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Alzheimer’s Disease (AD) represents the most prevalent form of dementia and is

considered a major health problem due to its high prevalence and its economic costs.

An accurate characterization of the underlying neural dynamics in AD is crucial in order to

adopt effective treatments. In this regard, mild cognitive impairment (MCI) is an important

clinical entity, since it is a risk-state for developing dementia. In the present study, coupling

patterns of 111 resting-state electroencephalography (EEG) recordings were analyzed.

Specifically, we computed Cross-Approximate Entropy (Cross-ApEn) and Cross-Sample

Entropy (Cross-SampEn) of 37 patients with dementia due to AD, 37 subjects with

MCI, and 37 healthy control (HC) subjects. Our results showed that Cross-SampEn

outperformed Cross-ApEn, revealing higher number of significant connections among

the three groups (Kruskal-Wallis test, FDR-corrected p-values < 0.05). AD patients

exhibited statistically significant lower similarity values at θ and β1 frequency bands

compared to HC. MCI is also characterized by a global decrease of similarity in all bands,

being only significant at β1. These differences shows that β band might play a significant

role in the identification of early stages of AD. Our results suggest that Cross-SampEn

could increase the insight into brain dynamics at different AD stages. Consequently, it may

contribute to develop early AD biomarkers, potentially useful as diagnostic information.

Keywords: Alzheimer’s disease, mild cognitive impairment, electroencephalography (EEG), neural coupling,

cross-entropy metrics

1. INTRODUCTION

The human brain is an extremely complex network comprised of billions of interconnected neurons
(Babiloni et al., 2016). Abnormal neural patterns at cellular coupling can provoke cognitive,
behavioral, and functional alterations. Dementia due to Alzheimer’s disease (AD) is the most
common cause of neurodegenerative pathology, affecting up to 38% of people over 85 years
(Alzheimer’s Association, 2017). Neural activity in AD is progressively modified as a consequence
of the neurodegenerative process and disturbances in information transmission and processing
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in the brain arise (Babiloni et al., 2016). Current interest in
the field is focused on the detection of AD at its earliest
possible stages. In this regard, mild cognitive impairment (MCI)
appears as an important clinical entity, since it is considered
as a prodromal stage of AD. Previous research have shown
that MCI subjects progress to AD at a rate of approximately
15% per year (Davatzikos et al., 2011), whereas healthy controls
develop dementia at a rate of 1–2% per year (Alzheimer’s
Association, 2017). Thus, MCI can be considered a prodromal
form of AD. MCI subjects exhibit objective evidence of memory
impairment greater than expected for their age and education
level. Nonetheless, MCI does not necessarily interfere in their
daily activities (Petersen, 2010).

Several techniques have been used to study neural dynamics
in AD and MCI, such as positron emission tomography
(PET), functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and magnetoencephalography
(MEG) (Ewers et al., 2011). In this study, the electrical brain
activity was measured via EEG due to its high temporal
resolution in contrast to PET and fMRI, which offer lower
temporal resolution (Poza et al., 2014). Moreover, EEG is a
non-invasive technique widely used in clinical settings to take
advantage of its low cost compared to MEG. EEG measures
the electrical activity of the brain generated by synchronized
neurons (Poza et al., 2017). This information can help to further
understand the relationship between neuronal dynamics and
the alterations in brain function (Vecchio and Babiloni, 2011;
Babiloni et al., 2016). Moreover, EEG has already shown its
usefulness to characterize brain dynamics in AD and MCI
(Koenig et al., 2005; Babiloni et al., 2009; Dauwels et al., 2010b).

In past decades, the abnormalities in AD and MCI neural
activity were typically characterized using local activation
analyses in individual sensors, by means of spectral and non-
linear measures. Spectral analyses reflect a power increase in low
frequency bands as the disease worsens, and a decrease in higher
frequencies (Baker et al., 2008; Gasser et al., 2008; Ruiz-Gómez
et al., 2018). Parameters derived from non-linear techniques have
revealed that AD and MCI are characterized by a decrease in
complexity and variability (Jeong, 2004; Dauwels et al., 2010a;
McBride et al., 2014; Ruiz-Gómez et al., 2018). Particularly,
different notions of entropy, such as Approximate Entropy
(ApEn) and Sample Entropy (SampEn), have paid great attention
in discriminating AD patients, MCI subjects, and cognitively
healthy control (HC) subjects, mostly using binary approaches.
In these studies, AD patients showed significant lower ApEn and
SampEn values than MCI patients and HC subjects (Abásolo
et al., 2005, 2006; Hornero et al., 2008; Gómez et al., 2009). These
results support the well-known hypothesis that the EEG activity
becomes more regular as the disease progresses.

However, spectral and non-linear parameters are no longer
sufficient for a full characterization of brain dynamics (Stam
and van Straaten, 2012). For this reason, increasing efforts have
been made to gain further understanding of how the brain is
organized as a functional network. Similarities between time
series are traditionally quantified with linear methods, such
as coherency and spectral estimations (Koenig et al., 2005;
Babiloni et al., 2006; Moretti et al., 2008; Frantzidis et al.,

2014b; Tóth et al., 2014). Nevertheless, these methods are not
suitable for characterizing non-stationary signals. For this reason,
most of them only found subtle alterations that depend on
the particular coupling parameter. Since different entropy-based
measures, such as ApEn and SampEn, are very well-suited to
analyze short and noisy one-dimensional time series (Pincus,
1991), the multidimensional versions of these methods are a
good option for the analysis of multiple signals recorded from
many electrodes, like EEG. Cross-Approximate Entropy (Cross-
ApEn) and Cross-Sample Entropy (Cross-SampEn) algorithms
can be applied to two signals, to quantify the statistical similarity
between them (Pincus, 2001). It is neccessary to address that
Cross-ApEn has some limitations: it is not consistent for every
condition and is not always defined. Cross-SampEnwas proposed
to overcome these drawbacks, remaining relatively consistent for
all conditions and being always defined (Richman andMoorman,
2000). Finally, there is other important difference between these
two measures: whereas Cross-ApEn analysis exhibits direction
dependence (i.e., it is an asymmetric method), Cross-SampEn
is a direction independent measure. Usually, higher values of
cross-entropy metrics indicate less similarity between signals,
and they are associated with weaker coupling (Hudetz et al.,
2003). Only a few studies have applied Cross-ApEn and Cross-
SampEn to biological systems (Pincus and Singer, 1996; Licinio
et al., 1998; Martínez-Zarzuela et al., 2013). To the best of our
knowledge, only our preliminary study has analyzed spontaneous
EEG activity in AD by means of Cross-SampEn and graph theory
parameters (Gómez et al., 2016).

In this study, we hypothesized that the coupling patterns
between different functional brain regions are disrupted in
dementia, even at prodromal stages. These alterations involved
in cognitive decline affect the EEG activity and could be
characterized by means of cross-entropy metrics. Accordingly,
in the current research we attempt to address the following
questions: (i) can Cross-SampEn overcome the Cross-ApEn
technical drawbacks and provide additional information about
spontaneous EEG activity? (ii) which of these measures yield a
better characterization of the abnormal coupling patterns in AD
andMCI? and (iii) can these metrics be useful to discriminate AD
and MCI patients from HC subjects?

2. MATERIALS

2.1. Participants
In this study, we recruited a total of 111 subjects: 37 AD
patients (12 males and 25 females), 37 MCI patients (16
males and 21 females), and 37 age-matched HC subjects (12
males and 25 females). Patients with dementia due to AD
and MCI were diagnosed following the criteria of the National
Institute on Aging and Alzheimer’s Association (NIA-AA). HC
volunteers had no pathological background and underwent
a medical examination and cognitive assessment in order
to discard any symptoms of neurological disorder (Albert
et al., 2011). Exclusion criteria were the same used in our
previous studies (Poza et al., 2017; Ruiz-Gómez et al., 2018):
(1) presence or history of another neurological or psychiatric
disease, different from MCI or dementia due to AD; (2) atypical
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TABLE 1 | Socio-demographic and clinical data for each group in the training set.

HC MCI AD

Number of subjects 20 20 20

Number of trials 912 937 917

Age (years) (median[IQR]) 75.6[74.1, 77.6] 77.9[67.9, 79.8] 80.7[74.7, 78.9]

Gender (Male:Female) 8 : 12 8 : 12 5 :15

MMSEa (median[IQR]) 29[28, 30] 27.5[26.5, 29] 21[18.5, 22.5]

B-ADLb (median[IQR]) 1.1[1.0, 1.2] 2.9[2.4, 3.3] 5.8[5.1, 7.2]

Education level (A:B)c 5 : 15 11 : 9 8 :12

aMMSE, Mini Mental State Examination; bB-ADL, Bayer-Activities of Daily Living; cA,

Primary education or below; B, Secondary education or above.

course or uncommon clinical presentations according to the
NIA-AA criteria; (3) advanced dementia (Clinical Dementia
Rating = 3); (4) institutionalized patients; (5) medication that
could affect EEG activity; and (6) lack of cooperation during EEG
acquisition. This study was carried out in accordance with the
recommendations of the Code of Ethics of the World Medical
Association with written informed consent from all subjects.
All subjects and caregivers gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by The Ethics Committee at the Río Hortega University
Hospital (Valladolid, Spain). Relevant socio-demographic and
clinical characteristics are specified in Tables 1, 2 for training and
test sets, respectively.

2.2. EEG Recording
Resting-state EEG activity was acquired using a 19-channel EEG
system (XLTEK R©, Natus Medical) at a sampling frequency of
200 Hz. The electrodes were located at the positions Fp1, Fp2,
Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4, O1,
and O2 according to the international 10–20 system. Common
average referencing (CAR) was chosen as the reference technique
for EEG recoding because previous studies found that CAR
outperforms standard types of electrical referencing (Ludwig
et al., 2009). Subjects were asked to remain awake with closed eyes
during EEG acquisition. For each five-minute EEG recording,
the following pre-processing procedure was applied: (i) digital
filtering using a Hamming window bandpass finite impulse
response (FIR) filter between 0.4 and 98 Hz and a notch filter
to remove the power line frequency interference (50 Hz); (ii)
independent component analysis (ICA) tominimize the presence
of oculographic, cardiographic, and myographic artifacts; (iii)
digital filtering using a Hamming window bandpass FIR filter
in the band of interest (1–70 Hz); and (iv) selection of 5-s
artifact-free epochs by visual inspection.

In our previous study (Ruiz-Gómez et al., 2018), we randomly
divided the EEG database into training and test sets. The training
set was composed of 60 subjects (20 of each group), while
the remaining 51 subjects were assigned to the test set (17 of
each group). In addition, for every comparison between groups
no statistically significant differences were found in age and
gender (p-value > 0.05, Kruskal-Wallis test and chi-squared test,
respectively). In order to compare our results with the previous

TABLE 2 | Socio-demographic and clinical data for each group in the test set.

HC MCI AD

Number of subjects 17 17 17

Number of trials 752 847 757

Age (years) (median[IQR]) 76.4[73.6, 78.9] 75.3[69.8, 82.0] 82.4[77.7, 83.9]

Gender (Male:Female) 4 :13 8 : 9 7 : 10

MMSEa (median[IQR]) 29[28, 30] 27[27, 28] 22[20, 24]

B-ADLb (median[IQR]) 1.2[1.0, 1.3] 2.8[2.3, 2.5] 6.4[5.0, 7.3]

Education level (A:B)c 5 :12 12 : 5 10 : 7

aMMSE, Mini Mental State Examination; bB-ADL, Bayer-Activities of Daily Living; cA,

Primary education or below; B, Secondary education or above.

ones, training and test sets remain unchanged (Ruiz-Gómez et al.,
2018).

3. METHODS

The followed methodology is explained below:

1. Training set:

a. First, after data collection and pre-processing, Cross-
ApEn and Cross-SampEn were computed in the following
frequency bands: delta (δ, 1–4 Hz), theta (θ , 4–8 Hz), alpha
(α, 8–13 Hz), beta-1 (β1, 13–19 Hz), beta-2 (β2, 19–30
Hz), and gamma (γ , 30–70 Hz). Also, both measures were
computed for different combinations of their configuration
parameters, the run length m and the tolerance window r.
The optimal values form and r were obtained by evaluating
the ranges suggested by Pincus (Pincus, 2001): m ∈ [1, 2]
and r ∈ [0.10, 0.15, 0.20, 0.25]. The result of computing
each measure for all pair-wise combinations of channels
was an M × M matrix (M = 19), where each entry
Mi,j contains the Cross-ApEn or Cross-SampEn between the
channels i and j.

b. Then, we selected the parameters combination for which
the corresponding Cross-ApEn or Cross-SampEn values
showed the highest number of significant connections
among the three groups using false discovery rate (FDR)
(Benjamini and Hochberg, 1995) (FDR-corrected p-values
< 0.05, Kruskal-Wallis test).

c. After determining the measure and m and r values that
provides a better discrimination among the three groups,
fast correlation-based filter (FCBF) (Yu and Liu, 2004)
was applied to select two optimal sets of connections for
discriminating HC vs. MCI and HC vs. AD, respectively.

d. Afterwards, quadratic discriminant analysis (QDA),
support vector machines (SVM), and decision trees (DT)
models were trained with these optimal sets of features
using training data.

2. Test set:

e. For the chosen metric in step (b), coupling patterns
were obtained for the subjects comprised in the test set.
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Statistical differences were evaluated between groups for
HC vs. MCI and HC vs. AD comparisons.

f. Finally, the binary discrimination ability of the optimal
sets of features obtained were evaluated by means of QDA,
SVM, andDT approaches trained in step (d) using test data.

3.1. Cross-Approximate Entropy
Cross-ApEn quantifies the statistical dissimilarity between two
paired signals (Pincus, 2000). The Cross-ApEn algorithm is quite
similar to ApEn, but it is applied to two time series rather
than an individual signal. Thus, Cross-ApEn affords a coupling
metric from which you can directly determine the changes
in interconnected networks (Pincus, 2000). The procedure for
Cross-ApEn estimation requires two time series, u and v, of
N samples. It is also necessary to determine the value of the
run length m and the tolerance window r. Conceptually, Cross-
ApEn quantifies the asynchrony between two time series by
determining the frequency in which m-length patterns in v are
similar to referencem-length patterns in u within a tolerance r.

Given the aforementioned time series u =

[u(1), u(2), ..., u(N)] and v = [v(1), v(2), ..., v(N)], the algorithm
to calculate Cross-ApEn is described as follows (Pincus, 2000):

1. Normalize u and v into u∗ and v∗, by subtracting the mean of
each time series and dividing by its standard deviation.

2. Form the sequences ofm consecutive u∗ and v∗ values starting
with the ith and jth point, respectively.

x(i) = [u∗(i), u∗(i+ 1), ..., u∗(i+m− 1)] (1)

y(j) = [v∗(j), v∗(j+ 1), ..., v∗(j+m− 1)] (2)

3. Compute the distance between x(i) and y(j), d[x(i), y(j)],
defined as the maximum absolute difference of their scalar
components:

d[x(i), y(j)] = max
k=0,1,...,m−1

|u∗(i+ k)− v∗(j+ k)| (3)

4. For each xm(i), find the number of j so that d[xm(i), xm(j)]
is smaller or equal to r, denoted as Nm

i (r). Then, for i =

1, 2, ...,N −m+ 1, set:

Cm
i (r)(v||u) =

Nm
i (r)

N −m+ 1
(4)

5. Obtain φm(r), averaging the natural logarithm of Cm
i (r) over i:

φm(r)(v||u) =
1

N −m+ 1

N−m+1
∑

i=1

lnCm
i (r)(v||u) (5)

6. Similarly, obtain Cm+1(r) and then compute φm+1(r)
following similar steps:

Cm+1
i (r)(v||u) =

Nm+1
i (r)

N −m+ 1
(6)

φm+1(r)(v||u) =
1

N −m+ 1

N−m+1
∑

i=1

lnCm+1
i (r)(v||u) (7)

7. Finally, Cross-ApEn is defined as:

Cross-ApEn(r,m,N)(v||u) = φm(r)(v||u)− φm+1(r)(v||u)(8)

The absence of similar patterns between u and vmay lead to non-
defined values of Cross-ApEn. Thus, two correction strategies
have been proposed to assign non-zero values in the absence of
matches: bias 0 and bias max (Richman and Moorman, 2000).
In this study, the bias max correction strategy has been applied
(Martínez-Zarzuela et al., 2013). This strategy assigns the values
Cm
i (r) = Cm+1

i (r) and Cm+1
i (r) = (N − m + 1)−1 if originally

Cm
i (r) = 0 and Cm+1

i (r) = 0, respectively.

3.2. Cross-Sample Entropy
Cross-SampEn was proposed by Richman and Moorman
to overcome the drawbacks of Cross-ApEn (Richman and
Moorman, 2000). Cross-SampEn is always defined and remains
relatively consistent for conditions where Cross-ApEn does not.
As Cross-ApEn, Cross-SampEn allows assessing the degree of
dissimilarity between two time series. To compute Cross-SampEn
is also necessary to specify the values of the run length m and
the tolerance window r. Thus, the algorithm to compute Cross-
SampEn between the previously described time series, u and v, is
the following (Richman and Moorman, 2000):

1. Normalize u and v into u∗ and v∗, by subtracting the mean of
each time series and dividing by its standard deviation.

2. Form the sequences ofm consecutive u∗ and v∗ values starting
with the ith and jth point, respectively.

x(i) = [u∗(i), u∗(i+ 1), ..., u∗(i+m− 1)] (9)

y(j) = [v∗(j), v∗(j+ 1), ..., v∗(j+m− 1)] (10)

3. Compute the distance between x(i) and y(j), d[x(i), y(j)],
defined as the maximum absolute difference of their scalar
components:

d[x(i), y(j)] = max
k=0,1,...,m−1

|u∗(i+ k)− v∗(j+ k)| (11)

4. For each xm(i), find the number of j so that d[xm(i), xm(j)] is
smaller or equal to r with i 6= j, denoted as bmi (r). Then, for
i = 1, 2, ...,N −m, set:

Bmi (r)(v||u) =
bmi (r)

N −m
(12)

5. Define Bm(r)(v||u) as:

Bm(r)(v||u) =
1

N −m

N−m
∑

i=1

lnBmi (r)(v||u) (13)

6. Similarly, define Am(r)(v||u) as 1/(N − m) times the number
of j (j = 1, 2, ...,N−m+1), such the distance between xm+1(i)
and ym+1(i) is less or equal to r. Then, calculate:

Am(r)(v||u) =
1

N −m

N−m
∑

i=1

lnAm
i (r)(v||u) (14)
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7. Finally, Cross-SampEn is defined as:

Cross-SampEn(r,m,N)(v||u) = − ln

[

Am(r)(v||u)

Bm(r)(v||u)

]

(15)

3.3. Statistical Analysis
Firstly, a descriptive analysis was carried out to study the
distribution of the coupling results. Kolmogorov–Smirnov and
Shapiro–Wilks tests were used to evaluate the normality of
the data, whereas Levene test was employed to assess the
homogeneity of variances. As Cross-ApEn and Cross-SampEn
results did not meet the parametric test assumptions, a non-
parametric test was used. Statistical differences among three
groups were evaluated by Kruskal–Wallis test, whereas statistical
differences between HC and MCI subjects and between HC and
AD subjects were evaluated with Mann-WhitneyU-test. In order
to correct for multiple comparisons, FDR controlling procedure
was used (Benjamini and Hochberg, 1995).

Signal processing was carried out using Matlab (version
R2017a, Mathworks, Natick, MA), whereas statistical analyses
were computed using SPSS Statistics (version 20, IBM Corp,
Armonk, NY).

3.4. Classification Analysis
The binary classification performance of the optimum sets of
features for each comparison (HC vs. MCI and HC vs. AD) was
assessed by means of QDA, SVM, and DT. These techniques
are widely employed for data classification from EEG recordings
(Spyrou et al., 2016; Chriskos et al., 2018; Ruiz-Gómez et al.,
2018). In order to compare our results with those of our previous
study (Ruiz-Gómez et al., 2018), the performances of the models
were described by the same statistical measures: accuracy (Acc),
sensitivity (Se), specificity (Sp), positive predictive value (PPV),
and negative predictive value (NPV).

3.4.1. Quadratic Discriminant Analysis (QDA)
QDA is commonly used due to its advantages over linear
discriminant analysis (LDA). While LDA assumes both
data normality (Gaussian or normal distribution) and
homoscedasticity (equal variances) to model each class-
conditional density function for an input feature, QDA does
not presume homoscedasticity (Bishop, 2007). Then, in order to
predict the classes of new data, the QDA models find the class
with the smallest misclassification by establishing a quadratic
decision boundary between classes in the feature space, instead
the linear decision threshold of LDA (Bishop, 2007).

3.4.2. Support Vector Machines (SVM)
SVM is a binary classifier that searches for the optimal hyperplane
boundary, built in a transformed high-dimensional space to
maximize separation. The weight vector w is obtained by solving
an optimization problem based on Lagrange multipliers ηn,
expressed as follows (Vapnik, 1999):

w =
∑

n∈S

ηntnϕ(xn), (16)

where tn is the target or desired output and ϕ(·) maps training
vectors into the higher dimensional space. The output of the SVM
classifier is expressed in terms of these support vectors as follows
(Vapnik, 1999):

y =
∑

n∈S

ηntnK(xn, x)+ w0, (17)

where S is a subset of the indices {1, ...,N} corresponding to
the support vector and K(·, ·) represents the inner product
kernel function in the transformed space. In the present study, a
polynomial kernel is used. This kernel represents the similarity
of vectors in a feature space over polynomials of the original
variables, allowing learning of non-linear models (Goldberg and
Elhadad, 2008).

3.4.3. Decision Trees (DT)
DT models predict responses to data and can be viewed as a
combination of models in which only one model is responsible
for making predictions at any given point in input space. The
input space is partitioned into cuboid regions, whose edges are
aligned with the axes. For any new input x, the region it falls into
is determined by starting at the top of the tree (root node) and
following a path down to a specific leaf node according to the
decision criteria at each node (Breiman et al., 1984).

4. RESULTS

According to the proposed methodology, we obtained a Cross-
ApEn and a Cross-SampEn coupling matrix value per subject
and frequency band. These matrices were obtained by averaging
results from all artifact-free trials from 5-min recordings of each
subject.

4.1. Training Set
In order to chose the values for m and r to compute Cross-ApEn
and Cross-SampEn, only the training set was used. They were
obtained by evaluating all the combinations for m ∈ [1, 2] and
r ∈ [0.10, 0.15, 0.20, 0.25]. Table 3 shows the total number of
significant connections among the three groups (FDR-corrected
p-values < 0.05, Kruskal-Wallis test) as the sum for all frequency
bands for each parameters combination. The results of Table 3
show that Cross-SampEn with m = 1 and r = 0.2 exhibits the
higher number of significant connections. Therefore, we chose
that configuration for further analyses.

After determining the optimal metric, FCBF was applied to
derive the two optimal sets for binary classifications tasks (HC vs.
MCI and HC vs. AD). For this purpose, each connection between
two electrodes in every frequency band was interpreted as a
feature. Table 4 shows the FCBF-selected features that formed
optimal sets for HC vs. MCI and HC vs. AD classification tasks.
These sets of features were used to train the QDA, SVM, and DT
models. For each classifier, two models were trained: one with the
aim of classifyingMCI andHC subjects, and the other one for AD
patients vs. HC subjects comparison.
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TABLE 3 | Total number of significant connections among the three groups

(FDR-corrected p-values < 0.05, Kruskal-Wallis test) for each parameter

combination in the training set.

Cross-ApEn Cross-SampEn

m = 1 m = 2 m = 1 m = 2

r = 0.10 182 0 468 0

r = 0.15 486 213 508 12

r = 0.20 403 228 514 48

r = 0.25 349 255 502 196

TABLE 4 | Optimal FCBF sets of features for HC vs. MCI and HC vs. AD

comparisons.

Comparison Selected features

HC vs. MCI Fz-T4 (δ) Cz-C3 (θ ) C4-Fp2 (α) P3-Fz (β1)

HC vs. AD F7-Fp2 (δ) Fp1-C3 (θ ) T3-T5 (θ ) C3-Pz (γ )

4.2. Test Set
For the previously chosen measure, Cross-SampEn (m = 1,
r = 0.2), coupling patterns were obtained for the subjects
comprised in the test set. Only those frequency bands that
showed statistically significant connections are presented in
Figure 1 (HC vs. MCI) and Figure 2 (HC vs. AD). In these
figures, the left column shows Cross-SampEn values for the
healthy group, while the outcomes for patients groups are
presented in the center column. Finally, statistically significant
connections (FDR-corrected p-values<0.05, Mann-Whitney U-
test) between groups are displayed in the right column using
the following color-code: red color tones indicate significant
Cross-SampEn increases in AD or MCI patients compared to
controls, whereas blue color tones denote significant decreases.
Note that for all columns, only statistically significant differences
are displayed.

Our Cross-SampEn results showed that EEG activity
in MCI patients is characterized by an overall similarity
decrease in β1 band, as shown in Figure 1. Additionally,
AD patients present significant higher Cross-SampEn values
in θ and β1 frequency bands, as displayed in Figures 2A,B,
respectively.

In order to evaluate the diagnostic ability of the previously
trained models (QDA, SVM, and DT), only the test set was used.
In the case of theHC vs.MCI classification task, higher diagnostic
results were found with SVM and DT (Acc = 73.53%, Se =

58.82%, and Sp = 88.24%), compared with QDA (Acc = 67.65%,
Se = 52.95, and Sp = 82.35). Also SVM and DT reached higher
diagnostic performance for the HC vs. AD comparison (Acc =

82.35%, Se = 70.59%, and Sp = 94.12%) compared with QDA
(Acc = 76.47%, Se = 76.47%, and Sp = 76.47%). Furthermore,
both SVM and DT models present a good diagnostic capability
for discriminating when a subject does not suffer AD (Sp =

94.12% and NPV = 76.19%) and MCI (Sp = 88.24% and
NPV = 68.18%).

5. DISCUSSION

The aim of this study was to assess the performance of Cross-
ApEn and Cross-SampEn in order to find abnormal coupling
patterns in the early stages of dementia. For that purpose, three
main objectives based on the research questions were set.

5.1. Cross-ApEn vs. Cross-SampEn
The first research question was focused on determining
whetherCross-SampEn can provide additional information about
spontaneous EEG activity in AD and MCI compared to Cross-
ApEn.

Only a few studies have applied these metrics to biological
systems. For instance, Cross-ApEn has been applied to analyze
secretory patterns of luteinizing hormone and testosterone
in young and aged healthy men (Pincus and Singer, 1996),
concentrations of circulating leptin, luteinizing hormone, and
estradiol in healthy women (Licinio et al., 1998), blood oxygen
saturation and heart rate signals from nocturnal oximetry
(Álvarez et al., 2009), and bihemispheric EEGs from rats (Hudetz
et al., 2003). On the other hand, Pritchard et al. (2014) applied
Cross-SampEn to resting-state fMRI data with the aim of establish
functional connectivity between different brain areas. To the
best of our knowledge, only Xie et al. (2010) have compared
the performance of Cross-ApEn and Cross-SampEn in order
to prove the theoretical advantages of the last one. Firstly,
they compared both measures quantitatively using five different
coupled systems. Then, they applied both measures to a real-life
problem in which they analyzed the synchronization patterns of
left inter-hemisphere rats’ EEG signals. Both analyses showed that
Cross-SampEn could be more conveniently applied to different
dynamical neural systems contaminated by noise.

Our results using the training set revealed a high number
of significant connections among the three groups for all
Cross-SampEn combinations with m = 1, as shown in
Table 3. In our particular case, Cross-SampEn showed statistical
differences among the three groups that Cross-ApEn could not
detect. Therefore, taking into account that Cross-SampEn shows
technical advantages over Cross-ApEn and our results, we could
say that Cross-SampEn is more adequate to characterize the
neural coupling patters in MCI and AD. Additionally, both
metrics show better performances form = 1 compared tom = 2.
This could be due to the fast nature of EEG fluctuations which
could be easier to detect with low values ofm. Too largem values
are inappropriate for detecting the dynamical changes in EEG
recordings (Li et al., 2013). Finally, in order to avoid possible
biases, it is important to optimize these configuration parameters
for each particular database using a hold-out approach. That is,
splitting the original dataset into a training set used to optimize
these parameters and a test set used to measure the generalization
performance of the metrics, as we have done in the current study.

5.2. Abnormal Coupling Patterns in MCI
and AD
After comparing the usefulness of both measures and
determining the optimal configuration, characterization of
MCI and AD was assessed. Our Cross-SampEn (m = 1, r = 0.2)
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FIGURE 1 | Cross-SampEn results for HC vs. MCI comparison at β1 band. Left and central columns depict Cross-SampEn values for controls and MCI patients,

respectively. Right column displays statistical results, where connections were only displayed when statistically significant differences were obtained (FDR-corrected

p-values<0.05, Mann-Whitney U-test). Red color tones indicate significant Cross-SampEn increases in MCI compared with controls, whereas blue color tones denote

significant decreases.

results revealed that MCI and AD groups are characterized by
a global decrease of similarity in all frequency bands. However,
significant differences were only found in β1 band for MCI and
in θ and β1 bands for AD.

Previous EEG studies have shown evidences of coupling loss
in AD through different connectivity measures. In line with
our results, Besthorn et al. (1994) found a coherence decrease
in AD, specifically in θ , α, and β bands. Synchronization
likelihood (SL) also showed lower values for AD patients in all
frequency bands, but they were statically significant only in the
14–18 and 18–22 Hz bands (corresponding with our β1 band,
approximately) (Stam et al., 2003). Koenig et al. (2005) analyzed
different databases using global field synchrony (GFS), finding
significant differences in α and β bands. Furthermore, Jeong
et al. (2001) reported lower values of cross-mutual information
in AD subjects than in controls, confirming the disconnection
syndrome in AD. To the best of our knowledge, only our previous
study addressed the characterization AD by means of Cross-
SampEn (Gómez et al., 2009), but the whole frequency range
(1–40 Hz) was analyzed, instead of dividing it into the classical
EEG bands. Our results in this preliminary study suggested
that dementia due to AD is characterized by a lower degree of
similarity among channels. The current research do not follow
the same trend, since AD patients present widespread significant
higher Cross-SampEn values in θ and β1 bands, with long-range
connections being more common, since it is one of the main
characteristics of pathological aging (Frantzidis et al., 2014a).
Several authors have suggested that the observed abnormal
coupling patterns may be due to the loss of acetylcholine, long-
distance association fibers, or gray matter volume (Cook and
Leuchter, 1996; Francis et al., 1999; Kikuchi et al., 2000; Karas
et al., 2004; Cho et al., 2008). Acetylcholine is a major excitatory
modulator of cortical synaptic function and the effect of blocking
the cholinergic system is the reduction of resting EEG coupling
(Francis et al., 1999; Kikuchi et al., 2000). Additionally, the
loss of long distance association fibers produce interhemispheric
corticocortical disconnection that could contribute to cognitive
impairment (Cook and Leuchter, 1996; Cho et al., 2008). Finally,

global and regional gray matter density loss in AD patients
indicate an ongoing atrophic process in their brains, that could
produce the disconnection between different brain areas (Karas
et al., 2004). Other authors suggested that the neuron loss may
cause the coupling decrease (Moretti et al., 2011). Nevertheless, if
the loss of EEG coupling in AD would simply be caused by a loss
of neurons, it would be difficult to understand why all frequencies
are not equally affected (Stam et al., 2003).

Despite the fact that MCI studies are less common, a few
ones have reported that this pathology is also associated with
less connected brain networks. Connectivity decrease in MCI
was revealed also by lower SL values in δ and α bands (Babiloni
et al., 2006). This trend of lower SL values for MCI is also
present in β band from MEG data (Gómez et al., 2009). Koenig
et al. (2005) showed intermediate GFS values between AD
and HC for MCI subjects in α and β frequency bands. The
aforementioned studies provide evidences for considering MCI
as a disconnection syndrome, at least in α and β frequency bands.
This inconsistency on the results may be due to the heterogeneity
of MCI, different neuroimaging techniques, different coupling
measures, or a combination of these factors. Nonetheless, it
has been demonstrated that the β band may have a special
significance in AD, especially in the early stages. Our results
showed that EEG activity in MCI patients is characterized by an
overall similarity decrease in β1 band. Clinically, this reduced
coupling may be due to the structural brain changes suffered by
patients with MCI: decreased hippocampal volume, atrophy of
the medial temporal lobe, or loss of gray matter volume (Karas
et al., 2004).

Our findings suggest that EEG signals from different channels
are more dissimilar among them in healthy people and they
become gradually more similar as dementia progresses. It should
be noticed the importance of β as the frequency band where
the early changes in prodromal stages of AD are highlighted.
Then, as the disease progresses, the abnormal coupling patterns
also appear in low frequency bands, mainly at θ band in
the current study, but also at α in previous ones (Koenig
et al., 2005; Babiloni et al., 2006). These changes reflected the
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FIGURE 2 | Cross-SampEn results for HC vs. AD comparison (A) at θ band, and (B) at β1 band. Left and central columns depict Cross-SampEn values for controls

and AD patients, respectively. Right column displays statistical results, where connections were only displayed when statistically significant differences were obtained

(FDR-corrected p-values<0.05, Mann-Whitney U-test). Red color tones indicate significant Cross-SampEn increases in AD compared with controls, whereas blue

color tones denote significant decreases.

well-known disconnection syndrome and could be associated
with both alterations in information processing at the cerebral
cortex and to the disturbed synaptic transmission (e.g., decreased
levels of acetylcholine), since they are associated with the
complex dynamical processing within the brain neural networks
(Baraniuk et al., 2001; Jeong et al., 2001).

5.3. Discrimination of MCI and AD Patients
From HC Subjects
In order to evaluate the discrimination ability of Cross-SampEn,
three differentmodels (QDA, SVM, andDT) with two optimal set
of features were used depending on the classification task (HC
vs. MCI or HC vs. AD). Our results showed that the highest
classification accuracy for HC vs. AD comparison was obtained
using SVM and DT (Acc = 82.35%, Se = 70.59%, and Sp =

94.12%). Also SVM and DT obtained the highest accuracy for the
HC vs. MCI classification problem (Acc = 73.53%, Se = 52.95%,
and Sp = 82.35%). In our previous study (Ruiz-Gómez et al.,
2018), where same training and test sets were used, we obtained
precision values of 78.43 and 76.47% for HC vs. All and AD vs.
All comparisons using a multi-layer perceptron artificial neural
network, respectively. Our accuracy results using cross-entropy
metrics are slightly better, but it should be noted that we are
using different models for each binary classification instead of
one multiclass model as in our previous work. Other previous
studies achieved similar precision values, between 76.2 and 87.5%

for AD vs. HC, and between 66.7 and 79.2% for MCI vs. HC
(Huang et al., 2000; Poza et al., 2014, 2017; McBride et al., 2015).
These results should be cautiously interpreted due to the use of
different databases, usually with small sample sizes.

5.4. Limitations and Future Research Lines
Despite the promising usefulness of Cross-SampEn as a measure
to characterize brain dynamics in AD and its prodromal form,
several limitations need to be addressed. Although we had a quite
large database composed of 111 subjects, we divided our database
to determine the optimal cross-entropy based metric and its
configuration parameters that fit better to the characterization
of coupling patterns in MCI and AD and to train and validate
the models. It would also be possible to determine the optimal
metric and its configuration with synthetic EEG signals generated
from surrogate data with known dependencies or other models,
as Kuramoto models (Acebrón et al., 2005). Moreover, it would
be useful to conduct a longitudinal study of MCI subjects to
gain a deeper understanding on the complex neural changes
provoked by cognitive impairment; this would allow us to classify
those with stable MCI and those who progress to AD. Finally,
features derived from only one metric (Cross-SampEn) have been
applied in this study to discriminate MCI and AD patients from
HC subjects. It is noteworthy that in the case we would like to
improve the classification ability of the models, features extracted
from several other couplingmetrics, like SL,GFS, phase-lag index
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(PLI) or directed transfer function (DTF), might also provide
complementary information about neuronal alterations in this
disorder that would improve the models.

6. CONCLUSIONS

This study provides original insights into the characterization
of spontaneous neural activity in AD and MCI. Cross-SampEn
has proven to be useful to gain a deeper understanding on
the complex neural substrates underlying cognitive impairment
preceding AD. Our results suggest that MCI and AD are
associated with an overall similarity decrease between different
brain regions, mainly at β1 frequency band. Furthermore,
optimal FCBF-derived sets of these abnormalities have proved
their usefulness to discriminate MCI and AD patients from
controls, reaching relatively high accuracy values. These results
highlight the usefulness of cross-entropy metrics in order to
further understand the underlying brain dynamics in MCI and
AD.
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