
ORIGINAL RESEARCH
published: 22 March 2019

doi: 10.3389/fninf.2019.00014

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2019 | Volume 13 | Article 14

Edited by:

Sean L. Hill,

Krembil Centre for Neuroinformatics,

Centre for Addiction and Mental

Health, Canada

Reviewed by:

Chaitanya Chintaluri,

University of Oxford, United Kingdom

Rembrandt Bakker,

Radboud University Nijmegen,

Netherlands

*Correspondence:

Etienne Combrisson

e.combrisson@gmail.com

Received: 27 September 2018

Accepted: 19 February 2019

Published: 22 March 2019

Citation:

Combrisson E, Vallat R, O’Reilly C,

Jas M, Pascarella A, Saive A, Thiery T,

Meunier D, Altukhov D, Lajnef T,

Ruby P, Guillot A and Jerbi K (2019)

Visbrain: A Multi-Purpose

GPU-Accelerated Open-Source Suite

for Multimodal Brain Data

Visualization.

Front. Neuroinform. 13:14.

doi: 10.3389/fninf.2019.00014

Visbrain: A Multi-Purpose
GPU-Accelerated Open-Source Suite
for Multimodal Brain Data
Visualization
Etienne Combrisson 1*, Raphael Vallat 2, Christian O’Reilly 3, Mainak Jas 1,

Annalisa Pascarella 4, Anne-lise Saive 1, Thomas Thiery 1, David Meunier 5,

Dmitrii Altukhov 6,7, Tarek Lajnef 1,8, Perrine Ruby 2, Aymeric Guillot 9 and Karim Jerbi 1,10

1Computational and Cognitive Neuroscience Lab (CoCo Lab), Psychology Department, University of Montreal, Montreal,

QC, Canada, 2 Lyon Neuroscience Research Center, Brain Dynamics and Cognition team, INSERM UMRS 1028, CNRS UMR

5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France, 3 Blue Brain Project, École Polytechnique

Fédérale de Lausanne, Geneva, Switzerland, 4 Institute for Applied Mathematics Mauro Picone, National Research Council,

Rome, Italy, 5 Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France, 6National Research University Higher

School of Economics, Moscow, Russia, 7MEG Center, Moscow State University of Pedagogics and Education, Moscow,

Russia, 8Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada,
9 Inter-University Laboratory of Human Movement Biology, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne,

France, 10MEG Unit, University of Montreal, Montreal, QC, Canada

We present Visbrain, a Python open-source package that offers a comprehensive

visualization suite for neuroimaging and electrophysiological brain data. Visbrain consists

of two levels of abstraction: (1) objects which represent highly configurable neuro-

oriented visual primitives (3D brain, sources connectivity, etc.) and (2) graphical user

interfaces for higher level interactions. The object level offers flexible and modular

tools to produce and automate the production of figures using an approach similar

to that of Matplotlib with subplots. The second level visually connects these objects

by controlling properties and interactions through graphical interfaces. The current

release of Visbrain (version 0.4.2) contains 14 different objects and three responsive

graphical user interfaces, built with PyQt: Signal, for the inspection of time-series

and spectral properties, Brain for any type of visualization involving a 3D brain and

Sleep for polysomnographic data visualization and sleep analysis. Each module has

been developed in tight collaboration with end-users, i.e., primarily neuroscientists and

domain experts, who bring their experience to make Visbrain as transparent as possible

to the recording modalities (e.g., intracranial EEG, scalp-EEG, MEG, anatomical and

functional MRI). Visbrain is developed on top of VisPy, a Python package providing

high-performance 2D and 3D visualization by leveraging the computational power of

the graphics card. Visbrain is available on Github and comes with a documentation,

examples, and datasets (http://visbrain.org).

Keywords: visualization, neuroscience, python, open-source, brain, OpenGL, EEG, MEG

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00014
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00014&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:e.combrisson@gmail.com
https://doi.org/10.3389/fninf.2019.00014
https://www.frontiersin.org/articles/10.3389/fninf.2019.00014/full
http://loop.frontiersin.org/people/396401/overview
http://loop.frontiersin.org/people/413465/overview
http://loop.frontiersin.org/people/120120/overview
http://loop.frontiersin.org/people/119070/overview
http://loop.frontiersin.org/people/621074/overview
http://loop.frontiersin.org/people/109467/overview
http://loop.frontiersin.org/people/4328/overview
http://loop.frontiersin.org/people/396147/overview
http://loop.frontiersin.org/people/211927/overview
http://loop.frontiersin.org/people/28767/overview
http://loop.frontiersin.org/people/45874/overview
http://loop.frontiersin.org/people/1676/overview
http://visbrain.org

Combrisson et al. Visbrain: Brain Data Visualization Software

INTRODUCTION

The aim of scientific visualization is to graphically illustrate
datasets—which are can be highly complex- in order to provide
a better understanding and facilitate the interpretation of the
data. As scientific technologies continue to evolve, it becomes
increasingly important to develop up-to-date and comprehensive
visualization software capable of handling complex and large
datasets. This is especially true in the field of neuroscience, which
involves a myriad of neural recording types, and consequently, a
wide and diverse range of possible data representations.

To date, Matlab (Mathworks, 2012) is one of the most widely-
used commercial programming language for brain data analysis
and visualization, thanks to a large number of toolboxes such
as SPM (Penny et al., 2011), Brainstorm1 (Tadel et al., 2011),
EEGlab2 (Delorme andMakeig, 2004) and Fieldtrip3 (Oostenveld
et al., 2011). Alternative visualization solutions that run on non-
commercial open-source programming environments, such as
Python, are rare. These include high-quality packages such as
MNE4 (Gramfort et al., 2013), PySurfer5, Nilearn6 (Abraham
et al., 2014) or 3d slicer (Fedorov et al., 2012). Both MNE
and Nilearn rely on Matplotlib for visualizations which is not
suited for real-time interactions of brain imaging data involving
thousands of data points. In addition, MNE also relies on
PySurfer for 3D visualizations. PySurfer is built on top of Mayavi
which contains a powerful rendering engine and allows smooth
interactions. However, some issues have been reported when
installing Mayavi, (which uses VTK), which may affect its user-
friendliness.

In this context, we propose a Python open-source software
called Visbrain, distributed under a Berkeley Software
Distribution (BSD) license and dedicated to the visualization
of neuroscientific data. Visbrain is built on top of VisPy
(Campagnola et al., 2015), a high-performance visualization
library that leverages the Graphics Processing Units (GPU). As a
result, Visbrain efficiently handles the visualization of large and
complex multi-dimensional datasets. The purpose of Visbrain is
two-fold: (1) To provide within a common framework several
Python-based visualization tools for neuroscientific data, (2)
To allow users, including those with little or no programming
skills access to high-end visualization functions, through a
comprehensive documentation7 and a user-friendly API.

Many scenarii for the use of Visbrain are possible. For
instance, a user with a set of intracranial EEG data could use
visbrain to visualize in a first subplot the location of electrodes
(e.g., NumPy array) either in individual or standard MNI space.
Next, in a second subplot, the user may choose to project the data
onto the cortical mesh (e.g., gamma power, t-values, decoding
accuracies, etc). Additional subplots can be added, for example,
to include data from other subjects, or various contrasts across

1http://neuroimage.usc.edu/brainstorm/
2https://sccn.ucsd.edu/eeglab/
3http://www.fieldtriptoolbox.org/
4https://martinos.org/mne/stable/index.html
5https://pysurfer.github.io/
6http://nilearn.github.io/
7http://visbrain.org

experimental conditions. Because figures are dynamic, subplots
can be added on the fly with various visualization objects such
as connectivity, region of interest etc. The same procedure could
be applied to M/EEG source data. Finally, each subplot can be
animated and exported into a video file (e.g., animated GIF) or
in a standard high-resolution publication-ready image file (e.g.,
PNG, JPG, TIFF).

With the release of this package and publication of this paper,
we hope to develop a community of users that could facilitate
extending and adapting this software to better cover the needs
of researchers in neuroscience.

MATERIALS AND METHODS

The philosophy of Visbrain is to provide elementary visualization
building blocks which can easily be combined in a modular
manner, and to design a flexible and responsive graphical
user interface (GUI) which can be used to change the active
visualization parameters in real time. Visbrain is not designed to
duplicate data analysis functions which are already available in
well-established packages such as scipy8, pandas9, SciKits10, or
statsmodels11, except when it serves illustration purposes.

Programming Language and
Code Guidelines
Although we initially considered Matlab and Julia (Bezanson
et al., 2017) as language for Visbrain given their high level of
abstraction, we finally chose Python since this mature and easy-
to-learn language benefits from a large range of high-quality
packages, a thriving and rapidly growing user community, and
thorough documentation. Python software packages are portable,
cross-platform, and easily distributed. More importantly, Python
is free, open source, open access, and is thereby ideal for
open science.

From a programming perspective, we paid particular attention
to avoid memory-intensive data copy and to enable loading and
processing of large dataset. Visbrain is hosted on GitHub12,
and is documented using NumPyDoc, a Sphinx extension
to generate NumPy-like documentation. We also provide
illustrative examples and datasets. Code blocks are well-
commented and follow PEP8 guidelines for code readability.
Finally, package installation and features are tested under
Linux and Windows through a continuous integration protocol
(current coverage >85%).

Dependencies
As Python 2.7 will not be maintained past 2020, Visbrain is a pure
Python package for Python 3 only. Here is the list of Visbrain’s
dependencies are listed in Table 1.

8https://www.scipy.org/
9https://pandas.pydata.org/
10http://scikits.appspot.com/
11http://www.statsmodels.org/stable/index.html
12https://github.com/EtienneCmb/visbrain

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2019 | Volume 13 | Article 14

http://neuroimage.usc.edu/brainstorm/
https://sccn.ucsd.edu/eeglab/
http://www.fieldtriptoolbox.org/
https://martinos.org/mne/stable/index.html
https://pysurfer.github.io/
http://nilearn.github.io/
http://visbrain.org
https://www.scipy.org/
https://pandas.pydata.org/
http://scikits.appspot.com/
http://www.statsmodels.org/stable/index.html
https://github.com/EtienneCmb/visbrain
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

In addition to the above-mentioned packages, the use of some
specific functionalities will require a few more dependencies.
These include:

• Pandas (McKinney, 2011): for importing and exporting region
of interest defined in the brain

TABLE 1 | List of dependencies and package version.

Package name Purpose Version

NumPy Scientific computing ≥1.13

SciPy Scientific computing -

PyQt5 Graphical user interfaces creation -

VisPy Graphics rendering ≥0.5.2

Matplotlib Colors/colormaps related functions ≥1.5.5

Pillow Screenshots and image file format support -

PyOpenGL Python binding to OpenGL -

• MNE-Python (Gramfort et al., 2013): alternative for loading
sleep data files instead of using functions included in Visbrain

• Nibabel: for supporting certain file formats
• Tensorpac13 for computing phase-amplitude coupling
• Imageio: for Graphics Interchange Format (GIF) export

Finally, the Visbrain package can be downloaded using the
python package manager pip14.

GPU-Powered High-Speed Graphics
As the size, dimensionality and complexity of brain data
continues to increase, data visualization tools have to be
increasingly efficient, in particular if real-time interaction
is needed. For example, high-density EEG or full-night
sleep recordings can be associated with files of up to
tens of gigabytes. Matplotlib, which is one of the most

13https://github.com/EtienneCmb/tensorpac
14https://pypi.org/project/visbrain/

FIGURE 1 | Architecture of the Visbrain software. The left branch in blue illustrates the three included graphical user interfaces (Signal, Brain, and Sleep and). For

advanced users that want to interact programmatically with Visbrain, the right branch in red shows 6 of the 14 implemented objects in Visbrain. These objects are

presented in circles to emphasize the fact that each of them is independent. Then, using the scene (SceneObj) these objects can be superimposed or juxtaposed into

subplots inside a unique figure. The scene offers a finer grain control over the layout. Note that each subplot is interactive, meaning that rotation, translation and zoom

can be applied in real time on each subplot.

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2019 | Volume 13 | Article 14

https://github.com/EtienneCmb/tensorpac
https://pypi.org/project/visbrain/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 2 | Illustration of the main features of the brain object (BrainObj). This object delivers some basic features as the possibility to display a translucent or opaque

brain mesh (A) or to pick only one hemisphere (B). Intracranial data can also be projected onto the surface (C) and other recording modalities can also be displayed

[fMRI activation (D) and MEG data (E)]. In addition, parcels can also be used (G) and data can be assigned to those parcels (H). All of those subplots use MNI

templates included with Visbrain, but the user can also define and save a custom template by defining subsets of vertices and faces (F).

famous Python plotting libraries (Hunter, 2007), is primarily
designed to provide static publication-quality figures and is
unfortunately currently not suited for handling large data
and user interactions. Seaborn15, which is built on top of
Matplotlib is also not a viable option for the same reasons.
Among libraries with mature development and real-time
interaction, we also considered PyQtGraph16 and Glumpy17

(Rougier, 2015). Both options could certainly have been
excellent alternatives. We rather considered the VisPy package
(Campagnola et al., 2015), which is a high-performance
interactive 2D/3D data visualization library leveraging the
computational power of the GPU through OpenGL. The
choice of VisPy was made mainly for the ease of installation
and also because it is a combined effort by the authors
of several visualization libraries (PyQtGraph, VisVis, Galry,
and Glumpy)

15http://seaborn.pydata.org
16http://pyqtgraph.org/
17https://glumpy.github.io/

The use of VisPy library is a critical component of Visbrain.
By offloading most of the graphical rendering cost to the
GPU, VisPy allows real-time interactivity, even for large
datasets, while at the same time minimizing CPU overhead.
As a result, Visbrain is able, on any modern-day laptop,
to efficiently display large datasets and allows for real-time
user interactions.

Graphical Interface and User Interactions
Scientific visualization software often come with easy-
to-use GUIs. Although most of the analyses can be
performed in the command-line, such interfaces often
greatly enhance the user experience. GUIs also allow
users with no or little programming knowledge to
use the software, making it more accessible to the
scientific community.

To embed VisPy graphics in full-featured widgets, we chose to
use the cross-platform C++ GUI toolkit Qt18, for which Python

18https://www.qt.io/

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2019 | Volume 13 | Article 14

http://seaborn.pydata.org
http://pyqtgraph.org/
https://glumpy.github.io/
https://www.qt.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 3 | Illustration of the main features of the region of interest (ROI) object (RoiObj). Visbrain provides several default atlases that can be used to extract the

mesh of specific regions (A,B,F). In addition, the source object (SourceObj) can interact with the ROI object. For example, sources’ activity can be projected onto the

mesh (C). The RoiObj can also be used to identify in which region a source is contained. Here, sources are color-coded according to the MIST (D) but a table with all

of the anatomical informations can also be exported. Finally, it is also possible to keep only the sources that fall into the volume formed by the mesh (E).

bindings are available (i.e., PyQt & PySide). Specifically, GUIs of
the different Visbrain modules were built using the Qt designer
tool and were then converted to Python code using PyQt.

Documentation and Examples
Visbrain comes with a detailed step-by-step documentation
built with Sphinx19 and hosted on the Visbrain website20. This
documentation describes how to install Visbrain and use its
modules. We also provide a description of GUI components and
inputs for all class modules. Moreover, we provide a description
of each graphical element using tooltips that appear when
hovering corresponding widgets with the cursor. Lastly, we
provide examples21 and python scripts that can be downloaded
from the website. Some examples requires additional data to
be fully functionals. Those data are either generated or comes
from other open-sources softwares (i.e., MNE-Python, PySurfer,
and Nilearn).

19http://www.sphinx-doc.org/en/stable/
20http://visbrain.org
21http://visbrain.org/auto_examples/index.html

RESULTS

From the user’s perspective, Visbrain is subdivided into two
main levels: (1) Objects: independent visual primitives that can
be defined and used without the need for a GUI. (2) Graphical
user interface: a user-friendly interface built on top of Visbrain
objects for interactive visualization. The visbrain architecture is
summarized in Figure 1.

Objects
Objects represent the lowest level of Visbrain and can be
considered as neuro-oriented visual primitives. Each object is
highly configurable and serves a single visualization purpose. For
example, the brain object (BrainObj) is used to display 3D brains.
The definition of every object is independent, but some of them
can interact together. For example, the activity of a source object
can be projected onto the surface of the brain (see section Source
object for the description of the projection). Those primitives
bring modularity to Visbrain.

Those objects can then be superimposed and juxtaposed
inside subplot (see section Scene object). It should be noted

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2019 | Volume 13 | Article 14

http://www.sphinx-doc.org/en/stable/
http://visbrain.org
http://visbrain.org/auto_examples/index.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 4 | Illustration of the main features of the source object (SourceObj) using an intracranial dataset. Additional data can be assigned to sources and the color

can either be individually defined or based on a colormap (A). A text can also be attached to sources (B). In a similar way to Figure 3D, here, sources are colored

according to Brodmann areas (C). The data attached to sources in (A) is then projected onto the surface of the brain (D) or onto the surface of the default mode

network (DMN) (E). Finally, the cortical repartition (F) is the number of contributing sources per vertex. It can be an interesting feature to estimate the number of

sources that have contributed to each point of the cortical mesh when projecting source’s data.

FIGURE 5 | Illustration of the main features of the connectivity object (ConnectObj). The three sub-visuals express three coloring methods. The first method (A) is

simply to color edges by connectivity strength. The second (B) color edges according to the number of connections per node and finally, (C) use colors that are

manually defined.

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2019 | Volume 13 | Article 14

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 6 | Illustration of additional implemented objects. (A) cross-section of fMRI data (CrossSecObj). The cross-section can be used to load background

anatomical images and superimposed activations. It is also possible to move around the volume by clicking on it (still under development). Subplots (B, C)

respectively illustrate time-series (TimeSeries3DObj) and pictures (Picture3DObj) embedded inside the mesh. Here, the pictures are time-frequency maps. (D) Plot

vector-valued (VectorObj) MEG inverse solution. Visbrain also contains objects to plot images (ImageObj) as illustrated in (E) with a connectivity matrix, time-frequency

maps (TimeFrequencyObj) (F), phase-amplitude coupling (PacmapObj) (G). Finally, the TopoObj can be used to plot topographic representations of EEG data, draw

levels and connectivity links between EEG sensors (H).

that Figures 2–6, that combine these objects, were not post-
paginated (i.e., static rendering), but were generated from the
scene object as real-time interactive figures. Finally, objects
can also be animated, either independently or within subplots.
Furthermore, such animations can be exported as a gif file.

Implemented Objects
The current version of Visbrain implement many classes, among
them 14 defines visual objects that can be directly imported from
visbrain.objects and be added to a scene. The API for interacting
with those primitives are described inside the documentation22

(see Table 2 for a list of the visual objects).

Illustrations of the Main Functionalities of the Objects
In this section, we provide a non-exhaustive review of the main
features of some of the most used objects.

Scene object
Probably one of the most useful objects of Visbrain is called the
scene (SceneObj). The scene is not a visual primitive in the sense
that it cannot be used to represent any kind of brain data. Instead,
it is an equivalent of Matplotlib’s subplots meaning that objects
can be superimposed inside sub visuals or displayed side by side.
While requiring from the user some modest programming skills,
the scene presents three major advantages: 1) it is undoubtedly
a more flexible way to meet some specific visualization needs,

22http://visbrain.org/api.html#objects

TABLE 2 | List of the 14 visual objects implemented in Visbrain.

Object name Description

BrainObj 3D brain with vertices colored according to data

ColorbarObj Colorbar associated with another object

ConnectObj 3D connectivity lines between nodes

CrossSecObj Interactive fMRI cross-section (axial, sagittal and

coronal views)

HypnogramObj Hypnogram for sleep data

ImageObj Images or 2D arrays

PacmapObj Phase-amplitude coupling of a single time-series

(PAC)

Picture3DObj Images distributed in 3D space

RoiObj Volumetric region of interest

SourceObj Sources distributed in 3D space

(intracranial/MEG/EEG)

TimeFrequencyObj Time-frequency map of a single time-series

TimeSeries3DObj Time-series distributed in 3D space

VectorObj 3D vectors

VolumeObj Volumetric data

2) scenes can be integrated inside loops, on a local computer or
on a distant server which means that the production of figures
can easily be automated,3) the layout of figures for scientific
publications can be assessed using this scene and 4) subplots
remains interactives which allow the user to continue to interact

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2019 | Volume 13 | Article 14

http://visbrain.org/api.html#objects
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

with each object independently. Figures 2–6 are defined using
the SceneObj and the code snippet 1 illustrates a basic example
of how to use the scene object to define the layout of a figure.

import numpy as np

from visbrain.objects import BrainObj, SourceObj, SceneObj

Define the scene

sc = SceneObj()

Define two brain objects with, respectively only the left and right hemisphere

b_left = BrainObj('white', hemisphere='left', translucent=False)

b_right = BrainObj('white', hemisphere='right', translucent=True)

Define randomMNI coordinates for 100 sources / intracranial sites. We

We then define a source object

xyz = np.random.uniform(0, 50, (100, 3))

s_obj = SourceObj('sources', xyz)

Add these two brain objects and sources to the scene and to different subplots

sc.add_to_subplot(b_left, row=0, col=0, rotate='right', title='Left hemisphere')

sc.add_to_subplot(b_right, row=0, col=1, rotate='left', title='Right

hemisphere')

sc.add_to_subplot(s_obj, row=0, col=1)

Finally, display the scene

sc.preview()

Code Snippet 1 | Display the left and right hemispheres into two separate

subplots along with random MNI sources/contacts/electrodes.

Brain object
The brain object (BrainObj) can be used for every scenario where
a 3D brain mesh is needed. Left and right hemispheres can
be individually displayed on a translucent or opaque mesh. In
addition, overlays of data can also be added to the mesh to
illustrate fMRI, M/EEG or intracranial activations. The brain
object capabilities are summarized in Figure 2.

Region of interest object.
Regions of interest (ROI) are labeled volumes, i.e. a 3D array of
voxels associated with an anatomical label (e.g., “Somatosensory
cortex”). By default, Visbrain supports Brodmann areas, the
Automated Anatomical Labeling (AAL; Tzourio-Mazoyer et al.,
2002), the Talairach atlas (Talairach and Tournoux, 1993) and the
Multiresolution Intrinsic Segmentation Template (MIST; Urchs
et al., 2017). New ROIs can also be defined by providing a 3D
array for the volume and labels. The RoiObj provide the users
with an interface to the volume and let them extract the mesh of a
specific region and assign different colors to it. The code snippet
2 shows how to extract the mesh of the thalamus and Figure 3

demonstrates some core features of this object.

from visbrain.objects import RoiObj

Load the AAL atlas

aal = RoiObj('aal')

Get all labels included with the volume

labels = aal.get_labels()

print(labels)

Find the integer index of the thalamus

idx = aal.where_is('Thalamus')

Extract the mesh of the thalamus

aal.select_roi(idx)

Display thalamus

aal.preview()

Code Snippet 2 | Display the left and right thalamus

Source object
The source object (SourceObj), depending on the recording
modality can either represent intracranial recording sites,M/EEG
sensors or reconstructed source activity. A text and marker color
can also be assigned to each source. In addition, data can be
provided to those sources to have marker radius proportional to
the data.

Another useful and relatively rare feature among existing
software is the ability to use the source object to project
intracranial data onto a mesh (e.g the cortical surface of the brain
or onto ROI). Usually, the implantation of intracranial electrodes
is subject dependent, which then poses a problem to visualize
the results across subjects. Cortical projections can solve this
limitation and have been previously used (Combrisson et al.,
2017a). When projecting the data, each vertex in the mesh can
be considered a bin which simply accumulates the data (e.g. beta
power) from nearby intracranial sites. The data from all sites that
are under a certain radius (10mm by default) contribute to this
bin. It is what gives the circular aspect to this projection (see
Figure 2C). Instead of projecting data, it is also possible to project
the number of sources that contribute to each point of the mesh.
In this case, the color indicates how many sources participated.
Finally, the last feature that we want to point out is the possibility
to get anatomical informations on sources using the ROI object.
For example, this can be used to deduce in which Brodmann area
a source (e.g., or an electrode) is contained. Those functionalities
are presented in Figure 4.

Connectivity object
The connectivity object (ConnectObj) is used to draw
connectivity lines between nodes. We provide three coloring
methods: 1) set color to the edges according to connectivity
strength, 2) set color to the node according to the number of
connections per node or 3) set color of edges manually. Figure 5
shows an example of those differences in coloring methods.
Display of directional connectivity is still an experimental feature
and therefore is not presented.

Other objects
Visbrain contains several other objects serving various purposes,
such as drawing vectors, displaying images, time-frequency
maps, and phase-amplitude coupling comodulograms. For EEG
recordings, topographic representations such as cross-sections
previously shown for anatomical and functional MRI can also be
plotted. Figure 6 summarizes the use of these objects.

For a list of all supported data types for the various objects we
refer the reader to the online API documentation23

GUI Based Interfaces
The main objective of GUIs is to connect and centralize the
main features of the smaller visualization bricks. At the moment,
Visbrain contains three interfaces:

• Signal: for the inspection of time-series and spectral properties
(PSD power and time-frequency map decomposition, phase-
amplitude coupling,...)

23http://visbrain.org/api.html#module-visbrain.objects

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2019 | Volume 13 | Article 14

http://visbrain.org/api.html#module-visbrain.objects
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 7 | Example of the GUI of the Signal module. Leftmost is the setting panel, and side-by-side are all of the time-series re-arranged into a 2D clickable grid and

rightmost, an enlarged version of one of those time-series.

• Brain: for any type of visualization involving a representation
containing an opaque or translucent brain

• Sleep: for plotting, staging, and analyzing sleep data

GUI can be imported from visbrain.gui. Those interfaces share
the following properties and functionalities:

- A responsive GUI with a common graphical design and
structure: a “quick settings” panel disposed on the left (which
can be hidden or displayed) and plot on canvases displayed
on the rest of the screen. This settings panel contains PyQt
widgets to control objects’ properties and apply changes in
real time.

- The use of VisPy to exploit GPU capabilities.
- A “File” menu to import and export files (such as datasets,

annotations, . . .). From this menu, it is also possible to save
and load the GUI state, i.e., the value of each PyQt graphical
elements (checkboxes, comboboxes,...). The configuration is
saved into a text file with a JavaScript Object Notation (JSON)
structure and can later be reloaded to retrieve the session.

- A “Display” menu that controls which elements are displayed
or hidden on the screen.

- A “Help” menu to open an informative web page in a browser
about the current module and features. This help can also be
downloaded in PDF format.

- The support of keyboard shortcuts and mouse events (left and
right clicks, double clicks, mouse wheel scrolling,...). The list
of supported shortcuts is referenced in a table accessible from
the help menu.

- A screenshot window to either export the entire window or
select canvas with controllable size, resolution, and printing
options. Visbrain supports several standard picture formats
(such as PNG, JPG, PDF, EPS, or TIFF). The transparency and
background color can also be controlled from this window. An
“auto-crop” option can also be checked to automatically crop
the exported image to the closest non-background pixel.

Signal: Time-Series Visualization and

Spectral Properties
A common first step when exploring electrophysiological data
consists of inspecting time-series. This inspection phase is
useful to get an idea of the shape of the signals, as well
as quickly detecting artifacts, epileptic spikes, eye movement
contamination, etc. Spectral properties such as power spectrum
density (PSD) or time-frequency maps are complementary
tools for such quality control and data exploration. Such data
inspection can be complicated for multi-dimensional datasets
(e.g., number of trials x tasks x time points). To address this
issue, we developed the Signal24 module for the visualization of
multidimensional signals. The GUI is divided into two layouts
presented in Figure 7. On the left, the dataset overview. This
consists of a grid where all of the time-series in the dataset are
displayed. Multi-dimensional arrays are systematically reshaped
into a 2D grid. On the right, the detailed view of a single signal.

24http://visbrain.org/signal.html

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2019 | Volume 13 | Article 14

http://visbrain.org/signal.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 8 | Plotting capabilities of Signal. (A) 104 intracranial recording sites of 4,000 time points each are rearranged into a clickable 13 rows by 8 columns grid. A

double-click on one signal of the grid enlarges it in the second layout. This enlarged time-series can either be displayed as a continuous line (B) or a cloud of points

(C). A histogram can also be computed (D) as well as the time-frequency map using Morlet’s wavelets (E) or the power spectrum density (F).

This second layout can be used to plot the time-series, the PSD or
the time-frequency map.

Grid disposition
The usefulness of this data exploration module is demonstrated
by one of the VisPy examples25, in which thousands of signals,
each having thousands of points, can be instantly plotted using
theGPU graphics rendering. These signals are presented in a two-
dimensional grid and the user can zoom on each of them. Since
this grid of signals can be useful for plotting electrophysiological
data, this representation has been integrated into the Signal
module (see Figure 7). The aim of this grid is to provide an
overview of the entire dataset in a convenient way to visualize
all the time-series at once. In order to take advantage of the
width and height of the screen, the program tries to determine
an optimal number of rows and columns for the grid. A title can
also be added on top of each signal of the grid to facilitate the
orientation of the user. To better visualize the signal on a specific
channel, the user can double-click on it in the grid. This enlarges
the selected signal by opening it in the second layout.

Plotting forms
In addition to the grid, a second layout is provided to inspect one
time series at a time. The default plotting method is a continuous

25https://github.com/vispy/vispy/blob/master/examples/demo/gloo/

realtime_signals.py

line but it can be changed to markers for a cloud of points. We
also included the possibility to compute the histogram, the PSD
or a highly configurable wavelet-based time-frequencymap (such
as normalization method, baseline bounds, etc.). The grid and
those plotting forms are summarized in Figure 8.

Annotations, thresholding, and signal processing tools
This module also supports annotations by double-clicking
on the canvas that contains the single time-series. All
inserted annotations are referenced in a table that can
be exported or imported. Selecting a row of this table
displays the annotated trial with associated annotations.
Then, the Signal module also allows the user to define a
lower and upper threshold for the identification of time-
series extrema. These annotations and thresholding capabilities
are summarized in Figure 9. We also included some signal
processing tools such as filtering, detrending, smoothing,
and demeaning.

Brain: Visualization on a 3D Brain
Brain26 is the second graphical interface that has been
developed for all types of visualizations involving a
3D brain. This interface is not intended to provide
extra functionality compared to what can be done with
the Visbrain objects and scenes. Instead, it provides

26http://visbrain.org/brain.html

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2019 | Volume 13 | Article 14

https://github.com/vispy/vispy/blob/master/examples/demo/gloo/realtime_signals.py
https://github.com/vispy/vispy/blob/master/examples/demo/gloo/realtime_signals.py
http://visbrain.org/brain.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 9 | Thresholding and annotation example of an intracranial time-series. The two horizontal lines indicate the threshold values and time points that are either

above or under are turned in red. The green markers show inserted annotations that can also be exported.

a GUI to control these objects and the interactions
between them.

Object and colorbar control
The Brain class can take as input objects or list of objects from
the following classes: brain, sources and connectivity (BrainObj,
SourceObj and ConnectObj), 3D time-series, pictures, and vectors
(TimeSeries3DObj, Picture3DObj, VectorObj) and volume related
objects (VolumeObj,CrossSecObj, and RoiObj). Any object passed
to the Brain class can then be directly controlled from the Object
tab inside the settings panel (see Figure 10). In addition, since
each visual object has its own color properties, the colorbar can
be controlled individually for each of them from the Cbar tab
(see Figure 11).

Class method for command line interaction
All the functionality and object properties that are accessible from
the GUI can also be used and set using Brain class methods. The
use of methods does not require the graphical interface to be
open, even for screenshots. Hence, users can leverage those class
methods in custom python scripts to speed up the production
of large sets of figures. All of these methods are referenced in
the documentation26.

Sleep: Polysomnographic Data Visualization

and Edition
Sleep27 is the Visbrain module dedicated to the visualization
and analysis of sleep data and has been previously described
(Combrisson et al., 2017b). It should be noted that new features
have been added to the Sleep module since the publication of
this article, such as the possibility to replace the default event
detections with custom external algorithms. This allows different
sleep research teams to use the same data visualization platform
while still keeping their custom, lab-specific, algorithms for the
detection of transient events during sleep.

API and Scripting
As visbrain is subdivided into two main levels (Objects and GUI
where GUIs are built on top of objects) we also provide an API
for higher level interactions. GUIs are of course ideal when user
interaction is needed. That said, GUIs are obviously not intended
to be embedded inside loops for scripting. Conversely, the object
level offers less options for graphical interactions (except for
translations and rotations) but is ideal for scripting, automating
and streamlining the production of high-quality figures. This
could be implemented either on a local computer or remotely

27http://visbrain.org/sleep.html

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2019 | Volume 13 | Article 14

http://visbrain.org/sleep.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 10 | Example of the GUI of the Brain module. The settings panel on the left can either be displayed or hidden. This panel contains two tabs: Objects, in order

to control the properties of each visual class (e.g., BrainObj, SourceObj, etc.) passed to the interface and Cbar for controlling the colorbar and color properties of a

selected object. On the right, the main canvas contains the MNI brain with sources and connectivity links between those sources. This canvas allows fluid rotation,

zoom and translation, but also mesh slicing along the (x, y, z) axes. Here, the colorbar of connectivity strength is displayed but it can also be hidden.

on a distant server. In addition, the API provision also implies
that other toolboxes that have intensive visualization needs (e.g.
MNE-Python) can benefit from this API and the modularity of
Visbrain objects. The full Visbrain’s API can be found in the
online documentation28.

DISCUSSION

Summary
The ever-growing complexity of neuroimaging recording
techniques, relying on analyses in higher-dimensional space
and on larger datasets, are gradually transforming brain
data visualization into a real challenge for the existing
body of neuroimaging software. This challenge is further
complicated by the difficulty of meeting the specific needs
from individual research teams and by license compatibility
issues with proprietary software. With these problems in
mind, we propose Visbrain, a versatile Python 3 package for
multi-modal brain data visualization. As other softwares,
Visbrain includes graphical user interfaces for higher level
interactions with visual primitives. But the greatest novelty
and added-value of Visbrain lies in its structure and especially
the object level which, once configured properly, can offer
a great modularity for designing figures and layout that

28http://visbrain.org/api.html

reflect brain data results. This package is also configured
and tested on continuous integration servers to improve its
robustness on different platforms using Travis (Linux) and
AppVeyor (Windows). In addition, the documentation is
built and deployed automatically using CircleCi. This also
implies that Visbrain can be used on a remote server in
headless mode.

Limitations and Perspectives
Although much effort has been devoted in providing a
software compatible with multi-modal data, it is not equally
featured across recording techniques. For example, fMRI
cross-section is still a beta feature and electrocorticographic
data-specific visualization tools are not implemented so far.
Secondly, efforts must now be made to make Visbrain fully
compatible with Jupyter in order to have visuals embedded
inside notebooks and iPython for interactive shell. We are
also considering adding the compatibility with the Brain
Imaging Data Structure (BIDS; Gorgolewski et al., 2016; Niso
et al., 2018), a set of guidelines for organizing behavioral,
MRI and M/EEG data that facilitates data sharing and
reproducibility. Finally, Visbrain also contains experimental
functions for the compatibility with MNE-Python (Gramfort
et al., 2013), but this compatibility will be substantially enhanced
in the future.

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2019 | Volume 13 | Article 14

http://visbrain.org/api.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 11 | Colorbar control. The Cbar tab of the settings panel contains all of the properties to design the colorbar of a specific object (width, colormap, limits,

lower and upper thresholds, title, etc.). In addition, these properties can be modified for each object. Here, the widget controls the colorbar for the data projected onto

the surface of the brain.

CONCLUSIONS

In summary, Visbrain is a Python open-source and cross-
platform software for brain data visualization which
provides, among others, the following features: (1) GPU-
powered graphical rendering providing efficient data
plotting, even for large datasets and real-time interactions.
(2) Modularity and flexibility with respect to users’
specific needs through neuro-oriented visual primitives
that can be juxtaposed or superimposed into subplots,
following a Matplotlib-like behavior. (3) Complete
control over the aesthetic through highly customizable
configuration of color properties, allowing better use of
this particularly informative dimension. Visbrain is in its
early stages of development, but the present core should
hopefully motivate users and programmers to contribute
to the project and build a community-driven, powerful,
sustainable, and full-featured open-source solution for brain
data visualization.

AUTHOR CONTRIBUTIONS

EC is themain developer of this software. RV, CO,MJ, AP, AS, TT,
DM, TL, and DA contributed in testing and in the development
of this software and writing of the article. PR, AG, and KJ actively
helped in the writing process.

FUNDING

EC acknowledges support through a PhD Scholarship awarded
by the Ecole Doctorale Inter-Disciplinaire Sciences-Santé
(EDISS), Lyon, France, and by funding via a Natural Sciences
and Engineering Research Council of Canada (NSERC). KJ
is supported by funding from the Canada Research Chairs
program and a Discovery Grant (RGPIN-2015-04854) from the
Natural Sciences and Engineering Research Council of Canada,
a New Investigators Award from the Fonds de Recherche du
Québec - Nature et Technologies (2018-NC-206005) and an
IVADO-Apogée fundamental research project grant.

REFERENCES

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Muller, A., Kossaifi,

J., et al. (2014). Machine learning for neuroimaging with scikit-learn. Front.

Neuroinform. 8:14. doi: 10.3389/fninf.2014.00014

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia:

a fresh approach to numerical computing. SIAM Rev. 59, 65–98.

doi: 10.1137/141000671

Campagnola, L., Klein, A., Larson, E., Rossant, C., and Rougier, N. P. (2015).

“VisPy: harnessing the GPU for fast, high-level visualization,” in Proceedings

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2019 | Volume 13 | Article 14

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1137/141000671
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Combrisson et al. Visbrain: Brain Data Visualization Software

of the 14th Python in Science Conference.Available online at: https://hal.inria.fr/

hal-01208191/ (Accessed May 23, 2017).

Combrisson, E., Perrone-Bertolotti, M., Soto, J. L., Alamian, G., Kahane, P.,

Lachaux, J.-P., et al. (2017a). From intentions to actions: neural oscillations

encode motor processes through phase, amplitude and phase-amplitude

coupling. NeuroImage 147, 473–487. doi: 10.1016/j.neuroimage.2016.11.042

Combrisson, E., Vallat, R., Eichenlaub, J.-B., O’Reilly, C., Lajnef, T.,

Guillot, A., et al. (2017b). Sleep: an open-source python software for

visualization, analysis, and staging of sleep data. Front. Neuroinform. 11:60.

doi: 10.3389/fninf.2017.00060

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C.,

Pujol, S., et al. (2012). 3D Slicer as an image computing platform for

the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341.

doi: 10.1016/j.mri.2012.05.001

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E.

P., et al. (2016). The brain imaging data structure, a format for organizing

and describing outputs of neuroimaging experiments. Sci. Data 3:sdata201644.

doi: 10.1038/sdata.2016.44

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,

C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front.

Neurosci. 7:267. doi: 10.3389/fnins.2013.00267

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,

90–95. doi: 10.1109/MCSE.2007.55

Mathworks, I. (2012).MATLAB and Statistics Toolbox Release 2012b. Natick, MA.

McKinney,W. (2011). “Pandas: a foundational Python library for data analysis and

statistics.” in Python for High Performance and Scientific Computing, 1–9.

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort,

A., et al. (2018). MEG-BIDS, the brain imaging data structure extended to

magnetoencephalography. Sci. Data 5:180110. doi: 10.1038/sdata.2018.110

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip:

open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011:1.

doi: 10.1155/2011/156869

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (eds.).

(2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images.

London: Academic press.

Rougier, N. P. (2015). “Glumpy,” in EuroScipy (Cambridge).

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M.

(2011). Brainstorm: a user-friendly application for MEG/EEG

analysis. Comput. Intell. Neurosci. 2011:8. doi: 10.1155/2011/8

79716

Talairach, J., and Tournoux, P. (1993). Referentially Oriented Cerebral MRI

Anatomy: An Atlas of Stereotaxic Anatomical Correlations for Gray and White

Matter. Thieme.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations

in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.200

1.0978

Urchs, S., Armoza, J., Benhajali, Y., St-Aubin, J., Orban, P., and Bellec, P. (2017).

MIST: a multi-resolution parcellation of functional brain networks.MNI Open

Res. 1. doi: 10.12688/mniopenres.12767.1

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Combrisson, Vallat, O’Reilly, Jas, Pascarella, Saive, Thiery,

Meunier, Altukhov, Lajnef, Ruby, Guillot and Jerbi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2019 | Volume 13 | Article 14

https://hal.inria.fr/hal-01208191/
https://hal.inria.fr/hal-01208191/
https://doi.org/10.1016/j.neuroimage.2016.11.042
https://doi.org/10.3389/fninf.2017.00060
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/sdata.2018.110
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.12688/mniopenres.12767.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Visbrain: A Multi-Purpose GPU-Accelerated Open-Source Suite for Multimodal Brain Data Visualization
	Introduction
	Materials and Methods
	Programming Language and Code Guidelines
	Dependencies
	GPU-Powered High-Speed Graphics
	Graphical Interface and User Interactions
	Documentation and Examples

	Results
	Objects
	Implemented Objects
	Illustrations of the Main Functionalities of the Objects
	Scene object
	Brain object
	Region of interest object.
	Source object
	Connectivity object
	Other objects

	GUI Based Interfaces
	Signal: Time-Series Visualization and Spectral Properties
	Grid disposition
	Plotting forms
	Annotations, thresholding, and signal processing tools

	Brain: Visualization on a 3D Brain
	Object and colorbar control
	Class method for command line interaction

	Sleep: Polysomnographic Data Visualization and Edition

	API and Scripting

	Discussion
	Summary
	Limitations and Perspectives

	Conclusions
	Author Contributions
	Funding
	References

