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Despite vast numbers of studies of stained cells in the mouse brain, no current brain atlas

provides region-by-region neuron counts. In fact, neuron numbers are only available for

about 4% of brain of regions and estimates often vary by as much as 3-fold. Here we

provide a first 3D cell atlas for the whole mouse brain, showing cell positions constructed

algorithmically from whole brain Nissl and gene expression stains, and compared against

values from the literature. The atlas provides the densities and positions of all excitatory

and inhibitory neurons, astrocytes, oligodendrocytes, and microglia in each of the 737

brain regions defined in the AMBA. The atlas is dynamic, allowing comparison with

previously reported numbers, addition of cell types, and improvement of estimates as

new data is integrated. The atlas also provides insights into cellular organization only

possible at this whole brain scale, and is publicly available.
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INTRODUCTION

Since the seminal work of Ramon y Cajal over a century ago, a vast number of studies have used
a wide range of methods to count stained cells in the brain. Despite these efforts, neuron counts
cover only about 4% of the hierarchical regions defined in the Allen Brain Atlas (Lein et al., 2007;
Dong, 2008). Counts of glia, or the ratio of glia to neurons, are even less common and counts of
neurons and glia belonging to specific types are still to be established (Figure 1B). One reason for
this paucity of data is that most cell counting studies focus on large regions without examining
their subdivisions (Figure 1B). For example, while it is possible to find reported cell and neuron
numbers for larger cortical regions such as visual, somatosensory, or auditory areas (Herculano-
Houzel et al., 2013), the cellular content of their subdivisions into smaller functional areas or even
layers remains unknown. Another reason is that some brain structures such as the barrel cortex or
the hippocampus have been studied extensively, while other regions such as the pontine nuclei or
anterior olfactory nuclei are studied less frequently or not at all.

Considering all available reports on cell densities in the mouse brain, it does not seem possible to
reach ground-truth values because no estimates have been reliably reproduced (Keller et al., 2018).
In fact, cell counts from any two of studies of the same region vary by a median of 1.8-fold and a
mean of 4.1-fold, with some estimates varying as much as 13.1-fold. Herculano-Houzel et al. (2013)
for instance, report a mean neuron density in the frontal cortex at 6.68·104 mm−3, while Schmid
et al. (2013) obtain 12.3·104 mm−3. While recent studies have stained and counted cells with much
greater precision than ever before, our state of knowledge today remains a rather rough notion of
the number of cells, neurons and glia in the whole mouse brain and in some of the large brain
regions. Reliable estimates would provide a solid foundation for large initiatives to understand the
brain (Markram et al., 2011) to reach a consensus on cell types (Jorgenson et al., 2015), and to
reconstruct and simulate the brain (Markram, 2006).

Agreement on the total number neurons in the whole mouse brain has only recently emerged:
around 70 million (Herculano-Houzel et al., 2006). Confidence in this estimate has not come as
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FIGURE 1 | Current knowledge and decomposition of the mouse brain. (A) Illustration of the hierarchical definition of non-overlapping structures in the AMBA (Dong,

2008). The highest level comprises the entire brain, while the next level defines large brain structures such as olfactory bulb, cortex, or cerebellum. The next levels

define progressively finer sub-structures. The color encodes the brain regions according to the AMBA, e.g., cortical areas are shown in green and cerebellar regions in

yellow. (B) Illustration of the published information on densities or absolute numbers of cells, neurons, and glia in different regions of the mouse brain. Each disk is

divided into rings and sectors. Each ring represents a hierarchical level in the AMBA and sectors represent the contained brain structures. The center of each disk

represents the entire brain, each surrounding ring then represents the next hierarchy level. Colored areas represent regions where at least one study reports absolute

numbers or densities, with color coded as in (A). Gray areas represent brain regions where no literature data is available. The following disks from top to bottom

illustrate for which regions numbers or cell densities have been published for cells, neurons, and glial subtypes, respectively. Most information is available for cortical

and cerebellar regions, while much less is known about subcortical regions. (C) Illustration of automatically counting cell soma from Nissl stains. Top, original Nissl

stain from AIBS, with soma stained in blue. Bottom: overlaid cell positions as detected with a state-of-the-art detection algorithm. The algorithm performs well in areas

where cell soma are well-separated. In areas where cells are so dense that cell soma overlap, automatic cell counting fails.

much from reproducible estimates, but from the ability to count
all the neuronal nuclei present in homogenized brain tissue from
the whole brain—a method that eliminates errors in manual
counting of stained cells from small samples (Herculano-Houzel
and Lent, 2005). It has however been difficult to extend this

approach to specific brain regions and to smaller sub-regions,
areas, modules, layers, and nuclei requiring precise excision
before homogenization, still leaving vast gaps in our knowledge
of cell numbers in the different regions of the brain. New
microscopic techniques can visualize labeled neurons in all areas
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of the brain, and have resulted in the CUBIC-X (Murakami et al.,
2018) and qBrain (Kim et al., 2017) atlases. As new information
of this type becomes available, the need to integrate different data
sets becomes more pressing.

Another invaluable dataset is the mouse whole-brain atlas
made available by the Allen Institute for Brain Science (AIBS)
(Lein et al., 2007; Dong, 2008). This atlas contains Nissl stained
microscopy slices for the whole brain, as well as most genes
used in situ hybridization studies. In principle, the Nissl stained
whole brain atlas contains all the data needed to estimate the
number of cells in the whole mouse brain, and in each brain
region—if the cells could be counted reliably. The nearly 20,000
whole brain gene expression atlases also, in principle, contain
information that could help estimate the number for different
cell-types such as neurons and glia, and even further subdivide
cells into excitatory and inhibitory neurons, and astrocytes,
oligodendrocytes, and microglia.

The problem is that even assuming perfect staining, manual
counting of all these cells would not only be an enormously
laborious task, but more importantly would be prone to counting
errors, missed cells, duplicate cell counts and error expansions
when extrapolating local cell density estimates to a large region
or to the whole brain. Deviations in large regions can be
significant, as the error obtained in a small volume grows
alongside the cell counts when scaling up the volume. Errors
can also increase in smaller brain regions, sub-regions, areas or
layers (Figure 1A) because they are less reliably or reproducibly
isolated. Furthermore, even the enormous dataset obtained for
the Allen Brain Atlas is not sufficient to obtain the full individual
biological variability since the same value for any brain region
would be required for many animals. Obtaining cell counts for all
brain regions across different ages also awaits a faster and more
reliable approach.

Point-detection algorithms could automatically count cells in
stained tissue, but they systematically underestimate numbers
because cells spatially overlap. This error grows as the cell density
rises (Figure 1C). Even if the errors are only significant for a
small portion of the brain volume where very high cell densities
are found, they cannot be neglected because they would contain
some of the largest cell numbers.

To overcome these challenges, we chose to build a dynamically
generated cell atlas of the mouse brain that can integrate diverse
datasets to converge toward ground-truth estimates, in principle
for all cell-types in all brain regions. We used the 3D volume
framework of the Allen Mouse Brain Atlas (AMBA) (Lein et al.,
2007) to delineate all the brain regions, and filled the volume
of each of the brain regions with cells according to data-driven
and algorithmically generated estimates. Such estimates were
obtained by loading whole brain staining data from the AMBA,
aligning and voxelizing the slices, and filling each brain region
with cells corresponding to the computed densities. We used a
variety of whole brain image datasets, including Nissl-staining for
cells and genetic marker stains to distinguish neurons from glia,
and finally the main types of neurons (excitatory and inhibitory)
and glia (astrocytes, oligodendrocytes, and microglia). We also
used some values reported from anatomical experiments in the
literature. Finally, we compared the estimates against values

reported in the literature that were not used in the reconstruction
of the cell densities. We also constructed the Atlas to enable
further integration of data to facilitate convergence toward
ground-truth, or at least toward a general consensus on cell
numbers. Finally, for those brain regions where the further
subdivisions of cell-types are known, the atlas allows for refining
the composition of cells.

Multi-origin constraints are essential to overcome many of
the difficulties of counting cells in large tissue volumes and
allow reasonable estimation of the number of cells in every
brain region. We can thus provide, for the first time, estimates
of the numbers and densities of the main classes of neurons
(excitatory and inhibitory) and glia (astrocytes, oligodendrocytes
and microglia) for the entire mouse brain, including the smallest
brain regions, sub-regions, nuclei, and layers. Placing all cells in
the 3D volume of the brain and in brain regions also yields the
spatial distribution of cells and in fact provides a 3D location for
every cell. The cell atlas can become more precise as more data
is integrated (e.g., high resolution stainings; new stainings, single
cell transcriptomic data, etc.), and in the future estimates for the
number of cell-types at finer levels of classification (morphology,
electrical, molecular, etc.). Finally, the model shown in the cell
atlas can be generated multiple times with a range of constraints
to capture individual biological variability. The 3D cell atlas has
been made publicly available as an online resource at bbp.epfl.ch/
nexus/cell-atlas.

Some of the limitations of our approach for obtaining cellular
distributions throughout the brain can be summarized as follows.
We assumed the stained intensity of Nissl and other genetic
markers to be a good indicator of soma density specific to the
population of interest, without significantly staining axons and
dendrites. Overall, we applied our density calibration uniformly
in every brain region, assuming similar soma sizes within the
three largest areas of the brain. We did not take in account spatial
exclusion between somata allowing them to be located arbitrarily
close to each other, as this effect was statistically insignificant over
entire regions. Finally, all marker data were based on individual
subjects. These assumptions will be described in detail in the
following sections.

RESULTS

Our 3D cell atlas is developed in three steps (Figure 2A): In
the first step, we start with the Nissl microscopy dataset from
the AMBA. After re-aligning, thresholding and compensating for
cell-overlap, we obtain a volumetric estimate of the cell density.
In the second step, we use the volumetric cell density to generate
cell positions in 3D space, delineated by the AMBA. Finally, we
use various genetic marker staining data as well as literature data
to label the generated cells as either excitatory and inhibitory
neurons as well as subtypes of glia (astrocytes, oligodendrocytes,
and microglia).

Estimating the Volumetric Cell Density
The gray-scale Nissl volume and the structural annotation
volume of the AMBA (Lein et al., 2007; Dong, 2008) are based
on 509 Nissl stained coronal sections of 25µm thickness. The
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FIGURE 2 | Workflow for generating cell positions for the whole mouse brain. (A) Illustration of the different processing steps of our workflow. The 1st panel shows the

AIBS Nissl stained microscopy slices. These are processed to obtain a volumetric dataset of cell density throughout the brain, shown in the 2nd panel. The cell

positions that are created from it using an acceptance-rejection algorithm are shown in the 3rd panel. Finally, the generated cells are differentiated by type, as shown

(Continued)
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FIGURE 2 | in the 4th panel. The cell types shown are glial cells (green), excitatory neurons (blue) and inhibitory neurons (red). The different processing steps are

illustrated in (B–E). (B) Illustration of how the volumetric dataset can be improved by automatic non-rigid alignment. Two regions in the volumetric dataset are shown

as example, before and after non-rigid realignment. An improvement in the cohesion of the brain structures can be clearly seen. (C) Coronal slice of the genetic marker

Nrn1 before and after thresholding, showing the additional dye uniformly present even in brain regions that lack the genetically targeted cells. Thus, the average signal

outside of the brain volume was subtracted from the total signal. While this procedure had little effect on the Nissl stained slices, it had more impact on the genetic

markers that were used in the later stages of this paper. (D) Illustration of how cells overlap when observed on a 2-dimensional plane such as a microscopy image.

This effect was corrected by a mathematical function which was applied to approximate the actual number of cells as a function of the observed voxel intensity. This

function was numerically validated, and then applied to the entire density dataset. (E) Acceptance-rejection algorithm used for the generation of cell positions. This is

an iterative step, and was repeated until the targeted number of cells in the brain was reached. (F) Comparison between the original Nissl stained slice and its virtual

counterpart, obtained using the cell positions generated in our workflow, in coronal view. Both show similar structures and correlate quite well despite the generated

cells being displayed as simple spheres of uniform size. (G) Virtual slice obtained using the cell positions generated in our workflow, in sagittal view.

structural annotation volume identifies 737 brain structures.
In the Nissl volume (v. 2011), individual coronal slices of the
original image stack are still visible (Figure 2B, left). In order to
estimate the cell densities also in the smallest brain structures,
we re-aligned adjacent slices of the Nissl volume by applying
an automated non-rigid alignment algorithm, based on Kroon
(2008), described in Appendix section 1.1 in Supplementary
Material. This not only improved the offset between adjacent
slices, but also partially corrected the spatial warping in the
images created during image acquisition (Figure 2B, right). The
result is a realigned 3D atlas with the same voxel resolution as the
original reference atlas, but with improved alignment between
coronal slices. This improved reference atlas was used in all
subsequent stages of our analysis.

For the genetic marker stains (Lein et al., 2007) the resolution
of the volumetric data was too low for our purpose (200µm).
We therefore had to realign the original microscopy images
of all used markers, with a manual landmark-based non-rigid
alignment method (Kroon, 2008). Using around 40 fiducial
points per image allowed us to create new voxel datasets
with an effective resolution of 25µm (Figures 3A–C, 4A). As
opposed to traditional affine realignment methods, the non-rigid
deformation that we applied was able to warp images in space
using an overlay grid, and therefore had a much greater degree
of freedom. For an example video of the warping effect resulting
of the non-linear alignment, see Supplementary Materials. To
remove the constant baseline signal and to enhance the contrast
of the images, we further applied a simple threshold function
(Figure 2C).

From the volumetric data-sets, we then estimated the
volumetric cell density by applying a transfer function that
compensates the possible cell overlap in the 25µm slices
(Figure 2D), which can be written as

D = f(V) = −ln(1− V) · A

Where D is the final relative cell density, V is the observed
density, and A is a constant. This function was obtained by
calculating howmany actual cells are needed in a volume to result
in a given observed density on the microscopy image.

The details of the automatic and manual alignment methods
as well as the derivation of the transfer function are described in
Appendix section 1.2 in Supplementary Material.

Generating Cell Positions
To generate the cell positions for the whole mouse brain, we
used the following Monte-Carlo algorithm (Figure 2E): First, the
volumetric density dataset was normalized to values between zero
and one. The algorithm then picked a random voxel from the
volume and a uniformly random number x between 0 and 1. If
the density at the voxel was larger than x, a cell was registered at
a random position within the voxel. This procedure was repeated
until the desired number of cells N was reached.

Our first approach was to stop placing cells when the total
number reported for the whole brain (N = 111,080,000) by
Herculano-Houzel et al. (2011) was reached. However, this
resulted in unrealistic values for the predicted cell densities,
particularly for the cerebellum where the extremely large number
of tiny granule cells is much higher than the Nissl stain could
suggest. We remedied this problem by constraining the cell
numbers at three different areas: in the cerebellum (NCerebellum

= 49,170,000), in the isocortex (NIsocortex = 23,378,142), and
the rest of the brain (NRoB = 38,531,858), as reported also by
Herculano-Houzel et al. (2011).

With these constraints, we estimated the positions of cells
in the entire brain. Figure 2F shows a comparison between
an original Nissl stained image from the AMBA and a
reconstructed slice from our cell atlas, in coronal view. Overall
the reconstructed slice matched the original well, as most
structures can be recognized in both slices, despite the generated
cells being displayed as simple spheres of uniform size. The
main noticeable difference between the original and the artificial
slice is a slight loss of spatial resolution, due to the low-pass
filtering during the density estimation. As a result, cells in the
model are less accurately distributed than in the original slice
and the boundaries of smaller structures, although present, are
less well-defined. While the original Nissl stained images are only
available in coronal view, our cell atlas allows a sagittal view
(Figure 2G), revealing slight traces of coronal misalignment,
despite the realignment of the dataset. It also has to be noted
that the cell generation algorithm does not take in account spatial
exclusion between somata, as it does not seem to have any effects
on the statistical distribution of cells at the level of entire brain
regions, and also because the sizes of individual cells are not
known.

Genetic Markers
Although the positions of all cells in the brain are now
defined, their type remains unknown. We therefore

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2018 | Volume 12 | Article 84

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Erö et al. Mouse Brain Cell Atlas

FIGURE 3 | Differentiation of glial cells. (A–C) Illustration of the variety of genetic markers that were used to obtain an approximation of glia density. The colors

represent astrocyte markers (A), oligodendrocyte markers (B), and microglia markers (C). Some of the marker experiments were only available in sagittal view and are

therefore shown in that arrangement. All markers exhibit a fairly high resolution, as the microscopy slices were manually realigned using a non-rigid landmark based

alignment. Some imaging artifacts are visible and cannot be corrected. (D) Top left: the 3 markers were combined with the illustrated ratios. The resulting volumetric

dataset was used as an approximation for glia density throughout the brain volume. Bottom left: the regions shown in green are the AIBS annotated fiber tracts that

are known to only contain non-neuronal cells. Top right: remaining neuron positions in a virtual slice after the differentiation procedure. Bottom right: glia cells

differentiated during the procedure. Colors are as in (A–C).

decided to use the genome-wide atlas of gene expression
produced by the AIBS, registered to the same reference
atlas to further differentiate the cells into subtypes of glia
cells such as astrocytes, oligodendrocytes, and microglia,
and inhibitory or excitatory neurons, neglecting further

subdivisions for the moment. Although both excitatory
and inhibitory neurons can be divided into further sub-
types, differentiating them in all brain regions would
require a complex combination of many additional
markers.
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TABLE 1 | Average glia density (mm−3 ) in different brain regions, as found in several literature sources (Keller et al., 2018).

Region DOligodendrocytes DAstrocytes DMicroglia

Cerebellum 15,000 (Förster, 2008)

12,500 (San Jose et al., 2001)

1840.8 CC+ (Relucio, 2011)

Mean and STD: 13,750 ± 1,768

1,512 (Rockland and Defelipe, 2011) 9,090 (Rockland and Defelipe, 2011)

8,158 (Journiac et al., 2005)

Mean and STD : 8,624 ± 659

Cortex 12,500 (Rockland and Defelipe, 2011) 15,696 (Grosche et al., 2013) 6,500 (Nimmerjahn et al., 2005) (Lawson et al.,

1990)

Hippocampus 9,425 (Geisert et al., 2002) 29,008 (Shimada et al., 1992)

20,904 (Grosche et al., 2013)

12,226 (Schmalbach et al., 2015)

4,811 (Geisert et al., 2002)

Mean and STD: 16,737 ± 10,496

4,353 (Geisert et al., 2002)

2,143 (Schmalbach et al., 2015)

Mean and STD: 3,248 ± 1,563

Striatum 12,000 (Steen, 2006)

5,300 (Förster, 2008)

12,550 (Binder et al., 2011)

Mean and STD: 9,950 ± 4,036

4,002 (San Jose et al., 2001)

9,000 (Steen, 2006)

4,400 (Globus pallidus) (Charron et al., 2014)

12,000 Dorsal caudate/putamen (Schmid

et al., 2013)

19,000 Medial caudate/putamen (Schmid

et al., 2013)

10800 (Förster, 2008)

Mean and STD: 9,867 ± 5,547

12,403 (San Jose et al., 2001)

15,000 (Steen, 2006)

9,700 (Lawson et al., 1990)

12,100 globus pallidus (Lawson et al., 1990)

11,300 (Förster, 2008)

Mean and STD: 12,101 ± 1,930

Bold values represent the final values used for each region.

Glia Differentiation
In order to distinguish glia from neurons, we needed to
know the volumetric density of either neurons or glia. In
this case, we used commonly-accepted glial genetic markers to
identify glia: astrocytes GFAP (Jacque et al., 1978) and S100b
(Hachem et al., 2005) and ALDH1L1 (Cahoy et al., 2008),
oligodendrocytes MBP (Hokama et al., 1986), CNP (Gravel et al.,
1996), and microglia TMEM119 (Satoh et al., 2016) markers
(Figures 3A–C). Unfortunately, the markers are not specific to
all cells of any type, and images for any one marker were
furthermore noisy. Therefore, an estimate based on a single
marker would be expected to underestimate the overall density
of glia and overestimate some subtypes of cells where the gene
is also expressed in multiple glial cell types. We thus used
multiple markers in conjunction with transcriptome data (Zeisel
et al., 2015) to estimate the proportion of GFAP and S100b and
ALDH1L1 relative to the entirety of all astrocytes, and obtained
an estimate for glia cell density according to the following
equation:

DGLIA = Soligodendroctes · (CCNP · CNP+ CMBP · Mbp)

+ SMicroglia · TMEM119+ SAstrocytes · (CGFAP · GFAP

+ CS100b · s100b + CALDH1L1 · ALDHL1L1)

CNP, MBP, GFAP, S100b, ALDH1L1, and TMEM119 are the
observed image intensities for the respective markers. The weight
factors Cmarker for the genetic markers of a given cell type are
given by

Cmarker =
1/Emarker

NMarkers

where Emarker is the expression intensity of the marker, and
Nmarkers is the number of markers specific to that cell type. We

computed the global scaling factors Scelltype in order to best match
known density values for several regions (Table 1).

Finally, we applied the previously defined voxel density
function D = f(V), to the voxel intensity dataset to approximate
spatial glia density.

As an initial constraint, all cells present in the annotated
fiber tract regions were classified as glia only. For all remaining
regions, we distinguished cells into glia and neurons according
to their spatial density obtained from the glia marker dataset,
and using an acceptance-rejection method similar to the one
used for the cell creation step. To do this, the volumetric glia
density dataset was first normalized to values between zero and
one. The algorithm then picked a random voxel from the volume
and a uniformly random number x between 0 and 1. If the
density at the voxel was larger than x, a random cell in that
voxel was labeled as glia. This procedure was repeated until we
obtained a total glia cell/neuron ratio for the whole brain of
rglia = 35.4% (Herculano-Houzel et al., 2011). The resulting glia
positions could then be separated from the remaining neuron
positions (Figure 3D). The annotated fiber tracts did not contain
any neurons, due to the imposed constraints.

Neuron Type Differentiation
We wanted to further subdivide neurons into inhibitory and
excitatory types. A variety of markers that stain inhibitory
and excitatory neurons exist. GAD67 is mainly expressed in
inhibitory neurons, and can thus be used to estimate their
density, while NRN1 is mainly expressed in excitatory neurons
(Figure 4A). We normalized the GAD67 marker with a sum of
both markers, with an overall ratio of 7.94% between inhibitory
neurons (Kim et al., 2017).We then used the resulting volumetric
inhibitory marker density.
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FIGURE 4 | Neuron differentiation into excitatory and inhibitory types. (A) Illustration of genetic marker experiments used to distinguish inhibitory from excitatory

neurons. The inhibitory marker is shown in red while the excitatory marker is blue. The two markers exhibit clear differences in terms of density, especially in the

thalamic regions. Both marker experiments were realigned manually using landmark based non-rigid alignment. Some imaging artifacts are visible and cannot be

corrected. (B) Top left: the 2 markers were combined with the illustrated ratios from literature. Bottom left: regions shown in red that are known to contain only

inhibitory neurons. This additional constraint was applied to the differentiation procedure. Right: virtual slice showing positions of inhibitory and excitatory neurons.

Colors are as in (A). Similarly, to the markers, the same regions seem to exhibit a fairly high density of inhibitory neurons, while others are mostly excitatory.

Before applying the acceptance-rejection algorithm, certain
regions with a known highly inhibitory neuronal content,
were constrained. These were all layer 1 cortical regions, and
could be distinguished using the AMBA annotation dataset.
Similar to the glia differentiation step, existing neurons were
iteratively assigned as being inhibitory following the density of
the inhibitory volumetric dataset, until the total percentage of
inhibitory neurons reached 7.94%. The resulting neuron type
positions (Figure 4B) show a distribution that follows closely the
spatial density provided by the markers.

Modulatory Neurons
We investigated the distribution of three main modulatory
neuron types in the brain: dopaminergic, serotonergic, and
acetylcholinergic. As the first two were known to be more
localized in specific areas of the brain, we manually assigned
them to their corresponding annotated regions. We found the
Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of the
Midbrain to be composed to 37.6 and 63.8% of dopaminergic
neurons (Nair-Roberts et al., 2008), which we applied as a
spatially uniform constraint throughout these regions. We
further found the Raphe Nuclei (RN) of the Midbrain to contain

9,000 serotonergic neurons (Mlinar et al., 2016), which using
our generated neural numbers yielded a fraction of 60.2% in
that region. Finally, as acetylcholinergic neurons were known
to be more spread out throughout the entire brain volume, we
used the relative volumetric density of the ACh marker from
the AIBS to approximate their distribution. As we had no global
constraint on the total number of acetylcholinergic neurons in
the brain, we used a region-specific constraint of 0.75% for
the Striatum (Tepper et al., 2010) to normalize the relative
volumetric density. Due to the region-specific localization of
most of our neuromodulatory cells as well as their low counts,
we did not examine their statistical distribution throughout the
brain volume.

Whole-Brain Composition
The result of our algorithm is a reconstruction of all cells in the
mouse brain, where each cell has a location and is assigned a
type. All cells can be visualized in their positions in the brain
volume (Figure 5A). A very high density is observed in the
cerebellar region, as expected. Furthermore, the olfactory bulb
mainly contains excitatory neurons, which is most likely because
most coronal markers weremissing coronal slices in that area and
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FIGURE 5 | Reconstructed cell positions and types in the mouse brain. (A,B) Global overview of positions and types of all generated cells. (A) Labeled cells in the full

3D volume with outside boundary of the brain shown for clarity. (B) In silico coronal slice of 25µm thickness. Glial cells are shown in green, inhibitory and excitatory

neurons are shown red and blue, respectively. The cerebellum and the hippocampus are clearly visible due to their high cell densities and their distinctive shapes.

(C,D) Composition of all regions of the mouse brain, in terms of cells, neurons and glia. Display and colors as in Figure 1B but with the estimates generated by our

workflow. Gray areas represent fiber tracts.

thus had to be extrapolated from the next closest slice, leaving
this region with a higher uncertainty than the rest of the brain. A
better overview of the generated brain structures can be obtained
by visualizing all cells in an in-silico coronal slice (Figure 5B).
This view is a combination of the previously visualized glial cells
and neurons (Figures 3B, 4B) and shows the cell-type specific
distribution of different regions such as the inhibitory-only first
cortical layers. In addition, the thalamus seems to be strongly
polarized into either mostly inhibitory or mostly excitatory areas.

The composition of the entire brain can be read out and
analyzed for both glia cells and neuron types and numbers.
Figures 5C,D summarizes the results in a similar fashion as
Figure 1B, but with all regions of the brain filled. This is a
considerable improvement compared to the coverage presented
earlier (Figure 1B), which barely filled 4% of the pie chart
representing the regional hierarchy of the brain, despite an
extensive literature study. The complete list of the generated
cell, glia, and neuron densities and numbers can be found in
Supplementary Materials.

The most striking feature is the size of the area occupied by
the cerebellum in terms of cell numbers, compared to the rest of
the brain. 42.0% of all cells are located there, and 59.8% of all
excitatory neurons (Figures 5C,D). This is especially remarkable
as this region only accounts for about 10% of the brain volume.
This is because of the very small size of granule cells that make up

this region, allowing them to be packed with an extremely high
density. Additionally, 96% of the cerebellum is excitatory, with
37.7 million excitatory against 1.1 million inhibitory neurons,
the latter however representing 18.9% of all inhibitory neurons
in the brain. The region with the second highest cell number
after the cerebellum is the cortical plate, mostly due to its
large volume. Over 50% of the inhibitory neurons of the whole
brain are located there. The striatum seems to be predominantly
inhibitory, which is consistent with experimental observations
(Tepper et al., 2010).

Glial cells seem to follow a more uniform distribution than
neuron types, with their main feature being their presence in
fiber tracts as well. While glia subtypes only differ slightly in
their regional distributions, oligodendrocytes seem to be more
prevalent in fiber tracts than the other two, which can be
explained by their role in maintaining myelin sheets around
long-range fibers (Figure 5D).

Cell Type Correlations
The histograms of brain regions in terms of their density for
cells, neurons and glia (Figure 6A) show the cerebellar regions
being responsible for the long-tail of the distributions. The latter
is well visible despite the logarithmical scale of the density axis.
Interestingly this is not the case for glia, which suggests that its
density is not always proportional to that of cells or neurons.
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FIGURE 6 | Relation between cell, glia, and neuron densities across brain regions. Color codes the brain region according to the AMBA notation (colorbar to the

right). (A–C) Histogram of brain regions in terms of their density for cells, neurons and glia. Each region is shown with the same size, on a logarithmic density axis.

(D,E) Inter-dependence between glia and cell densities, shown with (top) and without (bottom) the cerebellum. The granule layers of the cerebellum become isolated

due to their extremely high density. Hierarchically close regions often tend to form clusters, even though no regional distinction was made during the workflow.

DGGCL, Dentate gyrus, granule cell layer; PGL, Paraflocculus, granular layer; SLGL, Simple lobule, granular layer; LIIIIGL, Lobule III, granular layer; RAVPL2,

Retrosplenial area, ventral part, layer 2; MH, Medial habenula; FCCAPL, Field CA3, pyramidal layer; PHNMDMMP, Paraventricular hypothalamic nucleus,

magnocellular division, medial magnocellular part; MIOCC, Major island of Calleja. (F,G) Inter-dependence between neuron and cell densities, shown with (top) and

without (bottom) the cerebellum. The dashed line represents equal densities, where cells would be comprised of only neurons. FVVIIML, Folium-tuber vermis VII,

molecular layer; FVVIIGL, Folium-tuber vermis VII, granular layer; LIGL, Lingula I, granular layer; PVIIIML, Pyramus VIII, molecular layer; FCCAPL, Field CA2, pyramidal

layer; SO, Subfornical organ; DGGCL, Dentate gyrus, granule cell layer; MH, Medial habenula. (H,I) Inter-dependence between glia and neuron densities, shown for

excitatory neurons (top) and inhibitory neurons (bottom). C1GL, Crus 1, granular layer; PGL, Paraflocculus, granular layer; SLGL, Simple lobule, granular layer; LIIIIGL,

Lobule III, granular layer; VAL1, posteromedial visual area, layer 1; C2GL, Crus 2, granular layer; CPGL, Copula pyramidis, granular layer; PHNPP, Periventricular

hypothalamic nucleus, posterior part; RADPL1, Retrosplenial area, dorsal part, layer 1.

Furthermore, the glia and neuron distributions seem to also be
diverging for low densities, with more regions having a lower
glial than neuronal density. Overall, the distribution of glia
seems to be narrower than that of cells and neurons, implying
a more uniform distribution throughout the brain. Finally, one
has to be careful with the interpretation of the exact shape of
the histogram, as regions vary in terms of volume as well, with
smaller regions appearing in the same size than larger ones.

Next we looked at possible correlations between different cell
type densities throughout brain regions. We visualized each of
the latter as separate dots in density and cell-type ratio space,
and compared them (Figure 6). Overall there seemed to be a
noticeable level of clustering betweenmembers of the same larger
regions. Indeed, dots of the same color tended to be close to
each other, even though regional annotation data was never
used besides for setting global cell number constraints. This
suggests that structurally close regions in the brain also tend
to exhibit similar density properties. This is of course not a
strict rule as the regions plotted are never perfectly clustered to
the point that they could be distinguished from each other by
their density properties alone. As expected, cerebellar regions

exhibit density values so high that they are usually located at
the extremes of the density space, when not excluded from the
figure.

A roughly linear relationship can be observed between glia
and cells in the brain for low to medium densities (Figure 6D).
This correlation was however not consistent enough to predict
glia densities from cell densities alone, as the figure exhibits a
cone-like shape rather than a linear relationship for low numbers
(Figure 6E). This relationship further seems to break down for
densities higher than 2.5·105 mm−3, as glial densities cannot
follow cell densities anymore. This is especially the case of granule
layers of the cerebellum as they exhibit extremely high densities.
Although glial cells are often assumed to follow this proportional
relationship due to their role in both maintaining the network
structure and providing neurons with metabolic support, this
does not seem to always be the case here. Figures 6F,G shows a
similar effect but from a different point of view. Indeed, neuronal
density seems to follow cellular density linearly for low values,
while it seems to follow a constant offset for higher densities.
This suggests the presence of an upper threshold that glia density
cannot exceed.
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Finally, we wanted to study possible correlations between glia
and neuron type densities (Figures 6H,I). While hierarchically
close regions show the same clustering as previously, there does
not seem to be any well-defined correlation between the density
of glia and that of excitatory and inhibitory neurons. While this
is not surprising, it confirms that neither of these neuron types
seems to have a requirement for higher number of surrounding
glia.

Additional correlations between cell type densities and
ratios in the brain can be found in Appendix section 1.3 in
Supplementary Material.

Validation Against Additional Literature
and Automated Counting
Validating the generated densities and numbers is not trivial as
only 138 literature values were available, with only 38 regions
having 2 or more values reporting the density of the same cell
type, without counting the numbers reported by Murakami et al.
(2018) and Kim et al. (2017). There are also multiple intrinsic
deviations that are difficult to take into account, such as inter-
subject variability and subject age differences. Additionally, the
cell counting methods used in literature can all vary, as well as the
atlas used to delimitate the specific regions studied. As a result,
numbers varied by a median of 1.8-fold and a mean of 4.1-fold in
cases where more than one study reported on the same region or
area, with up to 13.1-fold for certain regions.

Overall most generated numbers were reasonably well-aligned
to their experimental counterparts (Figure 7A). Some deviations
could be observed however and seemed to be highest for
cerebellar regions, whereas isocortical numbers were predicted
more reliably. A reason for this is about half of the numbers
for isocortical regions originating from Herculano-Houzel et al.
(2013) (Figure 7A, black outline) and thus being sampled using
the same technique, thus leading to a greater overall consistency.
In contrast, other sources focused on individual regions, each
being measured with a different technique. Additionally, both
the experimental delimitation of regions and the cell counting
were done manually in most cases, leading to a further chasm
between reported numbers. Even though we converted all
reported regions to their approximate equivalent in the Allen
Brain Atlas, this might have resulted in additional deviations.
In fact, the main motivation behind comparing cell densities
rather than absolute numbers between our model and the
literature was to minimize the impact caused by differences
in region size. A better overview of Figure 7A for each
cell type is shown in Appendix section 1.4 in Supplementary
Material.

To obtain some estimate of the ground-truth, we used the
regional cell numbers obtained by our automatic point-detection
algorithm for low density areas (Figure 7B). This served as a
consistency check, as it used the same Nissl stained microscopy
images that the volumetric cell density data set used by our
generation workflow was based on (Figure 1C). As expected, the
counted density always stayed below a threshold of around 3·105

mm−3, as the algorithm failed to distinguish overlapping cell
bodies (Figure 1C). Accordingly, the deviation from generated

numbers was the largest for highly dense regions such as the
cerebellum (Figure 7B). Other regions showed a good agreement
between the generated and counted numbers, being even closer
than generated and literature values compared earlier. This
finding was further contrasted by the fact that almost all cell
density numbers from literature originated from Herculano-
Houzel et al. (2013), which was considered to be one of the more
consistent sources. The histogram of cell densities for all regions
showed a good match between generated and counted numbers
(Figure 7D), besides the long-tail of the distribution which was
expectedly not present for the counted numbers.

According to literature, the primary visual cortex (V1)
has a cell density around 50% higher than other cortical
regions (Herculano-Houzel et al., 2013) (Figure 7F). Ourmethod
however only provided a value around 20% higher. A similar
number was found by the automatic counting algorithm, applied
on the microscopy images of the same subject. This seems to
suggest that some of the deviations originate either from inter-
subject variability or from the microscopy imaging itself, and are
difficult to account for.

Our spatial density estimation assumed a constant cell body
size throughout the brain, which is never the case in reality. In
an effort to compensate for this effect, we extended our point-
detection algorithm to further estimate the average soma size
as well in each region (Figure 7E). This was done by fitting
the image of each detected soma by a 2-dimensional circular
Heaviside step function, until the best matching radius was
found. This method was not very accurate for highly dense
regions however, as the detection of overlapping cells was limited
there (Figure 1C). We found no systematic correlation between
the relative error between generated and counted numbers, and
the average soma size in the same region (Figure 7C). As a result,
we did not use these results to apply a density correction factor to
compensate for varying soma sizes.

Web-Based Interface
The 3D cell atlas (bbp.epfl.ch/nexus/cell-atlas) has been designed
to provide a global overview of the brain cell composition,
while also allowing the user to study specific regions in detail
(Figures 8A–C). Most importantly, it shows the confidence and
progress of the reconstruction effort (Figure 8D), and allows
researchers to contribute their own numbers to the validation
effort (Figure 8E).

DISCUSSION

We provide for the first time estimates of the number of neurons,
glia, and their subtypes in all known regions of the brain. These
were achieved using a data-driven approach that allows for
convergence toward reference values found in literature. This
resource allows researchers to query the cellular composition of
the entire brain, but also of very specific areas. Analyzing the data
provides ratios and correlations between cell types in every brain
region, yielding deeper insight into the cellular organization of
the mouse brain. As our method for obtaining and differentiating
cells is relatively simple, it can also be easily extended to

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2018 | Volume 12 | Article 84

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Erö et al. Mouse Brain Cell Atlas

FIGURE 7 | Validation of generated cell, glia and neuron densities against literature data and counted numbers. (A) Comparison between generated densities of

different cell types and literature values reporting the same quantity, and that were not used during the generation process. When multiple literature sources are

available for the exact same region, they are both shown as a data point and are linked together. The color encodes the brain regions according to the AMBA, while

the shapes of the points encode for cell types. The middle line delimits equal quantities, while the dashed line shows the average deviation of 2.7-fold between

literature values reporting on the same region. Data points outlined in black originate from Herculano-Houzel et al. (2013). This comparison includes Murakami et al.

(2018) and Kim et al. (2017) who provided the majority of numbers for neurons and inhibitory neurons. (B) Comparison between cell densities generated, and counted

by the automatic point-detection algorithm for every region of the brain. Colors are as in (A). The middle line delimits equal quantities. The data points for cell density

that are available in literature and are also shown in (A), are represented as black dots for comparison. (C) Contribution of average soma size to the relative error

between generated and counted cell densities, for each region. The relative error was defined as the difference between generated and counted densities, divided by

the counted densities. Overall, most regions seem to exhibit a relative error of 10% between the two methods, with the lowest deviations reaching 0.1% and the

highest being around 1,000% mostly for cerebellar regions. The lack of correlation shows that the density approximation was not systematically undermined by the

deviations in the observed soma size. (D) Histograms of regions in the brain according to cell density, for generated (blue) and counted (green) numbers. The main

difference lies in the long-tail which is only present for the generated numbers, as the counting algorithm does not work properly for highly dense regions. (E) Average

soma size per region, approximated by the automatic counting algorithm, and shown in coronal view. (F) Different cortical regions as seen on the original Nissl stained

slice from AIBS, with their average cell densities obtained from our generation algorithm (G), our automatic point-detection algorithm (C), and from literature

(Herculano-Houzel et al., 2013) (H).

integrate additional genetic markers, or more generally whole-
brain datasets for any cell type. The same approach and model
can therefore be used to develop a catalog of cell-types in
every brain region at even greater level of detail based on

molecular, genetic, and electrophysiological data. Finally, the
exact cell positions are also provided by the workflow, allowing
the building of computer models of the whole mouse brain, or of
brain systems composed of single or multiple regions.
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FIGURE 8 | Web-based Cell Atlas providing an overview of all neurons and glia in the brain. (A) Global view of the cell atlas, allowing the selection of multiple regions

and their display in 3D, color-coded according to the Allen Brain Atlas (Dong, 2008). The website displays 1% of all cells as small dots, at their reconstructed position

in space. The cell counts and densities are shown on the left panel, along with the selected regions. The positions and densities of all cells in the brain can be

downloaded. (B) Coronal view of the brain, showing 100% of cells in a 25 µm–thick virtual slice. The colors reflect cell type in this case, but can be changed with a

dynamic interface. (C) Regions can be selected and studied individually, as shown here for the Hippocampus. (D) Validation panel, comparing the Cell Atlas densities

for each selected region and cell type, with their literature counterparts. Each dot represents a literature number on a linear or logarithmic axis, and can be selected to

access the underlying literature reference. White dot represents our reconstructed number for the selected region. (E) Contribution panel, allowing external users to

enter region and cell type specific numbers for further validation. This encourages a collaborative effort to accumulate further literature numbers, and converge toward

a ground-truth.

Cell Densities and Correlation
The number of glia and cells (neurons and glia) are proportional
for low cell densities and breaks down as cell densities surpass

2.5·105 mm−3. This was further confirmed by the constant offset
present between cell and neuron densities, indicating an upper
ceiling for glial density. Neuron densities could thus be an order
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of magnitude higher than glia densities in certain regions. Overall
glia density also appeared to be much more uniform throughout
the brain than other cells, which was also suggested by its much
narrower distribution across the regions. Indeed, while neuron
and cell densities followed a long-tailed distribution even on a
logarithmic scale, glia densities did not. There was no particular
correlation between glia and specific neuron types, indicating no
preference for glia toward one or the other.

The cerebellum was consistently over-represented in terms of
excitatory neuron density, due to the presence of granule cells.
It was however similar to other regions for other cell types,
suggesting that a high granule cell density would not significantly
alter the structural organization of other cell types.

Validation Against Literature
We reviewed a large array of available literature values for
cell, neuron and glia numbers in the mouse brain. A large
disagreement between multiple numbers reported for the same
brain region could however be observed. These varied by a
median of 1.8-fold and amean of 4.1-fold, up to 13.1-fold in some
cases. This makes it difficult to construct a grand truth for cell
densities from individual literature sources alone.

We were however able to compare our numbers to their
literature equivalent. We found an overall decent agreement
for most cell types, mostly within the deviation that different
literature sources presented to themselves.

Some of the approximations made during our workflow
contributed to these deviations. First, the mathematical function
f(V) used to obtain density values from voxel intensities assumed
constant cell sizes and large voxel depth. The second was the
alignment of genetic marker datasets, which despite being made
as accurate as possible was still relying on manual input and
a finite number of fiducial points. Furthermore, some artifacts
originating from the acquisition itself were visible on the stained
images and could not be corrected.

Other deviations most likely resulted from the inaccuracy
in regional delimitation, as well as from the heterogeneity of
counting techniques employed by the different research groups.
These problems were however unavoidable when retrieving data
from multiple sources. Inter-subject variability and difference in
the age of the subject were other innate sources of error that could
only be avoided if all density measurements were performed on
a single animal. Finally, the main problem was the difficulty of
dissociating these variables from each other, as their contribution
to the deviations was impossible to systematically account for.

Validation Against Automated Counting
To get another approximation of the ground-truth, we also
run an automated cell counting algorithm on the original Nissl
dataset. While this algorithm was applied to the 2-dimensional
slices, it yielded 3-dimensional positions for all cells by using the
coronal position of each slice in the brain. These in turn resulted
in region-specific total counts that could directly be compared
to those obtained using the density-based generation algorithm.
This would also ensure the lack of errors due to inter-subject
variability and age difference, as well as due to differences in
measurement techniques.

Numbers matched well in the regions where the counting
algorithm worked, and unsurprisingly less so in high density
regions. Both generated and counted numbers exhibited a similar
spread throughout the brain, besides for the long-tail of the
distribution which was not present in the case of the counting
algorithm. There was overall a better agreement between
generated and counted numbers, than between generated and
literature numbers. This was not surprising, as both the counting
algorithm and the volumetric density used in by our method
were based on the same Nissl stained microscopy images,
thereby excluding inter-subject variability from the deviations.
The average soma sizes obtained by the counting algorithm could
not be used to correct the error caused by the constant soma
size assumption, as there was no systematic correlation between
them.

We could not find a significantly higher density in the
visual cortex than in other cortical areas, despite predictions
by literature numbers. However, both the results from the
counting algorithm and a direct qualitative observation of the
original Nissl stained slice showed similar densities betweenmain
isocortical areas. The error might therefore be due to inter-
subject variability between species, which is present despite the
uniform use of wild-type mice.

Using point-detection techniques on higher density
microscopy images might alleviate some of the problems
encountered here. It would however also create new challenges
in terms of differentiating cells into multiple types, as it cannot be
applied to multiple subjects without causing mismatch between
cell positions.

Future Work
Our approach is a way to consolidate current knowledge
about the brain from available data. Any deficiencies of the
model highlight scarcity or issues in the underlying data and
assumptions. Therefore, an important benefit of our approach
is that it helps to guide future research and suggests new
experiments, because we can estimate from the validations which
new data would improve themodel most. Thus, the benefit of this
large-scale model derives as much from what it cannot explain
as from what it can. One therefore has to keep in mind that the
model itself is only a reflection of the underlying datasets.

Future iterations will improve upon the modules delineated
here. We will employ the latest AIBS atlas instead of generating
a new aligned version. We will combine all genetic markers
available from the AIBS, and attribute a list of genes to every
cell of our model. We will then apply all known exclusion and
inclusion rules to the labeled cells to obtain additional cell types.
We will quantify the expected variation in cell numbers within
the target strain, thereby allowing individual instances to be
created. In the future, we also seek to integrate connectivity data
into our model. These will include tracer injection experiments
from the AIBS, and from other initiatives such as the Brain
Architecture Project (mouse.brainarchitecture.org), the Mouse
Connectome Project (mouseconnectome.org) or the MouseLight
Project (janelia.org/project-team/mouselight). The fact that most
of these initiatives use the reference space from the AIBS would
facilitate this task. Finally, the cell positions generated in this
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approach will also be used as the basis for building a whole-brain
network employing whole neuronmorphologies (Markram et al.,
2015).
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