resolution

Ttrans 500ms Startup transient

TSTIM 999ms Start time of Poisson input to STIM

tSTIM 50ms Duration of STIM onset

B: POINT-NEURON NETWORK

Populations and external input

X EX, IN, STIM Name

NX Population size:

20, 000 X = EX

5, 000 X = IN

975 X = STIM

L 4mm Extent length

η 2 External rate relative to threshold rate for

X ∈ {EX, IN}
RSTIM 0.5mm Radius of circle around (0, 0) for locations of STIM

νSTIM 300Hz External rate to each STIM neuron

Connection Parameters

c 0.1 Connection probability for recurrent connections

between EX and IN

J 40pA Reference synaptic strength. All synapse weights

are measured in units of J.

gYX Relative synaptic strengths:

1 X = EX, Y ∈ {EX, IN}
−4.5 X = IN, Y ∈ {EX, IN}
1 X = STIM, Y = EX

R 0.1mm Radius of cut-off mask for X = STIM, Y = EX

KSTIM 300 Number of connections per STIM neuron

σYX Standard deviation of Gaussian kernel:

0.3mm X,Y ∈ {EX, IN}
d0
YX

Delay offset:

0.5ms X,Y ∈ {EX, IN}
0.5ms X = STIM, Y = EX

vYX Conduction velocity:

2m/s X,Y ∈ {EX, IN}
− X = STIM, Y = EX

dSTIM 0.5ms Delay from Poisson input to STIM

Neuron model

Cm 100pF Membrane capacitance

τm 20ms Membrane time constant

EL 0mV Resting potential

Vθ 20mV Firing threshold

Vreset 0mV Reset potential

τref 2ms Absolute refractory period

τs 0.5ms Postsynaptic current time constant

C: PREPROCESSING

1t 1ms Temporal bin size

1l 0.1mm Spatial bin size
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TABLE 3 | Parameters for prediction of LFP signals.

Symbol Value Description

SIMPLIFIED LFP MODEL PARAMETERS

cm 1µF/cm2 Specific membrane capacitance

ra 150�cm Axial resistivity

Ldend 500µm Dendritic stick length

rdend 2.5µm Dendritic stick radius

ndend 11 Dendritic stick number of segments

rsoma 13.1µm Derived soma segment radius

τs 25ms Synapse activation time

1lφ 400µm Electrode separation, spatial bin width

σe 0.3 S/m Extracellular conductivity

Point-like neurons (as used in our network model) can not
generate an extracellular potential, as all in- and outgoing
currents sum to zero at the point’s location (due to conservation
of charge). As in Hagen et al. (2016) we assume that spatially
extended (morphologically detailed) neurons and corresponding
multicompartment models in combination with an electrostatic
forward model are required to compute a biophysically
meaningful LFP signal. To compute the LFP, we here derive
for each presynaptic population X ∈ {EX, IN, STIM} the
phenomenological mapping HX( E1, τ ) between a presynaptic
spike event time ts

b
occurring in a spatial bin indexed by b to the

extracellular potential.

3.5.2. Measurement Sites
The electrode contact point locations are defined at the center of

each spatial bin as rγ = ((l
φ
x + 1/2)1lφ − L/2, (l

φ
y + 1/2)1lφ −

L/2, 0).

3.5.3. Multicompartment Model
Wedefine a ball-and-stick typemulticompartmentmodel neuron
withmorphological features and passive parameters derived from
the network’s LIF neuron description (membrane capacitance
Cm, membrane time constant τm, passive leak reversal potential
EL). Assuming a homogeneous specific membrane capacitance
cm (capacitance per membrane area) and axial resistivity ra
(resistance times length unit), we choose the dendritic stick
length Ldend and radius rdend as follows: To preserve the
total capacity of the point neuron (and equivalent surface
area), we compute the corresponding soma radius as rsoma =
√

Cm
4πcm

− rdendLdend
2 . We define the passive leak conductivity as

gL = cm/τm and leak reversal potential as EL. For these
calculations we choose cm, ra, Ldend and rdend values as given
in Table 3, resulting in rsoma ≈ 13.1µm. The compact ball-like
soma is treated as a single segment, while the elongated dendrite
is split into ndend = 11 segments of equal length. The center of
the soma segment is set to r = (0, 0, 0), and the dendritic stick is
aligned in the positive direction along the vertical z−axis.

3.5.4. Synapse Model
For LFP predictions we use the same current-based synapse
model as in the network, defining the postsynaptic input current

of a single presynaptic spike event as Iij(t) = JYX · (t − tsj −
dij)/τsyn exp(1 − (t − tsj − dij)/τsyn)2(t − tsj − dij), where JYX
denotes the connection-specific postsynaptic current amplitude
as in the network, tsj the presynaptic spike time, dij = dYX(rij) the

conduction delay between presynaptic cell j and postsynaptic cell
i and 2 the Heaviside step function. As we initially ignore delays
and network spike times we set dij = 0 and tsj = τ s.

3.5.5. Synaptic Connectivity
For outgoing connections of the excitatory populations X ∈
{EX, STIM} we distribute synaptic input currents evenly along
the entire length of the dendritic stick, while for outgoing
connections of the inhibitory population X = IN all synaptic
input currents are assumed to be evenly distributed on the
ball-like soma.

3.5.6. Electrostatic Forward Model
As described in detail in Lindén et al. (2014), we assume an
extracellular conductive medium that is linear (frequency
independent), isotropic (identical in all directions),
homogeneous (identical in all positions), and ohmic (linear
relationship between current density and electric potential), as
represented by the scalar conductivity σe (cf. Table 3 for values).
From the linearity of Maxwell’s equations, contributions to
the extracellular potential from different current sources sum
linearly. Here, these current sources are transmembrane currents
(summed over resistive, capacitive and synaptic currents). In the
presently used volume conduction theory, the electric potential
in location rγ from a point current with magnitude I(t) in
location r0 is

φpoint(rγ , t) =
1

4πσe

I(t)

|rγ − r0|
. (3)

This relation is also valid for a sphere current source (i.e., our ball
soma) centered at r0 with total transmembrane current Im,soma

and radius rsphere when |rγ − r0| ≥ rsphere. Thus

φsoma(rγ , t) =
1

4πσe

Im,soma(t)

|rγ − rsoma|
. (4)

The elongated dendritic segments are treated as “line sources,”
obtained by integrating the point-source formula along the
central axis of the segments (Holt and Koch, 1999; Lindén et al.,
2014):

φdend(rγ , t) =
1

4πσe

ndend
∑

u=1

Im,u(t)

∫

dru

|rγ − ru|
. (5)

The total extracellular potential from somatic and dendritic
sources is then

φ(rγ , t) = φsoma(rγ , t)+ φdend(rγ , t) . (6)

Our calculations of extracellular potentials rely on the Python
package LFPy13 (Lindén et al., 2014; Hagen et al., 2018). The tool

13http://lfpy.github.io
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implements the above forward-model formalism for extracellular
potentials, and uses the NEURON simulation environment
(Carnevale and Hines, 2006) to compute transmembrane
currents Im(t) of multicompartment neuron models. As
singularities may occur in the limit |rγ − ru| → 0, the minimum
distance between sources and measurement locations was set
equal to the somatic or dendritic segment radius.

3.5.7. Prediction of Spike-LFP Relationship
We here describe the calculation of the linear spike-LFP
relationships HX( E1, τ ) which we use to construct an LFP-like
signal from spatially binned network activity. While Hagen
et al. (2016) present a hybrid scheme to compute extracellular
potentials from point-neuron network activity, and incorporated
the biophysics-based forward model summarized above, this
hybrid scheme is not adapted to laminar point-neuron networks
with distance-dependent connections. We therefore construct a
simpler and numerically much less demanding method inspired
by the hybrid scheme, that still encompasses the governing
biophysics underlying the generation of extracellular potentials
and accounts for the laminar structure and distance-dependent
connectivity of our network.

In this simplified model, we ignore heterogeneity in spike-
LFP responses Hi, of individual presynaptic cells i ∈ X located
within a spatial bin b, i.e., HX ≡ 〈Hi〉. Hi corresponds to
the extracellular potential resulting of synaptic activation of
postsynaptic populations of cells j ∈ Y from a spike in cell
i at time τ = 0. We also assume that HX is invariable
across presynaptic bins, and encompasses the overall distance-
dependent connection probabilities and connection delays in the
network.

The calculation of HX( E1, τ ) involves a number of steps.
We first estimate the spatially averaged extracellular potential
ϕj( E1, τ ) resulting from a single synapse activation at a time τ s of
the ball and stick neuron positioned at the center of a reference
bin, for excitatory and inhibitory input. Electrode contact point
locations rγ are defined at the centers of each square spatial
bin indexed b (see above). With rotational symmetry around
the z−axis and periodic (torus) connectivity of the network,
we compute extracellular potentials at the unique subset of bin
center-to-center distances r ⊂ {| E1|} up to themaximum distance√
2L2, where L denotes the side length of the network layers, and

{| E1|} the complete set of center-to-center displacement vector
lengths from reference bin to all spatial bins. We utilize built-in
functionality in LFPy to perform spatial averaging (cf. Equation
6 in Lindén et al., 2014), assuming square contact points parallel
to the horizontal xy−plane with side lengths equal to the bin
width1lφ . In a following step we compute the average out-degree
(number of outgoing connections of neuron i) KX = ∑

Y NYc
for X ∈ {EX, IN}, where c denotes the overall connection
probability between X and Y (cf. Table 2 which also gives KSTIM

as a fixed parameter). With the distance-dependent connectivity
ǫYX(r) used for each presynaptic population and out-degree KX

we compute the number of activated synapses (denoted by Kr) in
each spatial bin at a distance r from the reference bin (including
r = 0) by evaluating pYX(r) at the bin center points. The
average connection delays from the reference bin to other bins

are approximated as dYX(r) = d0YX + r/vYX , where d
0
YX denotes

a constant delay offset and vYX the conduction speed of action
potentials in the network, with values given in Table 2. With the
elements of these steps in place (single-synapse LFP responses
across bins, bin-wise number of activated synapses and delays),
we construct HX(Eδ, τ ) as function of r as:

HX( E1, τ ) =
∑

r∈{| E1|}
Kr · (δ(dYX(r)) ∗ ϕj)( E1, τ ) , (7)

where δ(·) denotes the Dirac delta function. Note that we sum
over all elements r in {| E1|}.

3.5.8. LFP Output
Each HX is calculated at a spatial resolution 1lφ and temporal
resolution of dt (as in the network, cf. Table 2) for a total
duration of 2τ s, with synapse activation time at time τ s. An
identical spatial and temporal binning resolution is also used
for spike events entering in Equation 1. The spike rates in each
bin are filtered by a length 1t normalized boxcar filter using the
scipy.signal.lfilter method prior to the convolution
with the corresponding LFP kernel. Otherwise a temporal
shift between the spatiotemporally binned spiking data (cf.
Section 3.1) and the downsampled LFP in the visualization
occurs. Discrete convolutions are incorporated using
numpy.convolve and scipy.signal.convolve2d

methods in Python. The final LFP signals are low-pass filtered
and downsampled to the time resolution 1t of our preprocessed
network output as described in Hagen et al. (2016) in order to
simultaneously show both datasets in VIOLA. Output is stored
in a pure-text format as described in Section 3.1.

Table 3 summarizes the parameter values for the LFP
predictions.

3.6. Software Summary
All source codes of the tool VIOLA, the example
network model and the processing of model output
are hosted at https://github.com/HBPVIS/VIOLA
(SHA:a39cb64). We simulated the example network
(topo_brunel_alpha_nest.py) with NEST v2.12.0
and Python v2.7.11. Further processing and plotting of Figures 1
and 2 (nest_preprocessing.py) also relied on Python
with numpy v1.15.1, SciPy v0.17.0, and matplotlib v2.2.3. LFP
signals (fake_LFP_signal.py) were computed using
NEURON v7.5 and LFPy v2.0.0 (http://lfpy.github.io). We
visualized the neuronal activity with VIOLA using the Google
Chrome browser, version 58.0.3029.110 (64-bit). VIOLA used
JavaScript V8 5.8.283.38 with the 3D library three.js of revision
87, including WebGL and HTML5 build in the browser and
Node.js v4.8.3. For colors, VIOLA used Chroma.js in the
version 1.3.4.

Screenshots from VIOLA for the other figures were taken
with Kazam-“NCC-80102” v1.4.5, and combined in Microsoft
PowerPoint 2013.
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4. DISCUSSION AND OUTLOOK

The present study introduces four 2D and 3D visualization
concepts, or views, for the interactive visual analysis of the
activity of spiking neuronal network simulations, and a reference
implementation for these views named VIOLA (VIsualization Of
Layer Activity). VIOLA is an interactive web-technology based
visualization tool designed to fit in between simulations and
subsequent in-depth data analysis, and exemplifies key concepts
of the information-seeking mantra by Shneiderman (1996) and
the paradigm of coordinated multiple views (Wang Baldonado
et al., 2000). The main application areas are the rapid validation
of simulation results and the exploration of spatiotemporally
resolved data prior to further quantitative analyses. As a use
case, we demonstrate the usefulness of the tool with output from
a simulation of a layered spiking point-neuron network model
that incorporates distance-dependent connectivity. The use case
shows that we can examine a perturbation of ongoing network
activity caused by a temporally and spatially confined stimulus.
The duration and the spatial spread of the event are quickly
assessed with the help of multiple simultaneously displayed
views.

In contrast to other visualization tools for simulated network
output, for example VisNEST (Nowke et al., 2013, 2015),
SNN3DViewer (Kasiński et al., 2009), ViSimpl (Galindo et al.,
2016), and Geppetto or more generic multi-view tools like GLUE,
the interactive JavaScript- and WebGL-based visualization
integrates data analysis methods in a web application, thereby
achieving mobility and deployability. Our approach builds on
visualization concepts known from the literature for data of
similar structure (reviewed in the section State-of-the-Art and
Historical Perspective), but advances the concepts and adds
interactivity and animation. For example, views 1 and 2 compare
to series of snap shots (as in Mehring et al. 2003; Yger et al. 2011;
Voges and Perrinet 2012; Keane and Gong 2015), but are here
enhanced by the possibilities to show raw or preprocessed data,
to specify visualization parameters interactively, and to provide
a 3D and temporally animated view on the multi-dimensional
data. View 4 presents a new concept combining 2D spatial and
temporal resolution of multiple neuron populations, all shown
simultaneously. This data representation delivers a wealth of
information, but, to circumvent occlusion and instead expose
interesting features of the data, it relies on interactive usage. The
code of the reference implementation is open source and available
in a public repository (https://github.com/HBPVIS/VIOLA)
together with the revision history and documentation. The
present work uses the simulation code NEST to generate the data
but the VIOLA implementation is completely independent of
the former. The JavaScript code defines a standalone application
(accessible at http://hbpvis.github.io/VIOLA) and interpretable
by the browser running on the client device. In the last decade,
JavaScript-based visualization got more and more versatile
especially fostered by the introduction of HTML5 and its
canvas environment. Furthermore, the development of WebGL
enables the access to GPU-accelerated 3D rendering in the
browser. Beside limitations regarding memory and access to
low-level program control (as needed for controlled use of

multi-threading), JavaScript offers the opportunity for simple
deployment and handling of external libraries and dependencies.
Unfortunately, JavaScript-based implementations may fail on
certain browsers as browsers still differ in their interpretation of
JavaScript and in the degree of following the HTML standard.
Nevertheless, there are free browsers available that support these
technologies for most operating systems. Therefore, this work
explores the decision to use web-based technology to offer an
easy-to-deploy tool for the visualization of dynamic simulation
data. As a consequence, the widely used combination of high-
level functions for data analysis and visualization available in
for example the Scientific Python ecosystem (SciPy14) can no
longer be used. Software development and deployment are,
however, integrated with minimal effort and no computational
resources are required on the server: researchers immediately
profit from progress on the development platform. Furthermore,
due to the web-technology and the minimal requirements on the
client, web portals can embed the application as a visualization
back end; a prerequisite for the idea to create centralized ICT
(Information and Communication Technology) infrastructure
for neuroscience. One such portal is currently being developed
by the European Human Brain Project, named the HBP
Collaboratory15. Another ongoing effort is the Neuroscience
Gateway16 (Sivagnanam et al., 2013). Online embedding opens
the possibility to accompany interactive visualization with server-
side preprocessing steps and a database integration, in particular
for simulation output being generated on the portal itself.
This advances the goal of the HBP Collaboratory to provide a
fully digitized workflow from data representation over model
construction and simulation to model validation (Senk et al.,
2017). We argue that interactive visual analysis of simulated
data is an obvious feature of a collaboratory, in addition to
non-interactive script-based plotting relying for example on
matplotlib.

The reference implementation enables loading of data files via
explicit user requests, either using a file browser or drag-dropping
the files in the web browser. If data processing and storage
were handled on the server-side, SQL-like database queries could
restrict communication to only the data needed for the different
view instances. Communication does not have to be limited to
the raw data. Binning operations similar to those performed
in our preprocessing steps can be handled by the database
in a straightforward manner, and could also be performed in
parallel. The data format HDF17 would also be an option to
store and access large amounts of raw and preprocessed data
with improved performance in terms of speed and compactness
compared to the currently used text format.

Inherent in interactive visualization is the problem of
reproducibility. The raw data are insufficient to reproduce the
visuals, only in combination with the full collection of GUI
parameters adjusted by the researchers is the data set complete.
In the same way as experimental and simulated data need to

14https://www.scipy.org
15https://collab.humanbrainproject.eu
16http://www.nsgportal.org
17https://www.hdfgroup.org
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be enriched with metadata in order to uniquely specify their
origin and enable reuse (Zehl et al., 2016), the visuals need to be
enriched with the parameters of their creation. This new type of
metadata could be stored in a database.

The JavaScript implementation imposes other shortcomings.
One major shortcoming is its limited capability for numerical
analysis. While the math.js18 library provides a number
of basic math functions and support for symbolic operations,
complex numbers and arrays (matrices), the JavaScript libraries
are not comparable to SciPy which provides an ecosystem of
fundamental tools and methods encountered in mathematics,
engineering, and science. VIOLA implements the function
computing the spatial correlation of neuronal activity from
scratch (not shown). This approach has two conceptual
weaknesses. First, the speed and accuracy of such functions
are hampered by the fact that there is little native support
for advanced mathematical operations, like the Fast Fourier
Transform (FFT). Second, there is no separation between the
code carrying out the statistical analysis and the code performing
the visualization. This cuts visualization off from the rich set
of analysis tools developed by the community and their reliable
implementations, for example as collected in the Elephant
package19. Future work needs to disentangle numerics from
visualization code as separate building blocks in a visual analysis
workflow.

As VIOLA’s main focus lies on responsive interactive
visualization, the reference implementation uses WebGL for all
views. Prior tests exposed the low efficiency of the Document
Object Model (DOM) as used in Scalable Vector Graphics (SVG)
based visualization libraries such as d3.js as well as its high
memory consumption. This led to the decision to the sole use
of WebGL rendering, which has the limitation that external tools
are required for generating screen shots and screen casts; vector
graphics can neither be recorded nor exported. For the 2D views,
an additional implementation based on the HTML5 support of
SVG graphics can be added and used for the export of vector-
based image material. For extracting vector-based material from
the 3D views, WebGL and its access to the underlying rendering
pipeline can be facilitated. The 3D scene can be exported to
be viewed in other 3D programs. To this end, three.js (as used
in the reference implementation) offers export functionality for
Wavefront OBJ file format, one standard for 3D content. The
alternative is to extract the rendered scene prior to rasterization
and use these data to generate a SVG or postscript-based
representation similar to the operation of the C library gl2ps20.
Nevertheless, any export mechanism needs to facilitate means
of reproducibility. In particular metadata such as simulation
and visualization parameters, time stamps, viewpoint angle and
position etc. need to be bundled with the raw visualizations. As
direct file writes may not be possible in a client side JavaScript
application, one solution is server-based rendering and storage
based on visualization parameters being communicated from
the client back to the server. The resulting server-side rendered

18http://mathjs.org
19http://elephant.readthedocs.io
20http://www.geuz.org/gl2ps

images are then stored as provenance information. Another
option for reproducible visualization outcome is to only store the
previously mentioned visualization parameters in the database,
such that the client-side visualization application can be set
back into the original captured state. If these parameters are
captured over a longer period, the resulting data can ease the
regeneration of content for demonstration purposes or a post hoc
video rendering.

While we here develop our arguments along model data, the
different views and the reference implementation are equally
suited for the exploration of experimental data. Our model
network describes a neuronal layer covering a 4 × 4mm2 patch
of cortical tissue. Electrophysiological measurements of neuronal
activity with the Utah multi-electrode array from Blackrock
Microsystems sample both spiking activity of individual cells and
population LFPs across near 4×4mm2 of cortex (Milekovic et al.,
2015; Torre et al., 2016b; Denker et al., 2018). Denker et al. (2018),
for example, classify complex spatiotemporal patterns in the LFP
beta phase of Utah-array recordings in monkey motor cortex
during a delayed reach-to-grasp task. Their Figure 3B shows
sequences of snapshots of the pattern evolution in time similar
to the time frames shown here for spiking activity (Figure 7).
Townsend et al. (2015) also demonstrate snapshots of complex
patterns measured in monkey visual cortex in their Figure 2, and
in Figure 4B they display the LFP phase together with the spiking
activity. Such experimentally obtained discrete spike events and
analog LFP signals can be simultaneously visualized with VIOLA,
as shown by views 2 and 4 (Figures 3 and 4) for model data.
The visualization of the aforementioned experimental data would
not require any changes to the reference implementation. As
VIOLA lends itself to assess spatial and temporal relationships
between spikes and LFPs, the data considered in a study by
Nauhaus et al. (2009) might also be an interesting example to
visualize. The authors show spreading depolarizations in the LFP
amplitude triggered by spikes in monkey visual cortex (see their
Figure 2). Such events could be visually analyzed to evaluate the
spatial spread and the duration of the perturbation, similarly to
the VIOLA use case described in Section 2.2 to visually assess
the effect of an external stimulus on the network activity. Apart
from in vivo recordings with the Utah array, data obtained with
other multi-electrode arrays used for in vitro experimentation on
neural tissue or cell cultures (Massobrio et al., 2015) can also be
visualized with VIOLA.

Measurement modalities other than spikes and LFPs are of
interest as well. One common experimental method is Ca2+

imaging which may infer changes in intracellular [Ca2+] of
neurons in superficial (Grienberger and Konnerth, 2012) and
deep layers (Ouzounov et al., 2017), while another method is
voltage-sensitive dye imaging (VSDi) that measures membrane-
voltage time-derivatives in surface-proximal tissues (Chemla
and Chavane, 2010). With modifications to existing views or
new view implementations, VIOLA can also represent this
type of spatiotemporally resolved data. In particular the 3D
visualization types incorporated in the present views 2 and 4
are well-suited to represent the changes in intracellular Ca2+

ion concentrations across different cell bodies from 2- and 3-
photon volumetric Ca2+ imaging in neural tissue. Within view
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2 the visual representations of each cell’s concentration can be
set to a depth and position in the horizontal plane according
to its image stack position in the raw imaging data. Units
with baseline Ca2+ concentrations may then be hidden, and
increasing levels can be visualized by scaling the box sizes as
we have demonstrated with spike-rate data. A view similar to
view 4 could show time-varying ion-concentrations of individual
units as 3D tube plots where the tube diameter at a given
time is proportional to a unit’s Ca2+ concentration. As VSDi
imaging data (typically) lacks depth-information, color-image
plotting can be applied similar to what we utilize here to show
LFPs in our 3D view implementations. In addition, the multi-
view aspect of visualization enables the combination of spatial
representations withmore abstract non-spatial representations of
neuronal activity, as reviewed in Section 1. Experimental data or
model data from a different origin than described in this work
require a conversion from the original data format to the data
format readable by VIOLA (see Section 3.1). A freely available
experimental data set that can be inspected visually with VIOLA
are, for example, the published Utah-array recordings described
by Brochier et al. (2018).

The concepts developed here advance the visual exploration of
data from cortical networks at cellular resolution. If the reference
implementation finds more widespread interest it can be further
developed by a community driven approach as all requirements
like a proper licensing and a suitable development platform
are in place, the primary purpose, however, is to serve as a
living supplement to this publication. Creating a common web
portal for the collaboration of neuroscientists is a central long-
term goal of the Human Brain Project. In this endeavor our
study contributes knowledge on how a user interface for visual
exploration needs to be designed and on the proper layout of
the software stack at the troubled transition point between data
processing and visualization.
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