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Neurofeedback (NFB) is a real-time paradigm, where subjects learn to volitionally

modulate their own brain activity recorded with electroencephalographic (EEG),

magnetoencephalographic (MEG) or other functional brain imaging techniques and

presented to them via one of sensory modalities: visual, auditory or tactile. NFB has been

proposed as an approach to treat neurological conditions and augment brain functions.

Although the early NFB studies date back nearly six decades ago, there is still much

debate regarding the efficiency of this approach and the ways it should be implemented.

Partly, the existing controversy is due to suboptimal conditions under which the NFB

training is undertaken. Therefore, new experimental tools attempting to provide optimal

or close to optimal training conditions are needed to further exploration of NFB paradigms

and comparison of their effects across subjects and training days. To this end, we have

developed open-source NFBLab, a versatile, Python-based software for conducting

NFB experiments with completely reproducible paradigms and low-latency feedback

presentation. Complex experimental protocols can be configured using the GUI and

saved in NFBLab’s internal XML-based language that describes signal processing tracts,

experimental blocks and sequences including randomization of experimental blocks.

NFBLab implements interactive modules that enable individualized EEG/MEG signal

processing tracts specification using spatial and temporal filters for feature selection

and artifacts removal. NFBLab supports direct interfacing to MNE-Python software to

facilitate source-space NFB based on individual head models and properly tailored

individual inverse solvers. In addition to the standard algorithms for extraction of brain

rhythms dynamics from EEG and MEG data, NFBLab implements several novel in-house

signal processing algorithms that afford significant reduction in latency of feedback

presentation and may potentially improve training effects. The software also supports

several standard BCI paradigms. To interface with external data acquisition devices

NFBLab employs Lab Streaming Layer protocol supported by the majority of EEG

vendors. MEG devices are interfaced through the Fieldtrip buffer.

Keywords: neurofeedback, low-latency, software, real-time EEG, brain-computer interface, flexible experiment

design, LSL-protocol
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1. INTRODUCTION

In the biological feedback (BF) paradigm, subjects gain the
ability to monitor and control the physiological parameters of
their own bodies, recorded with artificial sensors. In the case of
neurofeedback (NFB), subjects learn to control the activity of
their brains (Kamiya, 1969; Sterman et al., 1974; Sitaram et al.,
2016; Ossadtchi et al., 2017). In NFB settings, neural activity is
recorded with such methods as electroencephalography (EEG),
magnetoencephalography (MEG), electrocorticography (ECoG),
functional magnetic resonance imaging (fMRI) or multielectrode
implants and converted into stimuli that subjects can perceive.
NFB processing stages include recording of neural activity,
extracting features of interest from the recorded signals, feature
transformation, and delivering the feedback signal to the subject
via one of the sensory modalities, most often visual, auditory
or tactile. A very similar processing scheme is utilized in brain-
computer interfaces (BCIs), the systems that connect the brain to
external assistive devices (Wolpaw, 2012). In BCIs, the feedback
is implemented in the form of response of the external device to
the commands derived from the neural activity of the user; this
signal can be considered as a type of NFB.

NFB and BCI paradigms are utilized in neurophysiological
research, clinical practice, and consumer applications, like video
games, meditation and performance training gadgets. In the
clinical world, NFB methods often complement conventional
approaches to treatment of neurological disorders (Coben et al.,
2010; Lofthouse et al., 2012) and cognitive enhancement training
(Zoefel et al., 2011). EEG-based BCIs can be used for post-stroke

neurorehabilitation (Ang et al., 2015; Frolov et al., 2018), where

motor intentions are extracted from brain activity and directed to
exoskeleton devices or functional electrical stimulators that evoke

limb movements, which in turn generate sensory re-afferent
signals that flow back to the brain and mediate restorative brain
plasticity.

EEG-based NFB systems have become widespread because
EEG recordings are noninvasive, relatively simple to implement,
and can be informative of many neural functions. In modern
implementations, multichannel EEG signals are amplified,
digitized, and transmitted to a computer for denoising and
feature extraction. EEG features are often derived from
oscillatory components of themultichannel EEG data, such as the
theta (3–7 Hz), alpha (8–12 Hz), mu (9–14 Hz), and beta (15–25
Hz) rhythms. The neural mechanisms underlying different EEG
features depend on the rhythm frequency and cortical source.
NFB therapy usually attempts to correct a targeted physiological
function by attempting to increase or decrease particular EEG
rhythm power. In clinical settings, quantitative EEG (QEEG)
technology is utilized to detect the difference between the EEG of
a patient and database values for healthy controls. Many QEEG
methods incorporate statistical analyses of the EEG spectral
bands. Additionally, the group independent component analysis
(gICA) has been developed, where EEG dynamics of a patient is
compared to a database of independent components (Ponomarev
et al., 2012).

The efficiency of NFB training critically depends on the
appropriate selection of the spatial, spectral and temporal

characteristics of the feedback signal. To ensure that these
characteristics reflect in a timely fashion the neural functions of
interest, several spatial and temporal filtering methods have been
proposed that isolate signal of interest from noise and concurrent
brain activity present in multichannel EEG/ECoG/MEG data,
with minimal possible latency. Spatial filtering is implemented
based on the signal analysis by means of popular algorithms
such as principal component analysis (PCA), common spatial
pattern (CSP) (Koles et al., 1990), independent component
analysis (ICA) (Bell and Sejnowski, 1995), and spatio-spectral
decomposition (SSD) (Nikulin et al., 2011) etc. Temporal
filtering is then applied to the extracted spatial component in
order to extract the signal from specific frequency band and
estimate its instantaneous power (Lee et al., 2006; Smetanin
and Ossadtchi, 2017). Individual variability of EEG rhythms is
an important factor that affects NFB efficiency. Ideally, each
subject’s anatomical and physiological features should be taken
into consideration and NFB-generating algorithms adjusted
accordingly. Such adjustment is, however, rarely done, which
causes sub-optimal performance of NFB. Overall, there is still no
established procedure that ensures a reliable and efficient NFB.
Unimpressive performance of several NFB implementations,
particularly the ones with double blind controls, has caused
criticism toward the NFB paradigm as a whole (Sitaram et al.,
2016).

Among the obstacles hindering the achievement of better
results with NFB, are the limitations of the existing software tools,
which in many cases are cumbersome to use, are not flexible and
do not enable certain desirable features. To address this range of
problems, here we report a new software, the NFBLab, suitable
for conducting many NFB and BCI experiments. The platform
incorporates both standard and novel algorithms for real-time
processing of EEG/MEG/ECoG activity and generating NFB. The
key features of this software include:

• Support of the most common EEG/MEG devices using the lab
streaming layer (LSL)1 and FieldTrip buffer2;

• Internal language that allows implementing different
experimental protocols using XML-formatted descriptions;

• Graphical user interface for design of signal processing tracts
and to form flexible sequences of experimental blocks;

• Interactive module for configuring signal processing pipelines
based on the test data collected in individual subjects;

• Support of EEG/MEG inverse problem solvers (e.g., wMNE
and LCMV beamformers) using direct interaction with MNE-
Python software;

• Continuous visualization of signal features;
• Support of mock feedback and experimental blocks

randomization;
• New in-house algorithms for low-latency processing of

narrow-band signals (Smetanin and Ossadtchi, 2017);
• Open-source Python code3 and cross-platform compatibility.

1https://github.com/sccn/labstreaminglayer
2http://www.fieldtriptoolbox.org/development/realtime/buffer
3https://github.com/nikolaims/nfb
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2. COMPARABLE SOFTWARE

Several software platforms are currently available that furnish
flexibility needed for conducting experiments that involve real-
time processing and visualization of multichannel bioelectric
signals. Among them, OpenVIBE (Renard et al., 2010) is a
very popular, actively supported project. It incorporates visual-
programming tools and scripts for configuring complex signal
processing pipelines. An experimental task is usually subdivided
into several parts specified in separate XML files (e.g., a motor-
imagery BCI4). Each part is launched manually, which may
adversely affect reproducibility of the conducted experiments.
Additionally, this software is not open-source.

BCI2000 is another popular software solution for
implementing NFB and BCI paradigms (Schalk et al., 2004).
This is a closed-source C/C++ software with several built-in
algorithms for processing neural activity and extracting signals
of interest. Like OpenVIBE, different experimental tasks are
launched manually in BCI2000. BCI2000 supports integration
with external programs and MATLAB environment, which
allows users to incorporate additional data processing modules.

The NFBLab software proposed here advances the
functionality of both OpenVIBE and BCI2000 platforms.
One innovation is the NFBLab’s capacity to configure
signal processing pipelines based on the data collected in
individual subjects. This functionality incorporates a rich set of
decompositions (PCA, ICA, CSP, SSD) for extracting essential
neural modulations while discarding noise. Furthermore, the
NFBLab software contains an advanced experiment control
module that enables tasks consisting of multiple blocks. The
blocks can be automatically launched, switched, repeated and
randomized. Mock NFB is supported, as well. NFBLab is written
in Python. The code is open-source, which facilitates sharing and
improving these software tools by the developers of NFB and
BCI systems. The code and installation instructions can be found
at https://github.com/nikolaims/nfb repository.

In addition to Open VIBE, BCI2000 and our NFBLab
platform, several commercial clinical software platforms should
be mentioned that have been designed for NFB therapy. These
are BrainMaster, NeuroRT Training, Cygnet and several others.
These systems should be clearly delineated from the research
oriented software mentioned earlier. They operate under a
very harsh requirement for exclusively high usability within
the clinical environment which often adversely affects their
flexibility and the fidelity of training protocols. While some of
these platforms support spatial filtering of neural signals, the
parameters of such filters are obtained from solving the generic
inverse problem without taking into account the anatomical and
functional parameters of individual subjects. Thus, sLORETA
(Pascual-Marqui, 2002) with a generic head model is commonly
utilized within popular NFB software. With this approach,
the output signal could be different from the individual
subject’s true activity of the brain region of interest (ROI).
Additional inaccuracies are introduced to the performance of
forward models by the unknown tissue conductivity profiles.

4http://openvibe.inria.fr/motor-imagery-bci/

Furthermore, NFB systems suffer from the presence of delay
between neural modulations and NFB delivery. This delay is
typically more than 500 ms, which could be too long for NFB to
be efficient (Larsen and Sherlin, 2013).

NFBLab offers solutions to both spatial and temporal NFB
specificity problems. In the spatial domain, there is an option
to use a subject-specific spatial filter. The filter parameters
are derived based on the spatial-temporal decomposition
(PCA, ICA, CSP, SSD) applied to the EEG/MEG/ECoG data
recorded during functional tests, for example opening/closing
the eyes, blinking, and performing hand movements. These
functional tests allow for building subject-specific spatial
filters without the need to perform laborious calculations,
such as constructing forward models from the individual
MRI data. Additionally, NFBLab supports conventional ROI-
based approaches by importing, via the MNE-Python package,
inverse operators calculated using a broad range of methods
(Darvas et al., 2004) based on the generic or individual
anatomy.

In the temporal domain, NFBLab incorporates several
advanced signal processing algorithms that effectively decrease
NFB latency. These algorithms process EEG signals and extract
envelopes of their narrow-band components with minimal
possible or even negative latency.

3. ARCHITECTURE

The NFBLab platform consists of three main modules, as
illustrated in Figure 1. The first module, called “Experiment
protocol editor,” specifies an experimental task. It describes the
sequence of experimental blocks, signal processing procedures
to compute target signals and the parameters used to calculate
NFB within each experimental block. The block descriptions
are saved as XML files, which are then loaded into the second
module, called “Experiment module,” which needs to be launched
at the start of the experiment. This XML-language based
structure allows for reproducibility of experiments. Experimental
module processes and displays the raw and transformed neural
signals. The Experiment module also controls the sequence
of experimental blocks and the presentation of stimuli and
NFB. The third module, Data-driven filter designer, is an
interactive module for editing signal processing flow and
constructing spatial and temporal filters. The filters are based
on the frequency analysis and spatial decomposition of the
EEG data obtained from the functional tests. Short latency data
exchange with EEG/MEG/ECoG recording devices is mediated
by the LSL or FieldTrip buffer technologies. The experimental
data along with the synchronized feedback signal is saved
as HDF5 files, and output signals are streamed to the LSL
outlet for communication with the external programs and
devices. The relationships between NFBLab modules is shown in
Figure 1.

3.1. Support of External Devices
The main instrument for working with external devices in
NFBLab is the Lab Streaming Layer (LSL) protocol. LSL is a
socket based data transfer protocol that controls synchronized
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FIGURE 1 | NFBLab architecture. Three main modules comprise NFBLab. Experiment protocol editor details experimental task. It describes the sequence of

experimental blocks, properties of the individual blocks, sequence of blocks within the experiment, signal processing procedures used NFB presentation parameters.

Data-driven filter designer allows to interactively edit signal processing flow and construct spatial and temporal filters. The filters are based on the frequency analysis

and spatial decomposition of the EEG data obtained from the functional tests. Experiment module does actual real-time processing and displays the raw and

transformed neural signals. It also controls the sequence of experimental blocks and the presentation of stimuli and NFB.

collection and transmission of multi-channel time series.
The protocol can also add meta-information, for example,
names of devices and recording channels. The central element
of LSL is a multichannel data stream whose input/output
operations are supported by LSL Inlet and LSL Outlet objects,
correspondingly.

Data streaming from the EEG/MEG/ECoG devices to the
NFBLab is carried out through the LSL protocol typically
implemented within a separate independent module that reads
data following the specifications of the specific acquisition
device and converts it into a standard LSL stream. Acquisition
software of some manufacturers of EEG recording devices
includes LSL streaming feature, for example NeoRec software
(Medical Computer Systems, Ltd.) and EEG Studio (Mitsar
Co., Ltd). NFBlab intercepts such streams by name and allows
selecting/excluding channels, and defining a new EEG reference.

NFBLab supports multiple LSL streams running
simultaneously, for example simultaneous data acquisition
and processing with several external devices. These are typically
EEG/ECoG/MEG recording systems, but other types of data can
be streamed, as well, such as multichannel electromyography,
thermometry, eye-tracking and limb kinematics acquired using
motion capture systems.

The NFBLab interface allows to set up a broadcast of
input and output signals, and their visualization. For test
purposes, previously recorded data could be replayed
as an LSL stream at a specified sampling rate, which
allows designing experimental tasks without the need to
connect to any external equipment. In addition to the LSL
streams, NFBLab supports FieldTrip buffer, an alternative
data transfer protocol, which allows for nearly real-time
communication with magnetoencephalographic acquisition
devices.

4. SIGNAL PROCESSING PIPELINE
SPECIFICATION

NFBLab implements virtual derivations (or virtual leads) and
applies narrow-band filtering followed by envelope extraction to
obtain derived signals representing instantaneous power within
specific EEG band. It also allows for mathematical operations on
pairs of derived signals to obtain composite signals. Appropriately
scaled derived and composite signals can be then presented to a
subject as NFB. Figure 2 schematically illustrates this processing
structure.

4.1. Virtual Derivations and Derived Signals
Here and below, virtual derivation (virtual lead) is defined
as an instantaneous linear combination of the signals from
different channels stored in vector x(t), which formally can be
written as y(t) = wTx(t). Although it is not exactly technically
correct, in the EEG signal processing community this operation
is referred to as spatial filtering. The weight vectorw of this linear
combination can be trivial, that is it can consist of all zeros except
for “1” in a single position. In this case, the virtual derivation is
simply the signal from the channel corresponding to the index of
the non-zero element of the weight vector.

In the source-space NFB paradigm (Congedo et al., 2004),
NFB represents activity of a cortical ROI. This signal is usually
calculated by solving the EEG/MEG inverse problem, where an
M ×N inverse operator matrixH = {hij}, (i, j) ∈ [(1,M), (1,N)]

is calculated with the i−th row hTi corresponding to the i−th
ROI. The ROI activity yi(t) is derived from the N-channel signal
x(t) as a dot product yi(t) = hTi x(t). Thus, the spatial filter
vector wT = hTi . While there exist a plethora of methods for
solving the EEG/MEG inverse problem (Darvas et al., 2004),
most of the implementations of source space neurofeedback
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FIGURE 2 | Derived and composite signals processing pipeline. Virtual lead is obtained by means of spatial filtering operation applied to EEG channels, this

corresponds to computing a linear combination of EEG channel signals with coefficients aimed to emphasize features of interest and suppress the interference.

Derived signal usually represents envelope of the narrow-band filtered virtual lead signal. Composite signal can be computed by applying an arbitrary user-specified

mathematical function to a pair of derived signals. Coherence represents a special case when the composite signal is obtained based on the pair of virtual signals (not

derived signals).

rely on the generic sLoreta (Pascual-Marqui, 2002) solver based
on the standardized head model. NFBLab implements sLoreta-
based neurofeedback, as well, but also provides an interface to a
full-blown inverse problem solver implemented in MNE-Python
software, including several versions of the Minimum Norm
Estimates (Hamalainen and Ilmoniemi, 1994) and beamforming
approaches (Greenblatt et al., 2005).

The accuracy of the inverse modeling approaches suffers from
the individual variability in head-shapes and spatial profiles of
head tissue conductivity. The conductivity effects are especially
strong when EEG-based NFB is used because tissue conductivity
significantly affects the electrical potentials recorded from the
scalp. To circumvent this problem, NFBLab offers an alternative
approach for building spatial filters. This approach is based on
the use of functional tests. One version of this approach was
previously reported (White et al., 2014). In a general case, this
approach consists of collecting segments of EEG/ECoG/MEG
data during functional tasks, such as eyes opening/closing,
rotating the hand, blinking, relaxing and several others. These
tasks yield EEG/ECoG/MEG data that can be used for identifying
patterns of interest, which are localized in space-time-frequency
domain and reflect functionally relevant modulations of the
underlying neuronal activity. Meaningful task/state related
components are decomposed from the multichannel data using
mathematical signal processing techniques, such as ICA, PCA,
SSD, and CSP. Each component zi(t) is obtained from the
channel signals x(t) by applying a spatial filter wi: zi(t) =
wT
i x(t). This way, functionally relevant NFB can be generated

without the need to solve the complete inverse problem.
Individualized spatial filters constructed by NFBLab reflect
activity of specific neuronal populations corresponding to the
physiological functions of interest. Thus, for example, using
the spatial filter obtained by means of the common spatial
patterns (CSP) analysis contrasting the eyes-open and eyes-
closed conditions, one can derive a spatial filter for extracting
activity of the occipital alpha-rhythm generators. A spatial filter
for extraction of the sensory-motor rhythm can be obtained using
SSD analysis of the data collected during motor relaxation.

Spatial filtering can be used not only to extract functionally
relevant signals but also to suppress the irrelevant signals
ubiquitously present in the neural recordings. These are artifacts
resulting from the heartbeat, eye blinks and other sources,
and/or neural modulations unrelated to the function of interest.

The irrelevant signals are found after computing a spatial
decomposition of the EEG/MEG data and examining the
component time-series z(t) = [z1(t), z2(t), ..., zN(t)]

T = Bx(t),
whereB is spatial decompositionmatrix (e.g., unmixingmatrix in
case of ICA). For example, the k-th component reflects an artifact
and needs to be removed. This could be done by simply zeroing
the k-th component zk(t) = 0 and reconstructing the data from
the rest of the components. This is equivalent to excluding the
k-th row in the analysis matrix B and removing the k-th column
of matrix C = B−1. The denoised data can be represented as
xc(t) = B−1

−k
B−kx(t) where the subscript “−k” indicates the

removal of the k-th column and the k-th row from B−1 and B,
respectively. Such data cleaning can be combined with the spatial
filtering operation described above. The spatial filter takes the
form w̄i =

(

B−1
)

−k
B−kwi and then the interference-free virtual

derivation signal can be computed as yi(t) = w̄T
i x(t).

4.2. Narrow-Band Component Envelope
Many NFB applications are based on the estimation of dynamical
changes in oscillatory brain activity, such as EEG rhythms in
specific frequency bands. Brain rhythms of interest are extracted
from the ongoing EEG/MEG activity using digital band-pass
filters. Filter parameters are calculated based on the frequency
range and filter order specified by the user. Generally, rhythmic
brain activity is non-stationary and can be quantified as the
instantaneous power of the oscillatory component envelope. In
what follows we will denote as di(t) the envelope of the narrow-
band virtual derivation signal yi(t). Signals di(t) are then referred
to as derived signals.

4.2.1. Basic Methods

The existing NFB implementations use two major methods to
estimate the envelope. The first method consists of performing
low-pass filtering of the rectified narrow-band signal. This
method is represented by the diagram in Figure 3A. This
simple and ubiquitously used approach, however, introduces
considerable delays that make it difficult for the subject to utilize
the resultant NFB as it often arrives when the reinforced activity
pattern has been already abandoned. Consequently, the desired
pattern of brain activity cannot be efficiently reinforced. Attempts
to reduce the delay using lower-order filters (including their
minimum phase versions) result in a rapid deterioration of
performance as shown in Figure 4 by the dashed black curve.
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FIGURE 3 | Techniques that can be used to estimate the envelope of a narrow-band signal. (A) Narrow-band filtering with an infinite impulse response (IIR) filter

followed by the rectification results in a significant delay. (B) STFT with subsequent temporal smoothing of the absolute values of the STFT coefficient. Combined with

mirror-reflection, this technique allows to slightly reduce the delay as compared to (A). (C) Complex demodulation based technique that has the lowest delay and

allows to obtain narrow-band envelope estimation with the latency of 100 ms. The typical delay values reported for each of the techniques correspond to the

combination of parameters that deliver comparable accuracy of narrow-band envelope estimation with all the three methods.

The second commonly practiced way to estimate
instantaneous band power modulation is illustrated in
Figure 3B. This method is based on the use of the short-
time Fourier transform (STFT) with subsequent temporal
smoothing of the absolute values of the STFT coefficients.
We suggest that the temporal performance of the STFT-based
technique can be improved with the approach where the data
segment is mirror-reflected against the current time, followed by
windowing and Fourier transform. Therefore, the FFT is applied
to the symmetric sequence created from the segment of the
last T samples reflected around the last acquired time-sample,
which yields Xt−T ,Xt−T+1, ...,Xt , ...,Xt−T+1,Xt−T as a sequence
to perform the FFT on. This way, the subsequent application of
a symmetric scaling window (Hann, Hanning, Blackman, etc.)
effectively emphasizes contribution of the most recent samples.
This method, on average, shortens the delay to around 250
ms while retaining sufficient accuracy of the envelope profile
estimation. As it is the case with the rectification-based method,
further attempts to reduce the delay lead to a significant drop in
estimation accuracy, as illustrated by the dot-dashed black curve
in Figure 4A.

4.2.2. Advanced Envelope Estimation Techniques

In addition to these two methods, NFBLab implements several
advanced algorithms for decreasing the delay. An optimal
latency-accuracy trade-off can be achieved with these methods.
The general idea behind these techniques is based on the use of

a finite impulse response filter (FIR) approximation of narrow-
bandHilbert transform. This approach is schematically presented
in Figure 3C. The accuracy of envelope estimation is inversely
proportional to the length of the analysis interval while the longer
intervals lead to longer delays. In contrast to the traditional
methods, these advanced techniques allow to explicitly specify the
desired delay value and then achieve the best possible accuracy
for the specified delay.

In the Hilbert transform-based methods, narrow-band signal
s[n] is represented as the real part of the analytic signal:

y[n] = s[n]+ jsh[n] = A[n]ej(wcn+φ[n])

where sh[n] is the imaginary part of the analytic signal, often
called “second quadrature” of the original signal s[n], wc is
the central band frequency, A[n] is the instantaneous power of
the narrowband process, and φ[n]—is the instantaneous phase.
Thus, the envelope power A[n] can be computed as the squared
norm of the analytic signal.

To build the analytic signal y[n] corresponding to the original
narrow-band signal s[n] derived from the noisy broad-band
signal x[n], one can apply a narrow-band Hilbert transform filter.
Frequency response of the filter can be defined as:

Hd(e
jw) =

{

2e−jwd,w ∈ [wc − δw,wc + δw] ⊆ [0,π]
0, otherwise

(1)

where δw is the half of the bandwidth and d is the group delay in
the samples. For any finite d this filter is non-causal and cannot be
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applied in real time. To reconstruct analytical signal causally, one
can use a complex-valued finite impulse response filter (cFIR)
that approximates frequency responseHd(e

jw) . The desired filter
b can be found by solving the least squares optimization problem
defined in different ways.

The first and the most straightforward approach (denoted
F-cFIR) that implements the least squares filter design strategy
is to find the complex valued vector of cFIR filter weights b

that minimizes the L2 distance between the cFIR filter frequency
response and the ideal response Hd in the frequency domain:

bF = argmin
b

||Fb−Hd||L2

where F is the discrete Fourier transform operator. This simple
approach does not take into account the EEG temporal structure
and can be further improved.

One improvement can be achieved using optimal filter design
ideas. In this approach, spectral density X of the input signal
x[n] provides weights.We thus formulate the weighted frequency
domain least squares design technique (denotedWF-cFIR) as the
following optimization problem :

bWF = argmin
b

||(Fb−Hd) · X||L2

This method allows to exploit the patterns and hidden
relationships between rhythmic components in the EEG signal.

The last approach from this family (denoted T-cFIR) is based
on minimization of the squared distance in the time domain
between the complex delayed ground truth signal y[n − d] and
the filtered signal x[n] ∗ b[n]:

bT = argmin
b

||x[n] ∗ b[n]− y[n− d]||L2

where ∗ is the convolution operator. Here, during the training
stage, the ground truth signal yd is obtained non-causally from
the training dataset via ideal zero-phase Hilbert transformer (1).
According to Parseval’s theorem, this approach is equivalent to
the WF-cFIR approach. However, in contrast to the frequency
domain formulation, this method uses a straightforward way
to add amplitude dependent weights in order to achieve better
accuracy of the envelope shape estimation.

As illustrated in Figures 4A,C the advanced techniques
described above allow for envelope estimation with a significant
improvement in latency and accuracy as compared to standard
methods (colored vs. black lines) used in the majority of the
NFB software. When applied to a white noise sequence, see
Figure 4B, the performance of envelope estimation methods
tends to decrease.

It has been recently emphasized that both beta-rhythm (Shin
et al., 2017) and alpha-rhythm activity (Ossadtchi et al., 2017) can
be described as a sequence of oscillatory episodes, i.e., discrete
events rather than continuous modulations of these rhythms.
During alpha NFB training, the duration of each oscillatory
episode stays constant, and the training effect consists of the
increase in the number of episodes per unit time (Ossadtchi
et al., 2017). These events (e.g., beta or alpha episodes) have

characteristic duration of 300 ms or shorter. Given such a short
duration, the decreased NFB latency achieved with the advanced
techniques will result in reinforcement arriving on time, during
the rhythmic episode and not when it has finished (Oblak et al.,
2017).

4.3. Normalization and Standardization
It is customary for NFB applications to apply various
normalization methods prior to presenting NFB to the
subject (Enriquez-Geppert et al., 2017). In NFBLab, derived
and composite signals are standardized based on their statistics
estimated for a baseline data segment. Standardization consists
of subtracting the mean of the derived/composite signal y(t)

and division by the standard deviation: ȳ(t) = y(t)−my

σy
. This

operation ensures that ȳ(t) is centered around zero with maximal
amplitude around 3. The use of the standardized signal allows
to easily control the fraction of outliers and adjust the feedback
threshold (Thatcher and Lubar, 2008). Additionally, median
based statistics can be used for robust normalization of outliers.

Some applications require operations with only positive
signals. In these cases, robust estimates of ymin and ymax statistics
can be used, where normalized signal is computed as ȳ(t) =
y(t)−ymin

ymax−ymin
. The normalized signal changes in the [0, 1] range.

4.4. Motor Imagery BCI Paradigm Support
The derived signals-based structure fits well into the processing
framework of modern motor-imagery BCIs. Accordingly, a
separate module of NFBLab software offers a solution for
generating the derived signals based on the output of an EEG
classifier tuned to distinguish motor-imagery commands. This
processing pipeline includes: (1) pre-filtering of EEG signal
in some relatively broad frequency range, e.g., 0.5-45 Hz, (2)
followed by the band-pass filtering of data in several overlapping
bands (e.g., 6–10 Hz, 8–12 Hz, ..., 20–24 Hz), (3) spatial
decomposition, e.g., CSP aimed at contrasting the data recorded
within different motor-imagery states; (4) estimation of the
instantaneous power in each of the spatial components isolated
at step 3 and smoothing with a moving average (MA) with a time
constant of 0.5 s; (5) application of a motor-imagery classifier
(e.g., a classifier for delineating right and left hand imagery and
resting conditions). Stages 3 and 5 include parameter adjustments
for individual users; this adjustment requires an EEG sample
recorded during the imagery states of interest.

5. MAIN NFBLAB OBJECTS AND THEIR
DESCRIPTORS

5.1. Derived Signal
According to the NFBLab terminology, derived signal (DS) is
the envelope of the narrow-band filtered virtual lead signal. In
most cases, the DSs are scalars varying over time. The number
of DSs that a user can define is limited only by the performance
characteristics of the computer running the NFBLab. The DSs
are described in a specific XML structure. Figure 5A shows the
dialog for editing DS settings. This dialog can be called from the
“Experiment design” module before launching an experiment.
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FIGURE 4 | Correlation coefficient for the envelope obtained causally by each of classic (black curves) and novel (colored curves) filters with the ground-truth sequence

vs. filters group delay for real EEG P4-channel data (A) and white noise signal (B). Example of T-cFIR envelope reconstruction for 0, 100, and 200 ms delays (C).

Additionally, DSs can be set and/or changed based on the data
from the functional tasks. For this purpose, an interactive Data-
driven filter designer module can be called during an experiment.
This tool allows to choose the desired frequency band, perform
spatial decomposition of the data and choose appropriate spatial
filters. In addition to the interactive dialogs, advanced users can
edit the XML file directly. The DSs can be linked to the NFB
presentation module so that NFB output represents one of the
DSs or a composite signal formed from several DSs.

In the example shown in Figure 5 we have defined a Derived
Signal named Alpha to be obtained from the raw EEG data
by spatial filter coefficients stored in OccipitAlphaFilter.txt and
with 4-th order Butterworth signal with a passband of 9–
11 Hz. Envelope smoothing is performed with Savitsky-Golay
polynomial filtering.

5.2. Composite Signal
NFB often incorporates several signals, such as different
EEG rhythms. For example, alpha-to-theta ratio feedback is
based on the instantaneous power of the alpha band divided
by the power of the beta band. For such computations,
NFBLab implements the composite signal class, which is
defined as an arbitrary mathematical function of two DSs.
As shown in Figure 5B, this function is specified by the
user. For example, to define a training protocol which
requires calculation of the ratio of the occipital alpha

rhythm power to the frontal theta rhythm power, the DSs
representing the corresponding bands are used, and the division
function is specified. NFBLab also allows for more complex
computations, such as assessment of correlation between
virtual lead signals using such metrics as coherence or envelope
correlation.

In addition to forming NFB, composite signals can be used
to track the presence of artifacts in neural recordings, such as
eye blinks, muscular artifacts, and mechanical artifacts caused by
movements. A derived or composite signal representing artifact
can be converted into a warning stimulus instructing the subject
to correct the undesired behavior.

5.3. Experimental Block
NFB experiments usually consist of several blocks. In NFBLab, a
block is defined as the task part where the stimulus settings and
signal processing procedures remain unchanged. After a block is
finished running, the recorded data is stored in the HDF5 file.
Next, one or several actions from the following list are executed:

• the mean and the standard deviation are updated, which are
then used to standardize the feedback signal, see section 4.3;

• the interactive Data-driven filter design module is launched to
modify or create the DSs based on the data from functional
tests;

• a sound signal is issued after the block completion.
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FIGURE 5 | Example of the derived (A) and composite (B) signals settings along with the XML script lines the GUI based settings are translated to. Derived Signals

description is stored in the vSignals section of the XML file.

• the experiment is suspended;

The following block types are currently supported:

• Baseline. Baseline blocks are useful for recording background
activity or running functional tests. In this block type, either
a cross is displayed in the user window or a text message with
instructions is shown. The data collected during these blocks
are utilized for calculation of the standardization parameters
and as an input to the Data-driven filter design module for
deriving spatial and temporal filters.

• Feedback. This is the main module during which the software
displays NFB in the user-selected form. In addition to
presenting real NFB, this block supports mock feedback
generation. To activate this mode, the user has to specify the
name of a prerecorded data file whose data will be used for
calculation of the feedback signal. Additionally, to implement
mock feedback condition, one can configure the software to
use the data file recorded during one of the previous blocks.

• Video. This block type allows a video (specified in the block
settings) to be played on the screen.

• Trials. This block type is used in the experiments recording
stimulus evoked potentials. On each trial, a stimulus
appears on the screen, and the brain response to the
stimulus is measured. Different stimuli can be arranged in a
predetermined order or randomized. Stimulus and EEG data
synchronization is an important issue. One option for syncing
the stimuli and the other signals being recorded is to have
the stimulus accompanied by a change of brightness within
a limited area in the screen corner that is then detected by

a photo-sensor attached to the screen. The sensor signal is
then fed into one of the auxiliary channels (see also section 7).
Stimuli identifiers and timestamps are saved to the data file.

• Center-Out. This block type implements the center-out task
(Georgopoulos et al., 1982). The block consists of a sequence
of events, such as appearances of screen targets at the central
and peripheral positions. The subject moves a cursor (using a
joystick or mouse, or through BCI control) from one target to
another. The stimuli are synced with the other signals in the
data stream. The identifiers and timestamps of all the events
are saved to the data file.

Based on these examples, new block types can be added to
NFBLab, including the ones that require external visualization
programs.

In the example presented in Figure 6, we define an
experimental block named Real of type Feedback that will display
feedback in the form of a circle with non-harmonic (random)
boundary shape. The protocol will not result in an update of the
statistics (mean and standard deviation) used for normalization
of the feedback signal. The block will last for 120 s.

5.4. Experimental Protocol
The overall experimental protocol is defined by the sequence of
blocks entered in the configuration settings (Figure 7). Upon the
completion of each block, one or several events are executed, as
explained in the previous section.

It is also possible to define groups of experimental blocks
that consist of several blocks to be executed in a specific order.
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FIGURE 6 | Experimental block settings can be adjusted using the GUI. The parameters specified in the GUI are translated into the corresponding portion of the XML

file. Description of each block is stored in the vProtocols section of the XML file. Here we defined a block named Real of type Feedback with feedback display in the

form of a circle with uneven boundary shape. After the protocol is finished the statistics (mean and standard deviation) will not recalculated. Block duration is set to

120 s.

FIGURE 7 | Experimental protocol example. A group of experimental blocks called FBTraining is defined to consist from of the actual feedback (FB) and rest (Rest)

blocks. The repetition count for this unshuffled pair is set to 5. The actual sequence of blocks to be performed is then specified in the vPSequence section of the XML

file. As shown in the right panel the experiment itself comprises blocks (Baseline,Open,Close). XML file reflects this construction within vPSequence section.

It is also possible to define randomization within each of the
groups. A group of experimental blocks can be set up from the
corresponding GUI and will be reflected in the vPGroups section
of the XML file. In Figure 7, we define an experimental blocks
group called FBTraining that consists of the actual feedback
(FB) and rest (Rest) blocks. This sequence of two blocks will be
repeated 5 times in this particular order (first FB, then Rest).
The actual sequence of blocks to be performed is then specified
in the vPSequence section of the XML file. In this example,
the experiment comprises blocks (Baseline,Open,Close) and the
above defined block group, as illustrated in the right panel of
the figure. XML file reflects this construction within vPSequence
section.

It is also possible to define a group of blocks with
random shuffle requirement. In this setting, block order will

be randomized and the rate of appearance for block will be
proportional to the specified value.

All experimental protocol settings can be specified using
NFBLab’s Experiment protocol editor, implemented as GUI
(described next).

6. NFBLAB MODULES

6.1. Experiment Protocol Editor
The experimental protocol can be configured using the graphical
user interface (GUI) (see Figure 8). This interface provides access
to all the GUI components described in section 6 and allows
to fully configure an experiment. The GUI allows to define
and modify derived and composite signals, set experimental
blocks parameters, organize blocks into groups, and specify the
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experimental sequence. These settings are stored in an XML
file and can be loaded later if a similar experiment needs to be
conducted. After the experimental protocol is defined through
the GUI or loaded from a file, the Experimental module GUI
(described next) can be launched by pressing the Start button in
the bottom of the Experiment protocol editor panel.

6.2. Experimental Module
The experimental module receives raw data from the
EEG/ECoG/MEG recording devices, updates all signals,
visualizes NFB according to the specifications in each block,
controls the sequence of blocks, triggers inter-block events, and
saves the experimental data. The experimental module interface
(see Figure 9) consists of two main windows: the experimenter’s
window and the subject’s window. In the experimenter’s window
(Figure 9A) processed signals are displayed in the upper part of
the screen and raw signals in the lower part. Textual information
about the experiment including the frame rate is displayed at the
bottom of the screen. Additionally, the experimenter’s window
contains start/pause and restart buttons.

During an experiment, the subject faces the monitor that
displays the subject’s window. Depending on the current block,
this window may show different visual stimuli or instructions.
The sequence usually starts from a baseline block with a cross
displayed in the screen (see Figure 9B). During the actual
feedback session (i.e., block of type feedback), a visual indicator
of NFB is presented. In the example shown in Figure 9C, the
shape of a circle carries NFB information: subjects are instructed
tomake the circle’s boundary smoother bymodulating their brain
activity.

Raw and processed signals, experimental parameters, signal
and block properties are saved as an HDF5 (Hierarchical Data
Format) file. This data storage format is widely supported by
various libraries, including the ones implemented in Python
(h5py package), Matlab (built-in function hdf5read) and R
(package h5). The detailed structure of the experiment file can
be found in an on-line file5.

6.3. Data-Driven Filters Designer
After the baseline data is collected, NFBLab offers to adjust
the signal processing pipeline based on the functional tests.
The temporal and spatial filters can be adjusted interactively
using the Data-driven filters designer module. The adjustment
can start, for example, with an interactive spectral analysis
(see Figures 10A,D) that allows to fine-tune EEG frequency
bands and redesign the temporal filter to make it, for
example, a better match to subject’s individual alpha range.
Next, spatial decomposition techniques (ICA,SSD or CSP) (see
Figures 10A,B) can be invoked to decompose the data into
spatial components that represent both functionally relevant
neural modulations and artifacts. Using a selector sub-menu
(see Figure 10C), it is possible to specify spatial filters that
correspond to the features of interest (e.g., sensorimotor rhythm,
alpha-rhythm, etc.), and pin-point the spatial components

5https://github.com/nikolaims/nfb/wiki/Experiment-file-structure

representing the artifacts to be removed. Different methods of
spatial decomposition are available within this module.

Independent Component Analysis (ICA) decomposes the
multichannel signal into the components representing the
functionally relevant modulations and the artifacts (Bell and
Sejnowski, 1995). Common Spatial Pattern (CSP) selects the
components that contrast signal modulations between the pair of
conditions of a functional test. The algorithm is based on solving
the generalized eigenvalue problem (Koles et al., 1990) formed by
a pair of autocorrelation matrices for the two different conditions
being contrasted. Spatio-Spectral Decomposition (SSD) method
also solves the generalized eigenvalue problem. This method
maximizes the ratio of power in two frequency bands (the central
band and the adjacent flanker sub-bands), and allows to find
spatial filters that emphasize narrow-band oscillatory activity
(Nikulin et al., 2011).

When the filter configurationmodule is called, the experiment
pauses and the target signal manager opens (Figure 10A). At
this point, parameters of spatial and temporal filters are shown
and can be edited for each DS. As explained above, a spatial
filter combines a notch matrix and a filter vector, and converts
a multidimensional signal into a scalar. The filter parameters
can be edited manually or determined with one of the methods
described above (ICA, CSP, or SSD). For each type of analysis,
the user can select the components to remove (the notch matrix
maps input data into the space orthogonal to the components
containing artifacts) and the components to contribute to NFB.
The components are selected based on their scalp topography and
patterns in the temporal and frequency domains.

7. FEEDBACK PRESENTATION DELAY
CONTROL

Rapid presentation of NFB is the distinctive feature of the
NFBLab software. To allow for continuous control of visual
feedback presentation latency the NFBLab software supports the
photo-sensor based loop. We use small square in the upper-right
screen corner whose intensity ismodulated by the actual feedback
signal presented on the main portion of the same screen. The
observed within this square intensity fluctuations are registered
by the photo-sensor and fed to one of the auxiliary channels of
the EEG device to be registered as p(t). When an appropriate
photo-sensor has used the shape of p(t) closely matches the
corresponding derived signal y(t) used as a feedback signal.
Obtained in real-time conditions under causal restrictions signal
y(t) is a delayed version of the ideal derived signal y0(t) that can
be calculated offline by using zero-phase batch filtering. Thus,
signal p(t) appears to be a slightly distorted version of y(t) and is
delayed by some specific value with respect to y0(t). This lag can
be determined by computing the estimate of cross-correlation

function R(τ ) = E{p(t)y0(t−τ )}√
E{p2(t)}E{y20(t)}

and finding the lag τmax

corresponding to the maximum value Rmax of R(τ ). Figure 11A
shows the two signals p(t) and y0(t) and Figure 11B illustrates the
cross-correlation function. The lag estimated this way represents
the true average total delay between the neuronal event and the
moment it is reflected in the feedback presented to the subject.
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FIGURE 8 | Graphical user interface of the experiment protocol editor. This interface provides access to all the GUI components described in section 6 and allows to

fully configure an experiment.

FIGURE 9 | Graphical user interface of the experiment module: experimenter window (A), subject window for baseline (B), and feedback (C) blocks.
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FIGURE 10 | Graphical user interface of the data-driven filter designer: signals manager (A), SSD toolbox (B), CSP toolbox (C), ICA toolbox (D).

Based on the above considerations it is possible to compute a
single pair (Rmax, τmax) from the data recorded from the entire
duration of the experiment in order to assess the average accuracy
and latency of the feedback signal. However, given non-stationary
nature of the EEG, a more informative approach is to use a
sliding window based approach, so that for each data window
one can obtain a pair of values characterizing the accuracy and
the delay of the feedback that pertains to it and plot the joint
distribution of this pair of values over accuracy × latency plane
for many possibly overlapping windows. Example of a joint
distribution of (accuracy,latency) pairs for the three different
envelope estimation methods implemented within NFBLab is
shown in Figure 11C. We have chosen the parameters of the
three methods to equalize mean envelope estimation accuracy
(y-axis). As we can see the Butterworth filter based approach
yields the worst accuracy-delay combination as well as the largest
variation in the envelope estimation accuracy as compared to
the cFIR and the modified windowed FFT techniques. It is also
possible to do such computation in a lagged online manner in
order to continuouslymonitor the delay and accuracy parameters
of the feedback presented.

8. EXAMPLES OF NFBLAB PROTOCOLS

All participants of experiments bellow provided a written consent
approved by The Higher School of Economics Committee on
Interuniversity Surveys and Ethical Assessment of Empirical
Research in accordance with the Declaration of Helsinki.

8.1. NFB Paradigm Based on the Occipital
Alpha Rhythm
Perhaps the simplest NFB implementation is the one that utilizes
the prominent occipital alpha rhythm. Commonly, this kind
of neurofeedback is performed on the basis of activity in a
single EEG channel. Rhythm power is calculated using Fourier
transform of 500–1,000 ms data-chunk preceding the feedback
presentation time instance. This generally adopted procedure
lacks spatial and temporal specificity and could be sub-optimal
in terms of training efficiency induced. NFBLab implementation
of this simple paradigm addresses both spatial and temporal
specificity issues raised above.

To improve spatial specificity we use functional localization
approach under which we record and analyze a segment of data
collected within the eyes-closed condition and contrast it against

the EEG data from the eyes-open condition. Aided with NFBLab

interactive tool, we perform CSP spatial decomposition (ICA
and SSD are also available) and choose the component with

topography corresponding to the occipital generator of the alpha
rhythm. This also allows focussing on the alpha frequency band

specific to the individual subject. Additionally, the ICA can be
performed with an interactive tool (as described in sections 4.1
and 6.3) that chooses spatial components corresponding to the
artifact sources to be rejected.

In this example, the band-pass filter is set to the 9–
11 Hz frequency range. The envelope detector comprises
complex demodulation followed by smoothing with the 2-
nd order Savitzky–Golay filter using the 151 samples long
window. The resulting delay of envelope estimation (end-to-end)
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FIGURE 11 | Estimated p(t) and ideal non-causally estimated envelope y0(t) (A) are separated by a lag that can be assessed using the cross-correlation between p(t)

and y0(t) (B). Joint distribution of envelope estimation accuracy (maximum value of the cross-correlation sequence) and total feedback presentation delay (lag of the

cross-correlation sequence) for the three different methods (C) as estimated from a large number overlapping windows.

appears to be 131 ms achieved at sampling frequency 250
Hz. The reconstructed envelope matches the ideal Hilbert
transform based envelope with an accuracy of 0.7, measured
as correlation coefficient. In contrast, FFT and Butterworth
filter based approaches, see Figures 3A,B operating at the same
accuracy would result into 250–350 ms delay. To further reduce
feedback presentation latency and improve temporal specificity
of neurofeedback, the novel adaptive complex demodulation
approach could also be used (see Figure 3C).

The experiment is divided into 19 blocks (see Figure 12A).
During blocks 1 through 6, subjects open and close their
eyes (“Open” and “Close” blocks). Within Block 7 (“CSP”) of
the pipeline, the Data-driven filter designer module is called
to derive spatial filter to accommodate individual patterns of
the occipital alpha rhythm generator and get rid of artifacts.
The CSP analysis contrasts the EEG activity during the
“Open” and “Close” blocks. This analysis assumes that the
alpha rhythm originates from the same cortical source in
both cases, and that the rhythm power increases (i.e., alpha
synchronization) in the eyes-closed condition and decreases
(i.e., alpha desynchronization) when the eyes are opened.
Figures 12C–F shows the characteristics of the selected CSP
component, including the segment of its time series containing
an alpha episode (C), the spectra of this component for the
“Open” and “Close” states (D), the spatial filter (E), and their
topography (F).

Following the adjustment of the spatial filter, a resting state
(i.e., Baseline block) is recorded to obtain EEG parameters (mean
and standard deviation) needed for conversion of the signals into
standardized quantities by subtracting the mean and dividing by
the standard deviation. The standardization is needed to correctly
display the NFB (Figure 12B). For these standardized quantities,
the sample mean is 0 and the standard deviation is 1.

The NFB is visualized as a circle with rough (uneven)
boundary. The stronger is the NFB signal, the smoother is the
boundary. NFB training paradigm consists of five experimental
sessions separated by 2-min breaks. Next, five sessions are run
with mock NFB. The details of the experimental design are
available on-line6. Figure 12H illustrates the processing diagram.
The diagram consists of the standard blocks for this kind of
experiments and, in addition, specifies unique features for each
block, such as settings of spatial and temporal requirements.

Here, as an example, we describe results obtained with this
paradigm from a single subject. EEG recordings were carried
out using a wireless amplifier SmartBCI (Mitsar Co., Ltd). We
collected EEG with 21 channels according to the standard 10–
20 scheme at 250 Hz sampling rate. The digital average ear (A1
+ A2)/2 was used as the reference. As shown in the diagram in
Figure 12, the overall duration of the experiment was less than
15 min.

To assess NFB efficiency, we analyzed changes in the NFB
power over time within the data segments corresponding to
the real and mock NFB training conditions. NFB changes were
quantified as the slope of the data-points cloud representing
average NFB power within a 1-min time window; 500 windows
were randomly allocated to conduct a linear regression analysis.
The obtained regression coefficients were significantly different
for the mock and real NFB (p < 0.001, Wilcoxon’s test). The
average slope was significantly positive for real NFB (p < 0.001,
Student’s t-test, H0-coefficient = 0) and significantly negative for
mock NFB (p < 0.001, t-test of the Student, H0 - the coefficient
is 0). Thus, only during the real NFB sessions, alpha power
experienced statistically significant increase.

6https://github.com/nikolaims/nfb/blob/master/tests/designs/alpha_nfb_settings.

xml
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FIGURE 12 | Neurofeedback training experiment example: (A) experimental protocol, (B) feedback stimulus, (C) CSP-component time series segment, (D)

CSP-component power spectral density (PSD) for closed and open eyes probes, (E) CSP-component spatial filter, (F) CSP-component topography, (G) learning rate

in two conditions (Real and Mock feedback), (H) signal processing diagram.

8.2. Motor-Imagery BCI
Brain-computer interfaces are another popular real-time EEG
paradigm. The described software contains modules that allow
for conducting experiments within P300 and motor-imagery
BCI paradigms. Making motor-imagery work reliably in patients
with neurological and motor deficits is always a challenge that
requires individually designed signal processing tracts. In this
example, we consider NFBLab implementation of a lower limb
motor-imagery BCI (Figure 13) based on the beta components
of the patient’s sensorimotor rhythm (SMR) power. This signal is
derived from multichannel EEG recordings using a combination
of individually designed filters. The first processing stage (“ICA
Data”) consists of 15 motor-imagery blocks and 15 resting blocks;
the duration of each block is 4 s. During a motor-imagery block,
the subject imagined limb movements (left hand, right hand,
or the legs). Following the collection of this data, “SMR ICA-
component extraction” was conducted. The experimenter then
used the “Data-driven filter designer” module to perform ICA
decomposition of the recorded data and define a spatial filter
for extracting SMR. At this stage, it was also possible to adjust
the bandwidth that defined SMR and choose the components
representing the artifacts to be spatially filtered out from the data.
Finally, during the last part of the experiment (“BCI Session”),
a BCI loop was implemented for controlling a video game: the
output signal was streamed through the LSL interface to a BCI
game controlled by two commands: command 1 corresponding

to the resting state and command 2 corresponding to the lower
limb motor-imagery state.

We tested this experimental protocol at the Neurotlon
competition that took place in St. Petersburg, Russia in 2017
(supported by the interdisciplinary union “Neuronet” and the
Ministry of Industry and Trade). BCI game consisted of
controlling a virtual submarine that had to avoid obstacles by
adjusting its position in the vertical dimension with discrete
up or down moves while progressing toward the finish line
(Figure 13B). EEG recordings were conducted with NVX52
amplifier (Medical Computer Systems Ltd). We sampled 26
EEG channels at 500 Hz with the reference to A1-A2 (see the
schematics of channels in Figure 13E). One paraplegic subject
imagined leg movements during the motor-imagery state. The
parameters of the spatial filter are shown in Figures 13C–F.
Figure 13C shows a representative trace of the ICA component
representing SMR. Figure 13D shows the spectrum of this signal,
where two distinct peaks are present in the alpha and beta bands
for the resting state data (blue). The spectrum shows a clear
SMR desynchronization in the motor-imagery state (orange).
Subject-specific frequency band (17–21 Hz), marked by vertical
lines in Figure 13D, was selected. The spatial-temporal filter
assured a good separation between the motor-imagery and
resting states (Figure 13E). As depicted in Figure 13G, NFBLab
based implementation of the foot motor-imagery BCI allowed
the subject to achieve a very low command latency (< 200 ms)
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FIGURE 13 | BCI experiment example: (A) experimental protocol, (B) BCI game, (C) ICA-component time series segment, (D) ICA-component power spectral

density (PSD) for resting state (Rest) and motor task (Legs), (E) ICA-component spatial filter, (F) ICA-component topography, (G) cross-trials averaged envelope in two

states (Rest and Legs).

which resulted in nearly instantaneous gradual control of the
game. The details of this experiment design are available on-
line within the NFBLab GitHub resource7 Figure 13H shows the
signal processing diagram implemented by the NFBLab in this
example.

Moreover, this NFBLab based BCI implementation has been
recently used to control the lower-limb exoskeleton in another
paraplegic patient with complete leg paralysis. Several challenges
had to be addressed in this exoskeleton paradigm, including
eliminating mechanical, electrical and EMG artifacts. All these
have been successfully handled by the NFBLab software.

9. DISCUSSION

BCI and NFB paradigms are real-time EEG/ECoG/MEG
paradigms that are relevant to both basic neuroscience and
clinical applications. While the idea of recording neural activity
and feeding it back to the subject dates back to the 1960s
and 1970s, the BCI and NFB fields have experienced a
renaissance during the last decade, with experts from multiple
disciplines developing systems that extract and process neural
information and convert it into commands to external devices
or NFB. Research and development of the modern BCI
and NFB systems require advanced software tools. Although
the existing software for real-time EEG processing has been

7https://github.com/nikolaims/nfb/master/tests/designs/bci_2states_settings.xml

useful for many applications, we need a next-generation
of tools to move forward and address problems related to
improving specificity of the feedback signal which will lead
to better efficacy of both NFB and BCI technologies. These
new software tools should be sufficiently flexible to allow
for development of new experimental protocols and their
modifications. At the same time, the software should provide
a core functionality, with essential EEG processing methods
incorporated, such as removal of artifacts, detection and
allocation of rhythmic components through spatio-temporal
filtering, and evaluation of instantaneous power and phase of
oscillatory EEG components. Furthemore, this software should
be available to the broad cohort of researchers and should support
a wide variety of encephalographic devices, including MEG
equipment with unique combination of spatial and temporal
resolution properties.

The proposed NFBLab platform offers a solution that meets
all these requirements. It supports flexible configuration of the
experimental protocol and contains a number of components
for EEG data acquisition and processing. These components
include functionality that allows to design signal processing
chains having high spatial and temporal fidelity. The software
inherently supports scripting which in turn allows for natural
reproducibility of the paradigms and promotes sharing specific
experimental designs by different researchers.Moreover, NFBLab
is an open-source project that can incorporate new signal
processing procedures and custom modules. The architecture
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of the software is modular and can be further extended by the
community of users.

NFBLab uses the LSL interface that operates in two directions:
multi-channel data acquisition, and streaming results of EEG
data processing. This allows, on the one hand, for ensuring
compatibility of NFBLab with the equipment of nearly all
manufacturers, and on the other hand, implementing a variety
of NFB stimuli and controlling an unrestricted variety of external
devices.

NFBLab platform employs XML language to define signal
processing pipelines, specify characteristics of the experimental
blocks and determine the sequence of these blocks to be
administered during the experiment. This allows for a fully
automatic administration of the experiments with preset or
randomized sequences of experimental blocks. Also, mock
condition mode can be chosen blindly to the experimenter. This
facilitates double-blind designs that must be used to establish the
efficacy of NFB interventions. Additionally, XML scripts define
the rules for combining different EEG-derived signals and for
scaling the feedback based on the signal statistics. We believe
that such scripting based approach facilitates reproducible
neurofeedback and BCI research. XML scripts can be modified
if needed both via NFBLab interface or via a standard text editor.

Although NFBLab offers a significant advantage over existing
real-time EEG tools it still lacks certain features. In particular,
a graphical programming interface once implemented would
allow to create signal processing chains and experimental designs
by dragging and dropping icons corresponding to specific
signal processing operations and/or experimental protocols. LSL
provides universal access to EEG data obtained by a broad variety
amplifiers from various vendors. This universality comes at the
cost of a delay introduced by the LSL protocol. Although not very
significant in most of the applications, it may become a problem
in certain cases. Therefore, we believe that implementing direct
access to the DAC registers of EEG acquisition devices from
some selected vendors. Then, in combination with the advanced
signal processing algorithms, we will be able to explore the
realm of zero-latency or negative latency feedback for the first
time. Currently, only visual feedback is implemented. Adding
auditory and tactile feedback options would further reduce
efficient feedback delivery time because of the inherent properties
of the corresponding sensory systems.

We have been successfully using this software in a
wide range of our own projects related to real-time
processing of electromyographic, electroencephalographic and
electrocorticographic signals. Here we described in detail two
implementations of EEG-based NFB and BCI paradigms, and
mentioned the third one. The constantly growing functionality

of the software goes beyond these examples. The compatibility of
NFBLab platform with external hardware and software and its
flexibility in adjusting experimental parameters make it useful for
numerous research fields and clinical applications. In conclusion,
NFBLab is a versatile software package that eases development
of NFB systems and employs advanced algorithms to improve
NFB efficiency. As such, it advances a variety of NFB and BCI
applications, including NFB-based treatment of neurological
conditions.

10. SOFTWARE AVAILABILITY

The source code and installation instructions for NFBLab can
be found at https://github.com/nikolaims/nfb. The manual is
available at https://nfb-lab.readthedocs.io/en/latest/index.html.
In order to facilitate learning how to use our software, we have
developed a tutorial and included it in the documentation.
In the provided example, the EEG device is emulated by an
LSL stream created within the NFBLab and streaming the
prerecorded data read from a file. After examining this example,
a prospective user can follow the tutorial to get familiar with
the basic concepts of NFBLab. The XML files implementing the
NFB and BCI experiments described in section 8 are available
at https://github.com/nikolaims/nfb/blob/master/tests/designs/
alphanfbsettings.xml and https://github.com/nikolaims/nfb/
master/tests/designs/bci2statessettings.xml.
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