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There has been a recent major upsurge in the concerns about reproducibility in
many areas of science. Within the neuroimaging domain, one approach is to promote
reproducibility is to target the re-executability of the publication. The information
supporting such re-executability can enable the detailed examination of how an
initial finding generalizes across changes in the processing approach, and sampled
population, in a controlled scientific fashion. ReproNim: A Center for Reproducible
Neuroimaging Computation is a recently funded initiative that seeks to facilitate the “last
mile” implementations of core re-executability tools in order to reduce the accessibility
barrier and increase adoption of standards and best practices at the neuroimaging
research laboratory level. In this report, we summarize the overall approach and tools
we have developed in this domain.

Keywords: reproducibility, neuroimaging, data model, publication, re-executability

INTRODUCTION

There has been a recent major upsurge in the concerns about reproducibility in many areas of
science (Ioannidis, 2005, 2011; Button et al., 2013). The reasons for the concern are numerous, and
there are numerous practices in the scientific field that have been found to exacerbate the problem.
At a high level, a premium is put on novel, high-profile publications (in contrast to replications
and negative findings) and a specific p-value (typically 0.05) as a proxy for truth has been adopted
(Simonsohn et al., 2014; Wasserstein and Lazar, 2016). These aspects, in the context of a scientific
reporting system that is out of touch with the digital age, have combined to create a perfect storm
of practices that do not readily support the transparency needed to embrace reproducibility more
substantively (Martone, 2015; Starr et al., 2015).

In acknowledgment of this situation, each scientific field is forced to re-examine the
best-practices that are expected of practitioners in that field. Each field grapples with what
reproducibility looks like within the context of that field. Neuroimaging provides a lens on various
biological processes, and how these biological processes change over the course of development, and
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in the face of pathological insult. As the biological process is
the ultimate target of the neuroimaging inquiry, the question
of reproducibility relates principally to the conclusions reached
about such processes. A true biological inference about a
population or process should generalize to other valid ways of
observing that process and other samples of that population. In
the quest to advance the overall reproducibility of neuroimaging
science, one approach is to target the re-executability of the
publication; the basic, current building block of the dissemination
of scientific knowledge. The information supporting such re-
executability can enable the detailed examination of how an
initial finding generalizes across changes in the processing
approach, and sampled population, in a controlled scientific
fashion (see Figure 1A). It is only in the context of a systematic
ability to probe a finding that the true generalizability of a claim
can emerge.

It can be argued that “everything matters” in the
generalizability of the traditional neuroimaging publication.
The issues already identified span all levels of the experimental
ecosystem:

• Computational environments matter (Glatard et al., 2015);
• Tool selection matters (Tustison et al., 2014; Dickie et al.,

2017);
• Tool version matters (Dickie et al., 2017);
• Statistical model matters (Tan et al., 2016);
• Study population characteristics matter.

In the context of all these things that matter, what is an
appropriate approach that investigators in this field should take?
Our position is that the key to a comprehensive understanding of
the published neuroimaging literature is to comprehensively, and
in a machine-accessible manner, describe each of the elements
of the experiment: input data, processing steps, computational
environment, statistical assessment, and complete results (Ghosh
et al., 2017a). The human understandable interpretations and
claims, typical of a publication, can then exist around these
machine-readable [and hence Findable, Accessible, Interoperable
and Reusable (i.e., FAIR; Wilkinson et al., 2016)] elements. The
existence of this machine readable and actionable provenance (the
description of the origins of all elements of the publication) is
what is needed to trace back and validate the underpinnings of
a claim, and the starting point for the systematic examination of
that claims’ generalizability.

Within the neuroimaging community, the prognosis for
the ability to establish a complete description of accessible
elements for all parts of the publication is quite good.
The field has good data standards [DICOM1, NIfTI2, BIDS3

(Gorgolewski et al., 2016), MINC4, etc.], excellent platforms
for the sharing of code and data management and sharing
(Git, GitHub, DataLad, OSF, etc.), there are ample raw data

1https://www.dicomstandard.org/current/
2https://nifti.nimh.nih.gov/nifti-1/
3http://bids.neuroimaging.io/
4https://en.wikibooks.org/wiki/MINC/SoftwareDevelopment/MINC2.0_File_
Format_Reference

repositories (XNAT5 (Herrick et al., 2016), NITRC-IR6 (Kennedy
et al., 2016), NIMH Data Archive (NDA)7, International
Neuroimaging Data-sharing Initiative (INDI)8 (Mennes et al.,
2013), Human Connectome Project (HCP)9 (Marcus et al., 2013),
OpenNeuro10, etc.), numerous workflow systems (Nipype11

(Gorgolewski et al., 2011), LONI Pipeline12 (Rex et al., 2003), etc.),
package and execution management systems (NeuroDebian13,
Docker14, NeuroDocker15, Singularity16, NITRC-CE17, etc.), and
several outlets to disseminate results (NeuroVault18, BrainSpell19,
NeuroSynth20, etc.). Importantly, a standard data model for the
description of all these research elements, the Neuroimaging
Data Model (NIDM)21 (Keator et al., 2013), is also in place to
facilitate and distribute semantically annotated and unambiguous
representations of the complete experimental cycle. As such,
the main barrier to the generation of re-executable publications
which foster reproducibility and generalizability is not the core
resources, but rather the ease of use alongside the acceptance
of best practices (Eglen et al., 2017; Nichols et al., 2017), in the
typical neuroimaging laboratory. In addition to knowing that
the resources for reproducibility exist, the community needs to
embrace an approach of “Reproducible by Design” (as opposed
to reproducibility as an afterthought). ReproNim: A Center for
Reproducible Neuroimaging Computation is a recently funded
initiative that seeks to facilitate the “last mile” implementations
of these core tools in order to reduce the accessibility barrier and
increase adoption of standards and best practices at the research
laboratory level.

REPRONIM APPROACH

In the remainder of this report, we provide an annotated
perspective on the ReproNim vision for the re-executable
publication. For this purpose, we concentrate on a laboratory
data acquisition centric version of the research workflow. Other
workflows (i.e., data query from accessible data resources) can
be envisioned, but will be outside the purview of this report.
Figure 1B depicts a stylized version of the data workflow in a
typical neuroimaging experiment. Current publication practice
focuses on human readable descriptions of the detailed data

5https://www.xnat.org/
6https://www.nitrc.org/ir/
7https://data-archive.nimh.nih.gov/
8http://fcon_1000.projects.nitrc.org/
9https://www.humanconnectome.org/
10https://openneuro.org/
11https://nipype.readthedocs.io/en/latest/
12http://pipeline.loni.usc.edu/
13http://neuro.debian.net/
14https://www.docker.com/
15https://github.com/kaczmarj/neurodocker
16https://www.sylabs.io/docs/
17https://www.nitrc.org/ce/
18https://neurovault.org/
19http://brainspell.org/
20http://neurosynth.org/
21http://nidm.nidash.org/
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FIGURE 1 | ReproNim conceptual workflows. (A) Pictorial depiction of the concepts of re-executability (same data, same analysis), replication (same analysis, similar
data), robustness (same data, similar analysis), and generalization (similar data, similar analysis). Adapted from multiple sources, including Dr Drummond (2009),
Peng (2011); Hong (2015), Goodman et al. (2016); Whitaker (2016), and Allard (2018). (B) General neuroimaging data workflow: Imaging data and behavioral/clinical
measures enter into a local analysis, generate results that then get published. Substantial variability in the published literature exists in how the data, analysis and
results are described. (C) The ReproNim vision of the general neuroimaging data workflow where control of the data model and machine-readable markup is invoked
to completely represent the data workflow, processing and results using the tools of ReproIn, BrainVerse, NICEMAN, and NeuroBlast. (D) Detailed data
transformations and markup as the data work their way through the planned analysis and tools.
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collection, the processing workflow and environment, and the
statistical procedures and results. Therefore, across the field,
there is vast variability in the detail, precision and completeness
of these published descriptions. This variance in description
may contribute to the limited ability of the field to replicate
findings. Because we do not know exactly what a given paper
did or observed, when a subsequent paper examines a similar
topic it is impossible to parse similarities and differences
in results appropriately. Figure 1C overviews the ReproNim
vision for taking control of these variance points, through
instrumentation that generates machine-readable provenance
in each of the following areas: experimental data description
and versioning (NIDM-E), processing workflow (NIDM-WF),
and results (NIDM-R). While the analytic processing steps for
a neuroimaging workflow using any processing tool (SPM22,
FSL23, FreeSurfer24, AFNI25, etc.) will remain identical and
completely under the researcher’s control, we will insert
simple “wrapper” functionality that manage the conversion
and markup of incoming imaging data (ReproIn), markup of
subject-specific observations and experiment-specific analysis
plans (BrainVerse), interrogation and management of execution
environments (NICEMAN), and the distribution of the results
to user-identified, appropriate and FAIR data repositories
(NeuroBLAST). The data transformations and annotations that
these tools impart upon the data flow are illustrated in Figure 1D.

MATERIALS AND METHODS

In this section we will review the current status of the key tools
that are in place to support the re-executable publication. Each
resource will be summarized in terms of its purpose, how to
access it, and its functionality as of this writing.

ReproIn
ReproIn is a specification and a software platform to fully
automate acquisition, preparation and layout of collected
MRI data in the BIDS data structure with DataLad version
management, so they will be ready for local distribution and
processing in a scalable and flexible manner, while retaining all
provenance information from the moment of their creation, in
order to ease later sharing or publication.

ReproIn is accessed from the ReproIn Github repository26.
To not reinvent the wheel, the software development of

ReproIn is largely done through contribution to existing
software projects: HeuDiConv27 – a flexible DICOM converter
for organizing brain imaging data into structured directory
layouts; and DataLad28 – a modular version control platform
and distribution for both code and data including entire

22https://www.fil.ion.ucl.ac.uk/spm/
23https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
24https://surfer.nmr.mgh.harvard.edu/
25https://afni.nimh.nih.gov/
26https://github.com/ReproNim/reproin
27https://github.com/nipy/heudiconv
28https://www.datalad.org/

containerized computation environments via the DataLad-
containers extension and automated execution provenance
recording within version control systems (VCS) using DataLad’s
“run” functionality to provide a fully re-executable VCS-tracked
analysis record. The ReproNim project actively contributes to
those existing solutions to provide all necessary components for
computationally reproducible research.

General features of ReproIn include:

• A flexible naming convention for study description and
acquisition details to be used at an MR scanner console
that extends the information typically available in DICOM
metadata, to allow for an automated translation of MR
scans in DICOM format into BIDS datasets.

• A HeuDiConv ReproIn heuristic implementation29 to
process and validate the above BIDS specification30.

• Support for automated metadata generation by HeuDiConv
(e.g., to tag potentially sensitive information) using
DataLad’s metadata capabilities.

• Datasets can be incrementally expanded with new
acquisitions, as well as merged with any changes (new data,
adjusted templates) from the data acquisition server.

• Optional automatic obfuscation of time stamps in the VCS
records to protect privacy of study participants.

• Standalone Docker and Singularity containers for turnkey
processing and analysis deployment.

BrainVerse
BrainVerse is a cross-platform software framework and
collaborative desktop application to help researchers annotate
the research workflow from experimental planning to execution
of analysis. Annotation includes semantic coding of all data
elements, as well as the merging of the imaging data and
behavioral/clinical data streams, resulting in semantically
marked up BIDS data structures (the so called “ReproBIDS”
datasets) also under DataLad version management. Key
application areas include:

• Harmonization with the NIMH Data Archive (NDA):
Allows importing and curating the NDA schemas
to generate collection instruments that support
harmonization of variables within and across project.

• Project planner and executor: Allows creating a plan for an
experimental protocol in a project and collecting data using
harmonized and reusable forms.

• NIDM term editor: Allows the community to search
for and build a common descriptive vocabulary around
neuroimaging.

BrainVerse is accessed from the BrainVerse website/Github
repository31.

General features include:

29https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.
py
30https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin_
validator.cfg
31https://github.com/ReproNim/brainverse
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• GitHub based login and authorization;
• Cross-platform support (based on the Electron32

framework) on desktops with an option for server
based installation;

• NDA harmonizer and editor:

◦ Import, select, and preview forms,
◦ Edit forms,
◦ Push to common repository on ReproNim,
◦ Pull curated forms from ReproNim repository;

• Project planner and form-based data collector:

◦ Create project execution plan with multiple session
support,

◦ Reuse/Create session instruments,
◦ Add participants to project and collect data using project

plan,
◦ Export collected data to CSV files for visualization and

analysis;

• NIDM term editor:

◦ Display of terms from NIDM owl files,
◦ Edit terms and send review requests.

NICEMAN
NICEMAN is a specification and software system that
supports the management of computation environments
and computations, targeting the neuroimaging domain. It
provides:

• A specification to describe environments consistently
across available data and software distributions (e.g.,
VCS such as git, Debian-based systems, Conda Python
distribution, Singularity and Docker images),

• A software platform to allow convenient discovery,
description, and management of the computation
environment(s) so that they could be easily traced (to
automatically collect the specification from existing
environment or a dedicated process), validated (to satisfy
necessary requirements), compared (to determine how
requirements differ), satisfied (to create a new or adjust an
existing environment), execute necessary computation(s)
and interface the output(s).

NICEMAN developed openly and accessible on Github33.
General features include:

• retrace command allows users to establish a detailed
description of the environment given an initial specification
(e.g., from reprozip34, Nipype’s.trig PROV) or from a
list of files provided on the command line. It generates
tracing information that is sufficient for re-establishing
the environment (origins, versions, etc.) for Debian-based
systems, VCS (svn and git), and Conda,

32https://electronjs.org/
33https://github.com/repronim/niceman
34https://www.reprozip.org/#

• Support of Docker, shell (via ssh or localhost) environments
for scripted or interactive sessions, with a centralized
resources manager (ls command to list available
environments/resources and query their status), and
with basic support for Docker and Amazon Web Services
(AWS) backends life-time (bootup/shutdown),

• Create/install commands to fulfill the specification and
provide the requested environment (via Docker, AWS, etc.).

• Support for Singularity and Docker environments.

NeuroBlast
NeuroBlast is a share, search and discovery service. The
NeuroBlast service facilitates data sharing (raw and results) of
known existing repositories and assists users in the data discovery
process to find matching/similar studies based on a combination
of task, analysis, and activation patterns. This novel environment
utilizes all information about a study, enabling researchers to
select appropriate sharing sites, and find similar studies utilizing a
number of different similarity metrics. This service employs deep
semantics, building from terminologies managed by InterLex and
its associated ontology, to enhance the search for similar data sets
utilizing multiple features for comparison.

InterLex can be accessed at InterLex.org and the ontology can
be accessed from its GitHub repository35.

RESULTS

In this section, we briefly summarize a couple of example use-
cases that demonstrate the ReproNim vision in action.

Tools Matter
Shared neuroimaging data is an important means of promoting
an open and reproducible neuroimaging analysis culture. The
Autism Brain Imaging Data Exchange (ABIDE1) dataset (Di
Martino et al., 2014) is a premier example of shared neuroimaging
data that promotes exploration of the factors related to the
autism diagnosis relative to features accessible in structural and
resting state functional MRI in over 1000 subjects. There are
many factors related to the reproducibility of neuroimaging
findings, including selection of software tools. In this report,
we take advantage of the ABIDE Preprocessed Connectomes
project36 which has performed a comparative analysis of ABIDE1
data using three widely used structural analysis software tools:
FreeSurfer (Fischl et al., 2002), versions 5.1 and 5.3, and ANTS
(Avants et al., 2011). In an ideal world, regional thickness data
would be independent of the specific software tool used to
generate the result, when applied to common data. We utilize this
dataset to evaluate the extent to which the selection of a software
tool matters, and provide a common open source platform to
support further exploration of these results. We identified the
subset of (976 cases (from the 1112 ABIDE1 original cases)) that
had completed all three analyses and are available at the ABIDE
Preprocessed Connectomes site.

35https://github.com/SciCrunch/NIF-Ontology
36http://preprocessed-connectomes-project.org/abide/
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FIGURE 2 | Everything matters. (A) Tools matter: Same data (976 ABIDE1 cases), different tools (FreeSurfer 5.1 and 5.3 and ANTS). For a specific anatomic region
(left caudal anterior cingulate cortex), we show a matrix of the between tool comparisons. On the diagonal (from upper left to lower right) we see the distribution
histogram of average left caudal anterior cingulate cortex thicknesses for ANTS, FreeSurfer 5.1 and FreeSurfer 5.3, respectively. The three scatter plots (left column,

(Continued)
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FIGURE 2 | Continued
middle, left column bottom and middle column bottom) show the between tool scatter plots and regression line for these data for: ANTS vs. FreeSurfer 5.1
(Pearson’s correlation coefficient r = 0.16); ANTS vs. FreeSurfer 5.3 (Pearson’s correlation coefficient r = 0.21); and FreeSurfer 5.1 vs. FreeSurfer 5.3 (Pearson’s
correlation coefficient r = 0.90), respectively. (B) Sample size matters: Same analysis (FreeSurfer 5.3 and a statistical model looking at gender effects in hippocampus
volume) as a function of the large-scale publically available structural imaging data in typically developing children in ∼2005 (NIH PEDS, N = 325) and ∼2011 (PING,
N = 1239). The plot shows the observed effect size and 95% confidence interval for the total hippocampal volume for these two cohorts. (C) Computational
Environment Matters: Same data, same workflow, different workflow operating system environments results in different results, as shown for the volume of the left
amygdala in subset of 24 cases. See text for further details.

The result of this effort is a publically available GitHub
repository37, which identifies the specific cases that are included,
contains summary data tables of the volume and surface area
results of the three analysis tools, software to load these
data tables into the R statistical software analysis package
(R reader), and an R script to correlate the corresponding
analytical results between the different structural analysis runs.
The surface-based results are represented as average cortical
thickness for each of the 62 (31 bi-laterally represented)
anatomic regions in the Desikan-Killiany-Tourville (DKT) atlas
(Klein and Tourville, 2012). For each anatomic region, we
calculate the three inter-tool result correlations (FreeSurfer 5.1
vs. FreeSurfer 5.3; FreeSurfer 5.1 vs. ANTS, and Freesurfer 5.3
vs. ANTS). Findings can be summarized as follows. The mean
and range of region-wise correlation were observed as follows
between the various tool-pair combinations: ANTS vs. FreeSurfer
5.1 mean regional correlation = 0.43, [minimum = 0.19
(rostralanteriorcingulate L), maximum = 0.59 (superiortemporal
R)]; ANTS v FreeSurfer 5.3 mean regional correlation = 0.47,
[minimum = 0.19 (caudalanteriorcingulate R), maximum = 0.67
(superiortemporal R)]; FreeSurfer 5.1 vs. FreeSurfer 5.3 mean
regional correlation = 0.87, [minimum = 0.76 (insula R),
maximum = 0.93 (paracentral L)]. The FreeSurfer analysis in
this data presents excellent inter-version (5.1–5.3) commonality.
There are, however, substantial differences between the regional
thickness results between the FreeSurfer and ANTS analysis. As
an example, the scatter plots and distributions for the left caudal
anterior cingulate is shown in Figure 2A.

Sample Size/Quality Matters
In this example, we look at the potential gender effect of total
hippocampal volume in typically developing children, and how
an observation of this effect can evolve over time as a function
of the imaging technology and the amount of available data.
We model total hippocampus volume as a function of gender,
covarying for age, sex by age interaction, site, and total cerebral
volume. We used state-of-the-art at the time data available from
two national typically developing cohorts. We first look at the
gender effect as observed in ∼2005 from the NIH Pediatric
Database (N = 325 (159 males/166 females); aged 4.2–18.4 years)
(Evans and Brain Development Cooperative Group, 2006). We
also look at data from the PING cohort (Pediatric Imaging,
Neurocognition and Genetics) (Jernigan et al., 2016), as released
in ∼2011 (total N = 1239 (644 males/595 females), aged 3–
20 years). We applied a common analysis (FreeSurfer 5.3) using
default parameters to each of these datasets in house. These

37https://github.com/companat/compare-surf-tools

results are shown in Figure 2B. In this case, we note a lack of
significant gender dimorphism of the total hippocampus seen
in children from the PEDS cohort (p = 0.9379). However, the
PING dataset documents a significant gender effect for the total
hippocampus volume (p = 0.013269). While sample size is one
of the differences between these studies, it is also the case the
image quality and acquisition technology had evolved in the years
between these two studies. Nevertheless, we feel that this type
of observation is reflects the types of conclusions that are often
gleaned from the literature: observations that are not significant
based upon older, smaller N studies may not generalize to newer,
larger N studies. The tightening of the error bars around a specific
observation can be attributed to many sources, not the least of
which, in this case is the sample size. Indeed, the observed effect
size in the PING sample falls within the observed range of the
older, smaller PEDS distribution of observations.

Simple Re-executable Publication
In this last example, we document a set of procedures,
which include supplemental additions to a manuscript,
that unambiguously define the data, workflow, execution
environment and results of a neuroimaging analysis, in order to
generate a verifiably re-executable publication. Re-executability
provides a starting point for examination of the generalizability
and reproducibility of a given finding. We have provided an
example “publication” with four supplementary files (Ghosh
et al., 2017a), the: (1) data file, (2) workflow file, (3) execution
environment specification, and (4) results. In this example,
the data is from 24 publically accessible typically developing
subjects between the ages of 10–15 that have a structural scan
at 3 Tesla available from the 1000 Functional Connectomes
Project at NITRC (doi 10.18116/C6C592; Kennedy, 2017).
The workflow is a FSL-based (version 5.0.9) assessment of
total brain, gray and white matter and subcortical structural
volumes and is accessible at doi: 10.5281/zenodo.800758,
(Ghosh et al., 2017b). The execution environment is controlled
through the use of Docker; the docker image is available
at https://github.com/ReproNim/simple_workflow. Finally,
the complete results of the reference run are stored in the
expected_output folder of the GitHub repository38. By sharing
the results of this reference run, as well as the data workflow,
and a program to compare results from different runs, we can
enable others to verify that they can arrive at the exact same
result (if they use the exact same workflow and execution
environment), or how close they come to the reference results
if they utilize a different computational system (that may differ

38https://github.com/ReproNim/simple_workflow/tree/1.1.0/expected_output
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in terms of operating system, software versions, etc.). Figure 2C
demonstrates the imprecision of “the same data and workflow”
run (in this case left amygdala volumes for each of the 24 subjects)
on different hardware platforms (Docker Debian 8.7 (Reference
Run) vs. Mac OS X 10.12.4), documenting the importance of
taking control over the complete description of all elements of
the reported research publication. Ideally, while the amygdala
volume will differ by subject, the same workflow when rerun
should yield the line of identity. It is the case that when the
same Docker image is run, the identical results are generated.
However, as illustrated in Figure 2C, running the same workflow
on a Debian 8.7 vs. Mac OS X 10.12.4 system the results deviate
substantially from the expected relationship.

SUMMARY

In this perspective we have reviewed the ReproNim vision and
rationale for enhancing the reproducibility of the neuroimaging
literature through an emphasis on individual publication re-
executability. A given publication, if published in a completely
re-executable fashion, forms the basis for future systematic
explorations of the generalization of the observations through
independent manipulation of the data and processing details
separately. Reproducible claims and conclusions are supported
by findings that are generalizable to data beyond that originally
reported and should be demonstrated to be robust with respect
to details of the analytic approach. The key to controlling the re-
executability of the publication is the generation and reporting,
at all stages of the process, machine readable provenance
documentation that details the input data sources, the analysis
workflow, the statistical model, the execution environment and
the complete results. Since we know that all these factors matter,

a good scientific report should be able to describe each of these
factors unambiguously.

Time will tell if the tools and procedures promoted by
the ReproNim effort (or other efforts) to enhance publication
level re-executability will be successful. We can assert that the
majority of neuroimaging publications to date do not expose
this complete set of publication details explicitly. We envision
a future re-executability check list that can be retrospectively
applied by the community to the corpus of publications (or,
better yet, used by reviewers of publications prospectively) that
generates a catalog of compliant elements on a publication
by publication basis. One can then observe, over time, the
extent to which the exposure of publication elements (input
data, workflow, execution environment, complete results)
increases. Efforts are underway to generate more compelling
scientific examples of the re-executable publication in response
to exploring the generalizability of specific findings in the autism
and schizophrenia literature.
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