'," frontiers

in Neuroinformatics

TECHNOLOGY REPORT
published: 12 December 2018
doi: 10.3389/fninf.2018.00089

OPEN ACCESS

Edited by:

Andrew P, Davison,

FRE3693 Unit de Neuroscience,
Information et Complexit (UNIC),
France

Reviewed by:

Timothée Masquelier,

Centre National de la Recherche
Scientifique (CNRS), France
Jonathan Binas,

Montreal Institute for Learning
Algorithm (MILA), Canada

*Correspondence:
Hananel Hazan
hananel@hazan.org.il
Daniel J. Saunders
djsaunde@cs.umass.edu

Received: 20 June 2018
Accepted: 13 November 2018
Published: 12 December 2018

Citation:

Hazan H, Saunders DJ, Khan H,
Patel D, Sanghavi DT, Siegelmann HT
and Kozma R (2018) BindsNET: A
Machine Learning-Oriented Spiking
Neural Networks Library in Python.
Front. Neuroinform. 12:89.

doi: 10.3389/fninf.2018.00089

Check for
updates

BindsNET: A Machine
Learning-Oriented Spiking Neural
Networks Library in Python
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The development of spiking neural network simulation software is a critical component
enabling the modeling of neural systems and the development of biologically inspired
algorithms. Existing software frameworks support a wide range of neural functionality,
software abstraction levels, and hardware devices, yet are typically not suitable for
rapid prototyping or application to problems in the domain of machine learning. In
this paper, we describe a new Python package for the simulation of spiking neural
networks, specifically geared toward machine learning and reinforcement learning. Our
software, called BindsNET!, enables rapid building and simulation of spiking networks
and features user-friendly, concise syntax. BindsNET is built on the PyTorch deep
neural networks library, facilitating the implementation of spiking neural networks on fast
CPU and GPU computational platforms. Moreover, the BindsNET framework can be
adjusted to utilize other existing computing and hardware backends; e.g., TensorFlow
and SpiNNaker. We provide an interface with the OpenAl gym library, allowing for
training and evaluation of spiking networks on reinforcement learning environments. We
argue that this package facilitates the use of spiking networks for large-scale machine
learning problems and show some simple examples by using BindsNET in practice.

Keywords: GPU-computing, spiking Network, PyTorch, machine learning, python (programming language),
reinforcement learning (RL)

1. INTRODUCTION

The recent success of deep learning models in computer vision, natural language processing, and
other domains (LeCun et al., 2015) have led to a proliferation of machine learning software packages
(Jia et al., 2014; Abadi et al., 2015; Chen et al., 2015; Tokui et al., 2015; Al-Rfou et al., 2016; Paszke
et al., 2017). GPU acceleration of deep learning primitives has been a major proponent of this
success (Chetlur et al., 2014), as their massively parallel operation enables rapid processing of layers
of independent nodes. Since the biological plausibility of deep neural networks is often disputed
(Stork, 1989), interest in integrating the algorithms of deep learning with long-studied ideas in
neuroscience has been mounting (Marblestone et al., 2016), both as a means to increase machine
learning performance and to better model learning and decision-making in biological brains (Wang
et al., 2018).

'BindsNET code is available at https://github.com/Hananel-Hazan/bindsnet. To install the version of the code used
for this paper, use pip install bindsnet=0.2.2. Benchmarking code for this paper can be found in the
examples/benchmark directory.
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Spiking neural networks (SNNs) (Maass, 1996, 1997; Kistler
and Gerstner, 2002) are sometimes referred to as the “third
generation” of neural networks because of their potential to
supersede deep learning methods in the fields of computational
neuroscience (Wall and Glackin, 2013) and biologically plausible
machine learning (ML) (Bengio et al., 2015). SNNs are also
thought to be more practical for data-processing tasks in
which the data has a temporal component since the neurons
which comprise SNNs naturally integrate their inputs over time.
Moreover, their binary (spiking or no spiking) operation lends
itself well to fast and energy eflicient simulation on hardware
devices.

Although spiking neural networks are not widely used as
machine learning systems, recent work shows that they have
the potential to be. SNNs are often trained with unsupervised
learning rules to learn a useful representation of a dataset, which
may then be used as features for supervised learning methods
(Diehl and Cook, 2015; Kheradpisheh et al., 2016; Ferr et al.,
2018; Hazan et al., 2018; Saunders et al., 2018). Trained deep
neural networks may be converted to SNNs (Rueckauer et al.,
2017; Rueckauer and Liu, 2018) and implemented in hardware
while maintaining good image recognition performance (Diehl
et al, 2015), demonstrating that SNNs can in principle
compete with deep learning methods. In similar lines of work
(Hunsberger and Eliasmith, 2015; Lee et al., 2016; O’Connor
and Welling, 2016; Huh and Sejnowski, 2017; Mostafa, 2018;
Wu et al., 2018), the popular back-propagation algorithm (or
variants thereof) has been applied to differentiable versions
of SNNs to achieve competitive performance on standard
image classification datasets, providing additional evidence in
support of the potential of spiking networks for ML problem
solving. Finally, ideas from reinforcement learning can be
used to efficiently train spiking neural networks for object
classification or other tasks (Florian, 2007; Mozafari et al.,
2018).

The membrane potential (or voltage) of a spiking neuron
is often described by ordinary differential equations. The
membrane potential of the neuron is increased or decreased
by presynaptic inputs, depending on their sign and strength.
In the case of the leaky integrate-and-fire (LIF) model (Kistler
and Gerstner, 2002) and several other models, the neuron is
constantly decaying to a rest potential vys. If a neuron integrates
enough input and reaches its threshold voltage vy, it emits a
spike which travels to downstream neurons via synapses, its post-
synaptic effect modulated by synaptic strengths, and its voltage is
reset to some value vy,s;. Synapses between neurons can also have
their own dynamics, which are modified by prescribed learning
rules or external reward signals.

Several software packages for the discrete-time simulation of
SNNs exist, with varying levels of biological realism and support
for hardware platforms. Many such solutions, however, were not
developed to target ML applications, and often feature abstruse
syntax resulting in steep learning curves for new users. Moreover,
packages with a large degree of biological realism may not be
appropriate for problems in ML, since they are computationally
expensive to simulate and may require a large degree of hyper-
parameter tuning. Real-time hardware implementations of SNNs

exist as well, but cannot support the rapid prototyping that some
software solutions can.

Motivated by the foregoing shortcomings, we present the
BindsNET spiking neural networks library, which is developed
on top of the popular PyTorch deep learning library (Paszke
et al, 2017). At its core, the software allows users to build,
train, and evaluate SNNs composed of groups of neurons
and their connections. The learning of connection weights is
supported by various algorithms from the biological learning
literature (Hebb, 1949; Markram et al., 1997). A separate module
provides an interface to the OpenAl gym (Brockman et al,
2016) reinforcement learning (RL) environments library from
BindsNET. A Pipeline object is used to streamline the
interaction between spiking networks and RL environments,
removing many of the messy details from the purview of the
experimenter. Still other modules provide functions such as
loading of ML datasets, encoding of raw data into spike train
network inputs, plotting of network state variables and outputs,
and evaluation of SNN as ML models.

The paper is structured as follows: we begin in section 2
with an assessment of the existing SNN simulation software
and hardware implementations. In section 3, the BindsNET
library is described in details, emphasizing the motivation of
creating each software module, describing their functionalities,
and they way the inter-operate when solving a specific task. Code
snippets and simple case studies are introduced in section 4 to
demonstrate the breadth of possible BindsNET applications.
Desirable directions and features of future developments are
listed in 5, while potential research impacts are assessed in
section 6.

2. REVIEW OF SNN SOFTWARE
PACKAGES

2.1. Objectives of SNN Simulations

In the last two decades, neural networks have become
increasingly prominent in machine learning and artificial
intelligence research, leading to a proliferation of efficient
software packages for their training, evaluation, and deployment.
On the other hand, the simulation of the “third generation”
of neural networks (SNNs) has not been able to reach its
full potential, due in part to their inherent complexity and
computational requirements. However, spiking neurons excel
at remembering a short-term history of their activation and
feature efficient binary communication with other neurons, a
useful feature in reducing energy requirements on neuromorphic
hardware. Spiking neurons exhibit more properties from their
biological counterpart than the computing units utilized by
deep neural networks, which may constitute an important
advantage in terms of practical computational power or ML
performance.

Researchers that want to conduct experiments with networks
of spiking neurons for ML purposes have a number of options
for SNN simulation software. Many frameworks exist, but each is
tailored toward specific application domains. In this section, we
describe the existing relevant software libraries and the challenges
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associated with each, and contrast these with the strengths of our
package.

We believe that the chosen simulation framework must be
easy to develop in, debug, and run, and, most importantly,
support the level of biological complexity desired by its
users. We express a preference to maintain consistency in
development by using a single programming language, and for
it to be affordable or an open source project. We describe
whether and how these aspects are realized in each competing
solution.

2.2. Comparison of State-of-Art Simulation

Packages

Many spiking neural network frameworks exist, each with
a unique set of use cases. Some focus on the biologically
realistic simulation of neurons, while others on high-level spiking
network functionality. To build a network to run even the
simplest machine learning experiment, one will face multiple
difficult design choices: Which biological properties should the
neurons and the network have? e.g., how many GABAergic
neurons or NMDA/AMPA receptors should be used, or what
form of synaptic dynamics? Many such options exist, some
of which may or may not have a significant impact on the
performance of an ML system.

Several prominent SNN simulation packages are compared
in Tablel. For example, NEST (Gewaltig and Diesmann,
2007), BRIAN (Stimberg et al., 2014), and ANNarchy (Vitay
et al., 2015) focus on accurate biological simulation from sub-
cellular components and biochemical reactions, to complex
models of single neurons, all up to the network level. Other
popular biologically realistic platforms are NEURON (Carnevale
and Hines, 2006), Genesis (Cornelis et al., 2012). These
simulation platforms target the neuro-biophysics community
and neuroscientists that wish to simulate multicompartment
neuron models, in which each compartment is a different part of
the neuron with different functionalities, morphological details,
and shape. These packages are able to simulate large SNNs
on various types of systems, from laptops all the way up to
HPC systems. However, each simulated component must be
homogeneous, meaning that it must be built with a single type
of neuron and a single type of synapse. If a researcher wants
to simulate multiple types of neurons utilizing various synapse
types, it may be difficult in these frameworks. For a more
detailed comparison of development time, model performance,
and varieties of models of neurons available in these libraries see
(Tikidji-Hamburyan et al., 2017).

A major benefit of the BRIAN, ANNarchy, NEST, and
NEURON packages is that, besides the built-in modules for
neuron and connection objects, the programmer is able
to specify the dynamics of neurons and connections using
differential equations. This eliminates the need to manually
specify the dynamic properties of each new neuron or
connection object in code. The equations are compiled into
fast C++ code in the case of ANNarchy, vectorised and
linear algebraic operations using NumPy and Basic Linear
Algebra Subprograms (BLAS) in the case of BRIAN2, and

to a mix of Python and native C-like language (hoc) (Hines
et al., 2009) which are responsible for SNN simulation in
the case of NEURON. In addition, in the NEST package, the
programmer can combine pre-configured objects (which accepts
arguments) to create SNNs. In all of these libraries, significant
changes to the operation of the network components requires
modification of the underlying code, a difficult task which
gets in the way of fast network prototyping and breaks the
continuity of the programming. At this time, BindsNET does
not support the solution of arbitrary differential equations
describing neural dynamics, rather, for simplicity, several
popular neuron types are provided for the user to chose
from.

Frameworks such as NeuCube (Kasabov, 2014) and Nengo
(Bekolay et al., 2014) focus on high-level behaviors of spiking
neural networks and may be used for machine learning
experimentation. NeuCube supports rate coding-based spiking
networks, and Nengo supports simulation at the level of
spikes, firing rates, or high-level, abstract neural behavior.
NeuCube attempts to map spatiotemporal input data into
three-dimensional SNN architectures; however, it is not an
open source project, and therefore is somewhat restricted in
scope and usability. Nengo is often used to simulate high-level
functionality of brains or brain regions, as a cognitive modeling
toolbox implementing the Neural Engineering Framework
(Stewart, 2012) rather than a machine learning framework.
Nengo is an open source project, written in Python, and supports
a Tensorflow (Abadi et al, 2015) backend to improve
simulation speed and exploit some limited ML functionality.
It also has options for deploying neural models on dedicated
hardware platforms; e.g., SpiNNaker (Plana et al, 2011).
CARLsim (Beyeler et al., 2015) and NeMo (Fidjeland et al.,
2009) also focus on the high-level aspects of SNNs and are thus
good candidates for applications in machine learning. Both allow
the simulation of large spiking networks built with Izhikevich
neurons (Izhikevich, 2003) with realistic synaptic dynamics as
their fundamental computational unit, and support accelerated
computation with GPU hardware. Like the frameworks before,
low-level simulation code is written in C++ for efliciency,
but programmers can interact with them with a simulator-
independent PyNN Python library (Davison et al., 2008), or in
MATLAB or Java.

The GeNN (GPU-enhanced neuronal networks) library Yavuz
et al. (2016) is an environment that enables simulation of SNNs
on CPUs or NVIDIA GPUs via code generation technology.
Networks are defined in a C-style API, and the code for
simulating them (on CPU or GPU) are automatically generated
by GeNN. The recent BRIAN2genn package Stimberg et al.
(2018) (in beta release) can be used to convert network
models written in BRIAN2 to run on NVIDIA GPUs using
the GeNN library, by invoking BRIAN2’s set_device()
function to execute code in an external framework. Although
this platform targets both CPUs and GPUs (a central feature
of the BindsNET library), it requires an (often costly)
intermediate code generation step between network prototyping
and deployment (see Figure 11 for an illustration of this issue). It
is also difficult to intervene on the generated code when running;
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TABLE 1 | Comparison between spiking neural network simulation libraries.

Simulator Affiliation Open source Simulation OpenMP GPU Programming languages
ANNarchy Chemnitz University Yes Clock- Yes Yes C++

Germany driven with Python interface
(Py)NEST University of Freiburg Yes Hybrid Yes No C++

Germany with Python interface
CARLsim University of California Yes Clock- Yes Yes C++

Irvine, CA, US driven with PyNN support
NeMo Imperial College Yes Clock- Yes Yes C++

London, UK driven with Python & PyNN support
PyNN Open Community Yes Various Yes Yes Python

Interface only

Nengo Al University of Waterloo Yes Clock- Partially Yes C++

Canada driven with Python wrapper
SpiNNaker Manchester University Yes Event- No No C++ with

UK driven PyNN & sPyNNaker support
Brian 2 Ecole Normale Superieure Yes Clock- Yes No C++

Paris, France driven with Python wrapper
Brain2GeNN University of Sussex Yes Clock- Yes Yes C++
(GeNN) UK driven with Python wrapper
NeuCube Auckland University No ? ? ? MATLAB

New Zealand
BindsNET University Massachusetts Yes Clock- Yes Yes C++

Ambherst, US driven with Python wrapper

e.g., clamping synapses if certain criteria are met, or changing
learning rates as the simulation progresses.

Many of the above packages are written in more than one
programming language: the core functionality is implemented in
a lower-level language (e.g., C++) to achieve good performance
with low overhead, and the code exposed to the user of the
package is written in a higher-level language (e.g., Python or
MATLAB) to enable fast prototyping. If such frameworks are
not tailored to the needs of a user, have steep learning curves,
or aren’t flexible enough to create a desired model, the user may
have to program in both high- and low-level languages to make
changes to the required internal components. The authors have
encountered this difficulty with the BRIAN2 library in particular,
since certain segments of simulation functionality is regulated to
generated code, which is difficult or impossible to modify while,
for example, training a SNN for a machine learning task. This
issue is likely to appear in similar software frameworks; e.g.,
GeNN and ANNarchy.

BindsNET relies on PyTorch for its matrix computations in
order to perform efficient simulation of spiking neural networks.
Without changing the details of the mathematical operations,
BindsNET can in principle be connected to various hardwares,
e.g., FPGA, ASIC, DSP, or ARM, to execute the simulations.
One may design an API to compile spiking networks created
in BindsNET to run on designated hardware instead of using
PyTorch as the simulation workhorse. In this way, BindsNET
can be seen as a bridge between the software and hardware
domains, enabling researchers to rapidly test software prototypes

on CPUs or GPUs, and eventually deploy the simulation to fast,
energy efficient dedicated hardware. At the moment, no such API
exists, but may be added in a future release of the library.

3. PACKAGE STRUCTURE

A summary of all the software modules of the BindsNET
package is included in Figure 1.

Many BindsNET objects use the torch.Tensor data
structure for computation; e.g., all objects supporting the Nodes
interface use Tensors to store and update state variables such
as spike occurrences or voltages. The Tensor object is a multi-
dimensional matrix containing elements of a single data type; e.g.,
integers or floating points numbers with 8, 16, 32, or 64 bits of
precision. They can be easily moved between devices with calls
to Tensor.cpu() or Tensor.cuda (), and can target GPU
devices by default with the statement
torch.set_default_tensor_type(’torch.cuda.
FloatTensor’).

3.1. SNN Simulation

BindsNET provides a Network object (in the network
module) which is responsible for the coordination of one or
many Nodes and Connections objects, and supports the
use of Monitors for recording the state variables of these
components. A time step parameter dt is the sole (optional)
argument to the Network constructor, which controls the
temporal resolution of simulation. The run (inpts, time)
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conversion of non-negative data into spikes with exponentially-distributed inter-arrival times

conversion of non-negative data into one spike per neuron with times inversely proportional to intensity

BindsNET
network contains the Network object and submodules for network components
—Network spiking neural network; responsible for coordination of neurons and connections
—nodes groups of neurons of arbitrary size and dimensionality
Input neurons with user-specified spiking activity
McCullochPittsNodes | implements the McCulloch-Pitts neuron model
IFNodes implements the integrate-and-fire (IF) neuron model
LIFNodes implements the leaky integrate-and-fire (LIF) neuron model
IzhikevichNodes implements the Izhikevich neuron model
——topology connectivity between groups of neurons
Connection all-to-all connectivity between neurons (dense weight matrix)
SparseConnection sparse connectivity between neurons (sparse weight matrix)
Conv2dConnection two-dimensional convolution of presynaptic neurons (convolutional weight kernels)
L—monitors record time-varying state variables of arbitrary objects.
—Monitor record state variable(s) from a single BindsNET object
—NetworkMonitor record state variable(s) from all components of a Network
environment reinforcement learning environments
—GymEnvironment thin wrapper of the gym RL environments library
l—DatasetEnvironment thin wrapper around arbitrary dataset for use in pipeline
datasets downloading, pre-processing, and iteration over popular ML datasets
—MNIST handwritten digits dataset (28x28, 60K train, 10K test)
—CIFAR-10 10-class natural image dataset (32x32x3, 50K train, 10K test)
—CIFAR-100 100-class natural image dataset (32x32x3, 50K train, 10K test)
encoding conversion of numerical data into binary spikes
—Dbernoulli conversion of non-negative data into Bernoulli-distributed spikes
——poisson
'—rank_order_coding
learning methods for updating connection parameters of topology objects
——hebbian hebbian modification method for connections update
—post_pre simple STDP rule based on pre- and post-synaptic neural activity
—m_stdp reward-modulated STDP rule
—m_stdp_et reward-modulated STDP rule with eligibility trace
—pipeline contains Pipeline object and feedback functions
—Pipeline smoothly integrates a network, environment, and encoding and feedback functions
L—action functions for mapping network activity to actions in an environment
—select_random selects random action in action space
L—select_multinomial samples an action from a probability distribution parametrized by a vector of spikes
——evaluation quantification of SNNs as machine learning models
—assign_labels assign data labels to neurons based on their spiking activity on trainin data
I—all_activity classify data using spikes and labels from all neurons
L—proportion_weighting weigh spikes from neurons by the proportion of spiking activity per data label
analysis tools for assessing state and evolution of network components
—nplotting online (during simulation) plotting functions
L—uvisualization offline (after simulation) plotting functions
'—models network architectures from the spiking neural networks literature
DiehlAndCook2015 SNN trained to classify data using STDP and a competitive mechanism
FIGURE 1 | Depiction of the BindsNET directory structure and description of major software modules.

function implements synchronous updates (for a number of
time steps tcii%) of all network components. This function
calls get_inputs () to calculate pre-synaptic inputs to all
Nodes instances (alongside user-defined inputs in inpts)
as a subroutine. A reset_ () method invokes resetting
functionality of all network components, namely for resetting
state variables back to default values. Saving and loading of
networks to and from disk is implemented, permitting re-use of
trained connection weights or other parameters.

The Nodes abstract base class in the nodes module
specifies the abstract functions step(inpts, dt) and
reset_ (). The first is called by the run() function
of a Network instance to carry out a single time step’s
update, and the second resets spikes, voltages, and any other
recorded state variables to default values. Implementations of
the Nodes class include Input (neurons with user-specified
or fixed spikes) McCullochPittsNodes (McCulloch-Pitts
neurons), IFNodes (integrate-and-fire neurons), LIFNodes
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(leaky integrate-and-fire neurons), and IzhikevichNodes
(Izhikevich neurons). Other neurons or neuron-like computing
elements may be implemented by extending the Nodes abstract
class. Many Nodes object support optional arguments for
customizing neural attributes such as threshold, reset, and
resting potential, refractory period, membrane time constant,
and more. It should be noted that some Nodes objects’ behavior
does not depend on the dt parameters; for example, the
McCullochPittsNodes object has no memory of previous
time steps (stateless), and yet it may still be embedded in a SNN
simulation.

The topology module is used to specify interactions
between Nodes instances, the most generic of which is
implemented in the Connection object. The Connection
is aware of source (pre-synaptic) and target (post-synaptic)
Nodes, as well as a matrix of weights w of connections
strengths. By default, connections do not implement any
learning of connection weights, but do so through the inclusion
of an update_rule argument. Several canonical learning
rules from the biological learning literature are implemented
in the learning module, including Hebbian learning
(Hebbian), a variant of spike-timing-dependent plasticity
(STDP) (PostPre), and less well-known methods such as
reward-modulated STDP (MSTDP). The optional argument
norm to the Connection specifies a desired sum of weights
per target neuron, which is enforced by the parent Network
during each call of run (). A SparseConnection object is
available for specifying connections where certain weights are
fixed to zero; however, this does not yet available for learning
functionality due to a lack of adequate support for sparse
Tensor in the PyTorch library. The Conv2dConnection
object implements a two-dimensional convolution operation
(using PyTorch’s torch.nn.conv2d function) and
supports all update rules from the learning module. The
LocallyConnectedConnection implements a two-
dimensional convolutional layer without shared weights; i.e.,
each input region is associated with a different set of filter weights
(Bruna et al., 2013; Saunders et al., 2018).

3.2. Machine and Reinforcement Learning

BindsNET is being developed with machine and reinforcement
learning applications in mind. At the core of these efforts is
the learning module, which contains functions which can
be attached to Connection objects to modify them during
SNN simulation. By default, connections are instantiated
with no learning rule. The Hebbian rule (“fire together,
wire together”) symmetrically strengthens weights when pre-
and post-synpatic spikes occur temporally close together,
and the PostPre rule implements a simple form of STDP
in which weights are increased or decreased according to
the relative timing of pre- and post-synaptic spikes, with
user-specified (possibly asymmetric) learning rates. The reward-
modulated STDP (MSTDP) and reward-modulated STDP
with eligibility trace (MSTDPET) rules of Florian (2007) are
also implemented for use in basic reinforcement learning
experiments. In general, any learning rule can be used with
any connection types and other network components, but it

is up to the researcher to choose the right method for their
experiment.

The datasets module provides a means to download,
pre-process, and iterate over machine learning datasets. For
example, the MNIST object provides this functionality for the
MNIST handwritten digits dataset. Several other datasets are
supported besides, including CIFAR-10, CIFAR-100, (Krizhevsky
and Hinton, 2009) and Spoken MNIST. The samples from a
dataset can be encoded into spike trains using the encoding
module, currently supporting several functions for creating spike
trains from non-negative data based on different statistical
distributions and biologically inspired transformations of stimuli.
Encoding functions include poisson (), which converts data
representing firing rates into Poisson spike trains with said firing
rates, and rank_order (), which converts data into single
spikes per neuron temporally ordered by the intensity of the input
data (Thorpe and Gautrais, 1998). Spikes may be used as input to
SNNs, or even to other ML systems. A submodule preprocess
of datasets allows the user to apply various pre-processing
techiques to raw data; e.g., cropping, subsampling, binarizing,
and more.

The environment module provides an interface into
which a SNN, considered as a reinforcement learning agent, can
take input from and enact actions in a reinforcement learning
environment. The GymEnvironments object comprises
of a generic wrapper for gym (Brockman et al, 2016) RL
environments and calls its reset (), step(action),
close (), and render () functionality, while providing
a default pre-processing function preprocess() for
observations from each environment. The step (action)
function takes an action in the gym environment, which
returns an observation, reward value, an indication of
whether the episode has finished, and a dictionary of (name,
value) pairs containing additional information. Another
object, DatasetEnvironment, provides a generic
wrapper around objects from the datasets module,
allowing these to be used as a component in a Pipeline
instance (see section 3.3). The environment.action
module provides methods for mapping one or more
network layers spikes to actions in the environment;
e.g, select_multinomial() treats a (normalized)
vector of spikes as a probability distribution from which to
sample an action for the environments similarly-sized action
space.

Simple methods for the evaluation of SNNs as machine
learning models are implemented in the evaluation
module. In the context of unsupervised learning, the
assign_labels () function assigns data labels to neurons
corresponding to the class of data on which they spike most
during network training (Diehl and Cook, 2015). These labels
are to classify new data using methods like a11_activity ()
and proportion_weighting () (Hazan et al, 2018). We
have recently added logreg_fit and logreg_predict
methods for fitting and predicting on categorical data with
the logistic regression implementation borrowed from the
scikit-learn library (Pedregosa et al, 2011). We plan to
add additional “read-out” methods in the near future, such
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as k-nearest neighbor (KNN) and support vector machines
(SVMs).

A collection of network architectures is defined in the
models module. For example, the network structure of Diehl
and Cook (2015) is implemented by the Dieh1AndCook2015
object, which supports arguments such as n_neurons,
excite, inhib, etc. with reasonable default values.

3.3. The Pipeline Object

As an additional effort to ease prototyping of machine
learning systems comprising spiking neural networks, we have
provided the Pipeline object to compose an environment,
network, an encoding of environment observations, and a
mapping from network activity to the environment’s action
space. The Pipeline also provides optional arguments
for visualization of the environment and network state
variables during network operation, skipping or recording
observations on a regular basis, the length of the simulation
per observation (defaults to 1 time step), and more. The
main action of the pipeline can be explained as a four-
step, recurring process, implemented in the pipeline step ()
function:

1. An action is selected based on the activity of one or more of
the network’s layers during the last one or more time steps

2. This action is used as input to the environment’s step ()
function, which returns a new observation, a scalar reward,
whether the simulation has finished, and any additional
information particular to the environment

3. The observation returned from the environment is converted
into spike trains according to the user-specified encoding
function (either custom or from the encoding module) and
request simulation time

4. The spike train-encoded observation is used as input to the
network.

Alongside the required arguments for the Pipeline object
(network, environment, encoding, and action), there
are a few keyword arguments that are supported, such as
history and delta. The history_length argument
indicates that a number of sequential observations are to
maintained in order to calculate differences between current
observations and those stored in the history data structure.
This implies that only new information in the environments
observation space is delivered as input to the network on each
time step. The delta argument (default 1) specifies an interval
at which observations are stored in history. This may be
useful if observations don’t change much between consecutive
steps; then, we should wait some delta time steps between
taking observations to expect significant differences. As an
example, combining history_length = 4 and delta =
3 will store observations {0, 3, 6, 9}, {3, 6, 9, 12}, {6, 9, 12, 15},
etc. A few other keyword arguments for handling console output,
plotting, and more exist and are detailed in the Pipeline object
documentation.

A functional diagram of the Pipeline object is depicted in
Figure 2.

Pipeline

l Environment I Encoding II

FIGURE 2 | A functional diagram of the Pipeline object. The four-step
process involves an encoding function, network computation, converting
network outputs into actions in an environment’s action space, and a
simulation step of the environment. An encoding function converts non-spiking
observations from the environment into spike inputs to the network, and a
action function maps network spiking activity into a non-spiking quantity: an
action, fed back into the environment, where the procedure begins anew.
Other modules come into play in various supporting roles: the network may
use a learning method to update connection weights, or the environment
may simply be a thin wrapper around a dataset (in which case there is no
feedback), and it may be desirable to plot network state variables during the
reinforcement learning loop.

3.4. Visualization
BindsNET contains useful visualization tools that provide
information during or after network or environment simulation.
Several generic plotting functions are implemented in the
analysis.plotting module; e.g., plot_spikes () and
plot_voltages() create and update plots dynamically
instead of recreating figures at every time step. These functions
are able to display spikes and voltages with a single call. Other
functions include plot_weights () (displays connection
weights), plot_input () (displays raw input data), and
plot_performance () (displays time series of performance
metric). Other visualization libraries in the Python ecosystem
suchasmatplotlib can be used to plot network state variables
or other data as users of BindsNET may require for more
complicated use cases not covered by the plotting module.
The analysis.visualization module contains
additional plotting functionality for network state variables
after simulation has finished. These tools allow experimenters
to analyze learned weights or spike outputs, or to summarize
long-term behaviors of their SNN models. For example, the
weights_movie () function creates an animation of a
Connection’s weight matrix from a sequence of its values,
enabling the visualization of the trajectory of connection weight
updates.

3.5. Adding New BindsNET Features

To extend BindsNET, one can extend certain abstract objects
found in the package with the desired functionality. In the
following, we discuss how new neuron models, connection
types, and learning rules can be custom-defined by users
and developers of BindsNET. Other BindsNET objects (e.g.,
Monitors, Datasets, etc.) can be defined in a similar fashion.

3.5.1. Neuron Models
The abstract class Nodes implements functionality that is
common to all neuron types. It defines the abstract functions
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step () and reset_ (), which one can choose to override in
child classes, or to One can define a new Nodes object by writing
a class of the form:

class NewNodes (Nodes) :

def _ init_ (self, n, shape, traces, ...):

def step(self, inpt, dt):

def reset_ (self):

All three functions typically call the similarly-named Nodes
abstract class functions, but it is possible to completely
re-define the functions as needed. The abstract base class
AbstractInput is also available for defining node types
with user-defined inputs (e.g., for simulating constant current
injection with the RealInput object).

At present, BindsNET does not automatically solve state
variable dynamics equations (as does, for example, the BRIAN
simulator Goodman and Brette, 2009); instead, the user must
define the neuron difference equation themselves in the body of
the step () function. We implement Euler integration as part
of our emphasis on efficient computation. Automatic solution
of dynamics equations may be added in a future release of
BindsNET.

3.5.2. Connection Types

The class AbstractConnection implements functionality
common to all connection objects. It defines the abstract
methods compute(s), update(dt), normalize(),
and reset_ (). Users of BindsNET can define their own
connection types by creating a class that inherits from
AbstractConnection. To define
object, one must write a class of the form:

a new connection

class NewConnection (AbstractConnection) :

def __init__ (self, source, target, =*x*kwargs):

def compute(self, s):
def update(self, dt, xxkwargs):
def normalize(self):

def reset_(self):

3.5.3. Learning Rules

The abstract class LearningRule defines functions
common to all learning rules. It defines the abstract method
update (dt), used to update a connection’s synapse strengths
in some fashion. Typically, this method makes use of pre-
and post-synaptic neuron spikes and / or spike traces in order
to calculate some local learning rule; e.g., PostPre STDP.
However, users of BindsNET may want to construct learning
rules than depend on non-local information; e.g., the MSTDP
and MSTDPET rules require a reward keyword argument to
modulate the sign and strength of synapse weight updates. To
define a new learning rule, one can write a class as follows:

class NewLearningRule (LearningRule) :

def _ _init__ (self, connection, nu, weight_decay):

def update(self, dt, xxkwargs):

4. EXAMPLES OF USING BINDSNET TO
SOLVE MACHINE LEARNING TASKS

We present some simple example scripts to give an impression of
how BindsNET can be used to build spiking neural networks
implementing machine learning functionality. BindsNET is
built with the concept of encapsulation of functionality to make
it faster and easier for generalization and prototyping. Note in
the examples below the compactness of the scripts: fewer lines
of code are needed to create a model, load a dataset, specify
their interaction in terms of a pipeline, and run a training loop.
Of course, these commands rely on many lines of underlying
code, but the user no longer has to implement them for each
experimental script. If changes in the available parameters are
not enough, the experimenter can intervene by making changes
in the underlying code in the model without changing language
or environment, thus preserving the continuity of the coding
environment.

4.1. Unsupervised Learning

The DiehlAndCook2015 object in the models module
implements a slightly simplified version of the network
architecture discussed in Diehl and Cook (2015). A minimal
working example of training a spiking neural network to learn,
without labels, a representation of the MNIST digit dataset
is given in Figure 3, and state variable-monitoring plots are
depicted in Figure 4. The Pipeline object is used to hide the
messy details of the coordination between the dataset, encoding
function, and network instance. Code for additional plots or
console output may be added to the training loop for monitoring
purposes as needed.

The main goal of the present paper is to introduce the
BindsNET software framework, while a systematic evaluation of
the implementation and comparison with other SNN platforms
is the objective of ongoing or future studies. Nevertheless, it is
important to show that BindsNET measures up to its peers.
To illustrate the performance of BindsNET, here we introduce
some preliminary results; further details are given in Saunders
et al. (2018) and Hazan et al. (2018). In the case of MNIST
dataset, BindsNET’s classification performance reaches 95%,
which is on a par with the BRIAN-based implementations
reported in Diehl and Cook (2015). Moreover, BindsNET’s
flexible platform allowed extensive exploration of learning rules
and hyper-parameters, and we have shown that our approach
can reach or exceed BRIAN’s accuracy with smaller SNNs.
Moreover, as training progresses, the accuracy of our approach
using BindsNET increases rapidly at the early stage of learning,
using much less examples than alternative methods (Hazan et al.,
2018). Again, in the present work we do not aim at a systematic
evaluation of the solutions based on BindsNET, but the initial
results are promising, and extensive work is in progress.
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from bindsnet.datasets import MNIST
.encoding import poisson

.pipeline import Pipeline

from bindsnet
bindsnet

bindsnet

from
from
from bindsnet
# Build Diehl & Cook 2015 network.

network = DiehlAndCook2015(n_inpt=784,

# Specify dataset wrapper environment.

# Build pipeline from components.
pipeline

# Train the network.
for i in range(60000):
pipeline.step()

network.reset_()

examples from the dataset, corresponding to the categories in the data.

.models import DiehlAndCook2015
.environment import DatasetEnvironment

n_neurons=400, exc=22.5,

inh=17.5, dt=1.0, norm=78.4)

environment = DatasetEnvironment(dataset=MNIST(path='../../data/MNIST'),
train=True, download=True, intensity=0.25)

Pipeline(network=network, environment=environment,
encoding=poisson, time=350, plot_interval=1)

FIGURE 3 | Accompanying plots to the unsupervised training of the Diehl1AndCook2015 spiking neural network architecture. The network is able to learn
prototypical examples of images from the training set, and on a test images, the excitatory neuron with the most similar filter should fire the most. This network
structure is able to achieve 95% accuracy on the MNIST digits (Diehl and Cook, 2015; Hazan et al., 2018). (A) Raw input and “reconstructed” input, computed by
summing Poisson-distributed spike trains over the time dimension. (B) Spikes from the excitatory and inhibitory layers of the Dieh1AndCook2015 model. (C)
Voltages from the excitatory and inhibitory layers of the Dieh1AndCook2015 model. (D) Reshaped 2D label assignments of excitatory neurons, assigned based on
activity on examples from the training data. (E) Reshaped 2D connection weights from input to excitatory layers. The network is able to learn distinct prototypical

4.2. Supervised Learning

We used a simple two-layer spiking neural network to implement
supervised learning of the Fashion-MNIST image dataset (Xiao
et al,, 2017). An minimal example of training a spiking network
to classify the data is given in Figure 5, with plotting outputs
depicted in Figure 6. A layer of 100 excitatory neurons is split
into 10 groups of size 10, one for each category. On each input
example, we observe the label of the data and clamp a randomly
selected excitatory neuron from its group to spike on every time
step. This forces the neuron to adjust its filter weights toward the
shape of current input example.

4.3. Reinforcement Learning

A three layer SNN is built to compute on spikes encoded from
Breakout observations. The input layer takes the spike encoding
of a 80x80 image which has been downsampled and binarized
from the observations from the GymEnvironment. The output
layer consists of 4 neurons which correspond to the 4 possible
actions for the Breakout game. The result of this computation
is spiking activity in the output layer, which are converted into
actions in the game’s action space by using a softmax function on
the sum of the spikes in the output layer. The simulation of both
the network and the environment are interleaved and appear
to operate in parallel. The SNN combined with the softmax
function gives a stochastic policy for the RL environment and

the user may apply any reinforcement learning algorithm to
modify the parameters of the SNN to change the policy. For
a more complete view of the details involved in constructing
an SNN and deploying a GymEnvironment instance, see
the script depicted in Figure 7 and accompanying displays in
Figure 8.

4.4. Reservoir Computing

Reservoir computers are typically built from three parts: (1) an
encoder that translates input from the environment that is fed to
it, (2) a dynamical system based on randomly connected neurons
(the reservoir), and (3) a readout mechanism. The readout is
often trained via gradient descent to perform classification or
regression on some target function. BindsNET can be used to
build reservoir computers using spiking neurons with little effort,
and machine learning functionality from PyTorch can be co-
opted to learn a function from states of the high-dimensional
reservoir to desired outputs. Code in for defining and simulating
a simple reservoir computer is given in Figure9, and plots
to monitor simulation progress are shown in Figure 10. The
outputs of the reservoir computer on the CIFAR-10 natural
image dataset are used as transformed inputs to a logistic
regression model. The logistic regression model is then trained
to recognize the categories based on the features produced by the
reservoir.
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FIGURE 4 | Unsupervised learning of the MNIST handwritten digits in BindsNET. The DiehlAndCook2015 model implements a simple spike timing-dependent
plasticity rule between input and excitatory neuron populations as well as a competitive inhibition mechanism to learn prototypical digit filters from raw data. The
DatasetEnvironment wraps the MNIST dataset object so it may be used as a component in the Pipeline. The network is trained on one pass through the
B60K-example training data for 350ms each, with state variables (voltages and spikes) reset after each example.

4.5. Benchmarking

In order to compare several competing SNN simulators, we
devised a simple simulation and benchmarked our software on
it against other, similar frameworks. We simulated a network
with a population of n Poisson input neurons with firing rates
(in Hertz) drawn randomly from U(0, 100), connected all-to-
all with a equally-sized population of leaky integrate-and-fire
(LIF) neurons, with connection weights sampled from A(0, 1).
We varied n systematically from 250 to 10,000 in steps of
250, and ran each simulation with every library for 1,000ms
with a time resolution dt = 1.0. We tested BindsNET (with

CPU and GPU computation), BRIAN2, PyNEST (the Python
interface to the NEST SLI interface that runs the C++ NEST core
simulator), ANNarchy (with CPU and GPU computation), and
BRIAN2genn (the BRIAN2 front-end to the GeNN simulator).
The Nengo and NEURON simulators were considered, but in
both cases, we were unable to implement the benchmarked
network structure. This speaks to the expressiveness or relative
difficulty of using these competing simulation libraries as
compared to BindsNET. Several packages, including BRIAN
and PyNEST, allow the setting of certain global preferences;
e.g., the number of CPU threads, the number of OpenMP

Frontiers in Neuroinformatics | www.frontiersin.org

10

December 2018 | Volume 12 | Article 89


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

import torch

from bindsnet.network import Network

from bindsnet.datasets import FashionMNIST

from bindsnet.network.monitors import Monitor

from bindsnet.network.topology import Connection
from bindsnet.network.nodes import Reallnput, IFNodes

# Network bdbuilding.
network = Network()

input_layer = RealInput(n=784, sum_input=True)
output_layer = IFNodes(n=10, sum_input=True)
network.add_layer (input_layer, name='X')
network.add_layer (output_layer, name='Y')

input_connection = Connection(input_layer, output_layer, norm=150, wmin=-1, wmax=1)
network.add_connection(input_connection, source='X', target='Y')

# State wvariable monitoring.

time = 25 # No. of simulation time steps per example.

for 1 in network.layers:
m = Monitor (network.layers[1], state_vars=['s'], time=time)
network.add_monitor (m, name=1)

# Load Fashion-MNIST data.
images, labels = FashionMNIST(path='../../data/FashionMNIST', download=True).get_train()

# Run training.

grads = {}

1r, 1r_decay = 1le-2, 0.95

criterion = torch.nn.CrossEntropyLoss()

spike_ims, spike_axes, weights_im = None, None, None

for i, (image, label) in enumerate(zip(images.view(-1, 784) / 255, labels)):
# Run simulation for single datum.
inpts = {'X': image.repeat(time, 1), 'Y_b': torch.ones(time, 1)}
network.run(inpts=inpts, time=time)

# Retrieve spikes and summed inputs from both layers.

label = torch.tensor(label).long()

spikes = {1: network.monitors[1l].get('s') for 1 in network.layers}
summed_inputs = {1: network.layers[1l].summed for 1 in network.layers}

# Compute softmaxz of output activity, get predicted label.
output = spikes['Y'].sum(-1).softmax(0).view(1, -1)
predicted = output.argmax(1).item()

# Compute gradient of loss and do SGD update.

grads['dl/df'] = summed_inputs['Y'].softmax(0)
grads['dl/df'][label] -= 1

grads['dl/dw'] = torch.ger(summed_inputs['X'], grads['dl/df'])
network.connections['X', 'Y'].w -= 1r * grads['dl/dw']

# Decay learning rate.
if 1 > 0 and i % 500 ==
1r *= 1lr_decay

network.reset_()
FIGURE 5 | A two-layer spiking neural network (a RealNodes object connected all-to-all with a TFNodes object) is trained with an approximated stochastic gradient

descent algorithm using the Fashion-MNIST image dataset. The back-propagation algorithm operates on the summed_inputs to the groups of Nodes, while
predictions are made based on the output layer’s spiking activity.
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FIGURE 6 | Accompanying plots for the supervised training of a simple two-layer spiking neural network on the Fashion-MNIST dataset. The set of 10 28 x 28 tiled
weights shown in (a) each correspond to a different class of Fashion-MNIST data. The plot of the input neurons’ activity in (b) is simply the scaled input data, constant
over the simulation length. This network architecture trained with stochastic gradient descent (SGD) achieves 85% test accuracy on this dataset. (A) Weights from the
supervised spiking neural network trained on the Fashion-MNIST dataset. Each 28 x 28 region corresponds to the filter responsible for detecting a unique category of
data. One can make out the profile of objects depicted in the filters; e.g., shirts, sneakers, and trousers. (B) Real-valued input activity and spikes from the input and

X spikes for neurons (0 - 784) from t = 0 to 25

= ——————

Simulation time

Y spikes for neurons (0 - 10) from t = 0 to 25
- |

Simulation time

processes, etc. We chose these settings for our benchmark study
in an attempt to maximize each library’s speed, but note that
BindsNET requires no setting of such options. Our approach,
inheriting the computational model of PyTorch, appears to
make the best use of the available hardware, and therefore makes
it simple for practicioners to get the best performance from their
system with the least effort.

All simulations run on Ubuntu 16.04 LTS with Intel(R)
Xeon(R) CPU E5-2687W v3 @ 3.10GHz, 128Gb RAM @
2133MHz, and two GeForce GTX TITAN X (GM200) GPUs.
Python 3.6 is used in all cases except for simulation with
ANNarchy, which requires Python 2.7. Clock time was recorded
for each simulation run. The results are depicted in Figure 11.

As can be noticed in the Figure 11, PyNEST simulation runs
are cut off for n > 2.5K, and ANNarchy (on CPUs) for n >
5K, due to the fact that, after this point, their simulation time far
outstrips those of the other libraries. With small networks (n <
2.5K), the CPU-only version of the BindsNET simulation is
faster than the BRIAN2 simulation; yet, this relationship reverses
as the number of simulated neurons grows. However, in larger
networks (n > 1.5K), the GPU-only BindsNET simulator is
faster than BRIAN2, and is competitive in simulation time in
the case of smaller networks. The BRIAN2genn simulator is
very fast, with near-constant simulation time of approximately
0.2s; however, it requires a roughly 25s compilation period, no
matter the network size, before simulation can begin. Somewhat
similarly, simulation with ANNarchy using GPU computation
is rather fast, but requires an super-linear increase in compilation
time as the size of the network grows.

Therefore, BindsNET constitutes a speed-competitive
alternative to several popular existing SNN simulation libraries.
Although our benchmark study is far from comprehensive,
it demonstrates a particular use case for which BindsNET

is perhaps preferable to other methods; i.e., in the case of
feedforward networks with all-to-all connectivity. Similar studies
can be done to assess its performance relative to the competition
in other SNN architectural regimes. We expect that, in different
applications, other libraries will perform better in terms of speed
or memory usage, and it is up to the experimenter to choose
the best software for the simulation task. As stated previously,
our approach is best for rapid prototyping and testing of SNNs
on CPUs and GPUs alike, which is demonstrated in part by the
foregoing benchmark analysis. In particular, a major advantage
of using the BindsNET library for GPU computation is that
it requires no compilation step intermediate between network
definition and simulation, as opposed to the BRIAN2genn and
ANNarchy libraries. This is well-suited to machine learning
experimentation, which often requires many iterations of model
building and hyper-parameter tuning that may be hindered by
re-compilation before each attempt.

5. ONGOING DEVELOPMENTS

BindsNET is still at an early stage of development, and thus
there is much room for future work and improvement. Since
it is an open source project and because there is considerable
interest in the research community in using SNNs for machine
learning purposes, we are optimistic that there will be numerous
community contributions to the library. Indeed, we believe that
public interest in the project, along with the strong support of the
libraries on which it depends, will be an important driving factor
in its maturation and proliferation of features. We mention some
specific implementation goals:

e Additional neuron
encoding functions,

rules, datasets,
should take

types, learning
etc. Added features
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import torch

from bindsnet.network import Network

from bindsnet.pipeline import Pipeline

from bindsnet.encoding import bernoulli

from bindsnet.network.topology import Connection
from bindsnet.environment import GymEnvironment
from bindsnet.network.nodes import Input, LIFNodes
from bindsnet.pipeline.action import select_softmax

# Build network.
network = Network(dt=1.0)

# Layers of meurons.

inpt = Input(n=80 * 80, shape=[80, 80], traces=True)
middle = LIFNodes(n=100, traces=True)

out = LIFNodes(n=4, refrac=0, traces=True)

# Connections between layers.
inpt_middle = Connection(source=inpt, target=middle, wmin=0, wmax=1le-1)
middle_out = Connection(source=middle, target=out, wmin=0, wmax=1)

# Add all layers and connections to the network.

network.add_layer(inpt, name='Input Layer')

network.add_layer(middle, name='Hidden Layer')

network.add_layer(out, name='Output Layer')

network.add_connection(inpt_middle, source='Input Layer', target='Hidden Layer')
network.add_connection(middle_out, source='Hidden Layer', target='Output Layer')

# Load Spacelnvaders environment.
environment = GymEnvironment ('BreakoutDeterministic-v4')
environment.reset()

# Build pipeline from specified components.

pipeline = Pipeline(network, environment, encoding=bernoulli,
action_function=select_softmax, output='Output Layer',
time=100, history_length=1, delta=1,
plot_interval=1, render_interval=1)

# Run environment simulation for 100 episodes.
for i in range(100):
# initialize episode reward
reward = 0O
pipeline.reset_Q)
while True:
pipeline.step()
reward += pipeline.reward
if pipeline.done:
break
print("Episode " + str(i) + " reward:", reward)

FIGURE 7 | A spiking neural network that accepts input from the BreakoutDeterministic-v4 gym Atari environment. The observations from the environment
are downsampled and binarized. The history and delta keyword arguments are used to create difference images before they are converted into
Bernoulli-distributed vectors of spikes, one per time step. The output layer of the network has 4 neurons in it, each representing a different action in the Breakout
game. An action is selected at each time step using the select_softmax feedback function, which treats the summed spikes over each output layer neuron as a
probability distribution over actions.
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FIGURE 8 | Accompanying plots for a custom spiking neural network’s which interacts with the BreakoutDeterministic-v4 reinforcement learning
environment. Spikes of all neuron populations are plotted, and the Breakout game is rendered, as well as the downsampled, history- and delta-altered
observation, which is presented to the network. The performance of the network on 100 episodes of Breakout is also plotted. (note: The absence of spikes in the
Input layer is due to the the large size of the layer and the way matplotlib library handles it. It is not a bug in our code). (A) Raw output from the Breakout game,
provided by the OpenAl gym render () method. (B) Pre-processed output from breakout game environment used as input to the SNN. (C) Spikes from the Input,
Hidden, and Output layers of the spiking neural network. (D) The reward distribution of the initialized network on 100 episodes of Breakout.
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priority based on the needs of the wusers of the
library.

Specialization of machine learning and reinforcement learning
algorithms for spiking neural networks. These may take
the form of additional learning rules, or more complicated
training methods that operate at the network level rather than
on individual synapses.

Tighter integration with PyTorch. Much of PyTorch’s
neural network functions are useful in the spiking neural
network context (e.g., Conv2dConnection), and will
benefit from inheriting from them.

Automatic conversion of deep neural network models
implemented in PyTorch or specified in the ONNX format
to near-equivalent spiking neural networks (as in Diehl et al.,
2015).

Performance optimization: improving the performance of
library primitives will save time on all experiments with
spiking neural networks. A high-priority feature is the use of
sparse spike vectors and connection weights for efficient linear
algebra operations.

e Automatic smoothing of SNNs: approximating spiking
neurons as differentiable operations (Hunsberger and
Eliasmith, 2015) will enable the use of backpropagation
to train networks easily transferable to SNNs. The
torch.autograd automatic differentiation library
(Paszke et al., 2017) can then be applied to optimize the
parameters of spiking networks for ML problems.

6. DISCUSSION

We have presented the BindsNET open source package for rapid
biologically inspired prototyping of spiking neural networks with
a machine learning-oriented approach. BindsNET is developed
entirely in Python and is built on top of other mature Python
libraries that lend their power to utilize multi-CPU or multi-GPU
hardware configurations. Specifically, the ML tools and powerful
data structures of PyTorch are a central part of BindsNET’s
operation. BindsNET may also interface with the gym library
to connect spiking neural networks to reinforcement learning
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import torch

import torch.nn as nn

from bindsnet.datasets import MNIST

from bindsnet.network import Network

from bindsnet.encoding import poisson_loader

from bindsnet.network.monitors import Monitor

from bindsnet.network.topology import Connection
from bindsnet.network.nodes import LIFNodes, Input

# Define logistic regression model using PyTorch.
class LogisticRegression(nn.Module):
def __init__(self, input_size, num_classes):
super (LogisticRegression, self).__init__()
self.linear = nn.Linear(input_size, num_classes)

def forward(self, x):
return self.linear(x)

# Build a simple, two layer, "input-output" network.

network = Network(dt=1.0)

inpt = Input(784, shape=(28, 28)); network.add_layer (inpt, name='I")

output = LIFNodes(625, thresh=-52 + torch.randn(625)); network.add_layer(output, name='0")
network.add_connection(Connection(inpt, output, w=torch.randn(inpt.n, output.n)), 'I', '0")
network.add_connection(Connection(output, output, w=0.5 * torch.randn(output.n, output.n)), '0O', '0')
network.add_monitor (Monitor (output, ['s'], time=250), name='output_spikes')

# Get MNIST training images and labels and create data loader.
images, labels = MNIST(path='../../data/MNIST').get_train()
loader = zip(poisson_loader(images * 0.25, time=250), iter(labels))

# Run training data on reservoir and store (spikes per neuron, label) pairs.

training_pairs = []

for i, (datum, label) in enumerate(loader):
network.run(inpts={'I': datum}, time=250)
training_pairs.append([network.monitors['output_spikes'].get('s').sum(-1), labell)
network.reset_()

if (i + 1) % 50 == 0: print('Train progress: (%d / 500)' % (i + 1))
if (i + 1) == 500: print(); break # stop after 500 training examples

# Create and train logistic regression model on reservoir outputs.
model = LogisticRegression(625, 10); criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr=0.1)

# Train the logistic regression model on (spikes, label) pairs.
for epoch in range(10):
for i, (s, label) in enumerate(training_pairs):
optimizer.zero_grad(); output = model(s)
loss = criterion(output.unsqueeze(0), label.unsqueeze(0).long())
loss.backward(); optimizer.step()

# Get MNIST test images and labels and create data loader.
images, labels = MNIST(path='../../data/MNIST').get_test();
loader = zip(poisson_loader(images * 0.25, time=250), iter(labels))

# Run test data on reserwvoir and store (spikes per neuron, label) pairs.

test_pairs = []

for i, (datum, label) in enumerate(loader):
network.run(inpts={'I': datum}, time=250)
test_pairs.append([network.monitors['output_spikes'].get('s').sum(-1), labell)
network.reset_()

if (i + 1) % 50 == 0: print('Test progress: (%d / 500)' % (i + 1))
if (i + 1) == 500: print(); break # stop after 500 test ezamples

# Test the logistic regresion model on (spikes, label) pairs.

correct, total = 0, 0O

for s, label in test_pairs:
output = model(s); _, predicted = torch.max(output.data.unsqueeze(0), 1)
total += 1; correct += int(predicted == label.long())

print ('Accuracy of logistic regression on 500 test examples: %.2f %%\n' % (100 * correct / total))

FIGURE 9 | A recurrent neural network built from 625 spiking neurons accepts inputs from the CIFAR-10 natural images dataset. An input population is connected
all-to-all to an output population of LIF neurons with weights draw from the standard normal distribution, which has voltage thresholds drawn from N(-52, 1) and is
recurrently connected to itself with weights drawn from N(O, %). The reservoir is used to create a high-dimensional, temporal representation of the image data, which
is used to train and test a logistic regression model created with PyTorch.

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2018 | Volume 12 | Article 89


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning
A 1 spikes for neurons (0 - 3072) from t = 0 to 250 B 0 voltages for neurons (0 - 625) from t = 0 to 250
x
3
€
§
s
2
S 3
Simulation ti 2
O spikes for neurons (0 - 625) from t = 0 to 250 §
x
3
2
§
5
2
" SGonGme Simulation tme
C Current image (label = 2) E

Reconstruction

population, initialized from the distribution A/(0, %).

FIGURE 10 | Plots accompanying another reservoir computing example, in which an input population of size equal to the CIFAR-10 data dimensionality is connected
to a population of 625 LIF neurons, which is recurrently connected to itself. (A) Spikes recorded from the input and output layers of the two layer reservoir network. (B)
Voltages recorded from the output of the two layer reservoir network. (C) Raw input and its reconstruction, computed by summing Poisson-distributed spike trains
over the time dimension. (D) Weights from input to output neuron populations, initialized initialized from the distribution A/(0, 1). (E) Recurrent weights of the output
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FIGURE 11 | Benchmark comparison results from a number of SNN
simulation frameworks. Variability in benchmarked times is likely due to
randomness in the simulation and fluctuations in CPU load.

environments. In sum, BindsNET represents an additional
and attractive alternative for the research community for the
purpose of developing faster and more flexible tools for SNN
experimentation.

BindsNET comprises a spiking neural network simulation
framework that is easy to use, flexible, and efficient. Our library
is set apart from other solutions by its ML and RL focus; complex

details of the biological neuron are eschewed in favor of high-
level functionality. Computationally inclined researchers may be
familiar with the underlying PyTorch functions and syntax,
and excited by the potential of the third generation of neural
networks for ML problems, driving adoption in both ML and
computational neuroscience communities. This combination of
ML programming tools and neuroscientific ideas may facilitate
the further integration of biological neural networks and machine
learning. To date, spiking neural networks have not been widely
applied in ML and RL problems; having a library aimed at such is
a promising step toward exciting new lines of research.

Researchers interested in developing spiking neural networks
for use in ML or RL applications will find that BindsNET
is a powerful and easy tool to develop their ideas. To that
end, the biological complexity of neural components has been
kept to a minimum, and high-level, qualitative functionality has
been emphasized. However, the experimenter still has access to
and control over groups of neurons at the level of membrane
potentials and spikes, and connections at the level of synapse
strengths, constituting a relatively low level of abstraction. Even
with such details included, it is straightforward to build large
and flexible network structures and apply them to real data. We
believe that the ease with which our framework allows researchers
to reason about spiking neural networks as ML models, or as
RL agents, will enable advancements in biologically plausible
machine learning, or further fusion of ML with neuroscientific
concepts.

Although BindsNET is similar in spirit to the Nengo
(Bekolay et al., 2014) neural and brain modeling software in that
both packages can utilize a deep learning library as a “backend”
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for computation, Nengo optionally uses Tensorflow in a
limited fashion while BindsNET uses PyTorch by default, for
all network simulation functionality (with the torch.Tensor
object). Additionally, for users that prefer the flexibility and
the imperative execution of PyTorch, BindsNET inherits
these features and is developed with many of the same design
principles in mind. BindsNET has advantages with respect
to other simulation libraries using GPU computation, which
require costly compilation steps between network building
and deployment. BindsNET does not need these expensive
intermediate steps as it uses “eager” execution of PyTorch
regardless of the actual simulation hardware.

Hardware platforms for spiking neural network computations
have advantages over software simulations in terms of
performance and power consumption. For example, SpiNNaker
(Plana et al., 2011) combines cheap, generic, yet dedicated CPU
boards together to create a powerful SNN simulation framework
in hardware. Other platforms (e.g., TrueNorth Akopyan et al,
2015, HRL, and Braindrop) involve the design of a new chip.
A novel development is Intel’s Loihi platform for spike-based
computation, outperforming all known conventional solutions
(Davies et al., 2018). Other solutions are based on programmable
hardware, like FPGAs which transform neural equations
to configurations of electronic gates in order to speed up
computation. More specialized hardware such as ASIC and
DSP can be used to parallelize and therefore accelerate the
calculations. In order to conduct experiments in the hardware
domain, one must usually learn a specific programming language
targeted to the hardware platform, or carefully adapt an existing
experiment to the unique hardware environment under the
constraints as enforced by chip designers. In either case, this is
not an ideal situation for researchers who want rapid prototyping
and testing. BindsNET platform introduces a flexibility, which
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