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Mobility quantification of single cells and cellular processes in dense cultures is

a challenge, because single cell tracking is impossible. We developed a software

for cell structure segmentation and implemented 2 algorithms to measure motility

speed. Complex algorithms were tested to separate cells and cellular components,

an important prerequisite for the acquisition of meaningful motility data. Plasma

membrane segmentation was performed to measure membrane contraction dynamics

and organelle trafficking. The discriminative performance and sensitivity of the algorithms

were tested on different cell types and calibrated on computer-simulated cells to obtain

absolute values for cellular velocity. Both motility algorithms had advantages in different

experimental setups, depending on the complexity of the cellular movement. The

correlation algorithm (COPRAMove) performed best under most tested conditions and

appeared less sensitive to variable cell densities, brightness and focus changes than the

differentiation algorithm (DiffMove). In summary, our software can be used successfully

to analyze and quantify cellular and subcellular movements in dense cell cultures.

Keywords: cell motility, velocity measurement, image analysis, membrane contraction, pericytes,

hippocampal neurons

INTRODUCTION

Analysis of changes in cellular motility, shape changes andmovements of subcellular particles plays
an important role in exploring cell biology phenomena. Video imaging of cells in vitro is commonly
used to analyze these processes. Cells show often highly dynamic morphological changes and large
translocations after application of drugs and chemicals that affect the cytoskeleton or organelle
trafficking inside the cytoplasm (Paluch et al., 2005; Krause and Gautreau, 2014). Though these
morphodynamic effects are very obvious upon visual inspection, they could be difficult to quantify,
because few software tools exist that could measure nonlinear movements of cellular objects and
structures (Myers, 2012; Barry et al., 2015). The existing programs we found so far, do all require
dye-stained preparation and cannot be used in low- quality phase contrast images without major
manual intervention to select the structures of interest (Rodriguez et al., 2008; Jacquemet et al.,
2017; Urbancic et al., 2017).

One strategy, addressing this problem was the development of particle image velocimetry (PIV)
(Vig et al., 2016). It has widely been used for motion analysis from cytoplasm streaming during
embryonal development (Brangwynne et al., 2009), quantification of bacterial flow (Dombrowski
et al., 2004) and dynamics of the cytoskeleton in migrating cells (Ponti et al., 2004). The approach
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assumes that sufficiently large areas of the visual field stay close
together, similar to floating rafts, which restricts usefulness of
this approach to in vitro cultures where individual cells moved
collectively. Additionally, further correction algorithms were
necessary to compensate for compromised images with a low
signal-to-noise ratio (Vig et al., 2016).

In most cell cultures cellular and subcellular movements
occur randomly and cellular processes or cells overlap. Non-
directional movements of cells and their processes could often
cancel each other out. Therefore, we employed a strategy, where
single components were digitally separated and then analyzed
individually, assigning these individual components into clearly
defined object classes. This task required the development
of algorithms that could sort these structures into classes,
based on their morphological characteristics. In order to obtain
absolute mobility values, digital simulations of moving cells
were employed where the artificial objects closely resembled the
originals with regard to size, form and movement characteristics.
The motility of the simulated objects was set by user-defined
parameters to correlate very close to the real cell movements and
calibrated these values to the original data by linear functions in
order to obtain absolute motility velocities.

We developed a software that enables quantification of
several aspects of cellular dynamics under conditions where
individual objects could not be singled out sufficiently. The
rationale behind this approach was to measure global mobility
changes of specific object classes in image series. This was
achieved either by separating well-defined structures (e.g., cell
membranes, processes, or small globular particles) from raw
images and measuring the brightness-distribution differences
between successive frames (Differential Movement = DiffMove
algorithm) or by determination of a correlation coefficient
between image frames and its correction by image ratio
calculation (Combined Pearson’s Correlation and Ratio Analysis
Movement=COPRAMove algorithm). The two algorithms were
implemented in the image analysis software “SynoQuant,” which
was developed and programmed by AWH within the framework
of a large image analysis package from SynoSoft.

This approach was applied to several cell cultures types, which
were maintained for up to 48 h in an incubation microscope and
images were taken at regular time intervals. Primary cultures of
hippocampal cells (Henkel et al., 2010), which were composed
of a mixture of glial cells and neurons with sprouting neurites
(Welzel et al., 2010), chicken-telencephalon-derived glial cells,
which were used to study the movement of intracellularly
organelles, and primary cultures of rat brain pericytes (Yemisci
et al., 2009), which are large spider-shaped cells that can contract
or relax their cellular processes spontaneously or in response to
drugs and could change membrane dynamics upon deprivation
from oxygen or drug treatment (Hill et al., 2014).

The obtained data suggest that both algorithms had
advantages in different experimental setups, depending
of the complexity of the cellular movement, but the
correlation algorithm (COPRAMove) performed better
under most tested conditions because it appeared
less sensitive to variable cell densities, brightness and
focus changes.

MATERIALS AND METHODS

Animals
Primary cultures of pericytes were produced from 1 to 2
months old male or female Sprague Dawley rat weighting
200–220 g. Hippocampal neuronal cultures were prepared from
newborn Wistar rats. Animals were supplied by the Animal
Resource Center (ARC), Health Science Centre (HSC), Kuwait
University. All experiments were carried out in accordance
with the guidelines of laboratory animal care in HSC and the
protocols were approved by ARC. Fertilized White Leghorn
chicken eggs were obtained from the institutional animal
care facility University Erlangen, and all procedures using
animals were approved by the Institutional Animal Care and
Use Committee.

Cell Cultures
Hippocampal Cultures
Hippocampal neurons of 1- to 3-day-old Wistar rats were
isolated and cultured according to a previous protocol with
minor modifications (Klingauf et al., 1998; Henkel et al., 2010).
In brief, 2–3 newborn rats per experiment were sacrificed by
cervical dislocation, both hippocampi were removed from the
brain and immersed into ice-cold Hank’s salt solution (HBSS).
After digestion with trypsin (5 mg/ml), cells were triturated
mechanically and plated in modified Eagle’s medium (MEM),
supplemented with 10% fetal calf serum and 2% B27 supplement
(all from Invitrogen, Germany) on 18mm glass coverslips, coated
with poly-L-lysine (PLL) (Sigma). The coverslips were placed
in 12- well plates and cells were used after 5 days in culture.
Cells treated with ketamine (Sigma), end concentration of 1µM,
received the drug acutely, and were then taken immediately to
the microscope.

Primary Culture of Rat Brain Pericytes
We used protocol described by Yemisci et al. (2009) that was
modified as explained earlier (Redzic et al., 2015). Briefly, rats
were anesthetized with urethane (1 g/kg) and sacrificed by
cervical dislocation, brains were removed and placed in ice-cold
Ca2+ and Mg2+ free HBSS, (Gibco), 10mM HEPES and 0.6%
BSA (both Sigma) and adjusted to pH = 7.3. After cleaning
of associated tissues, the brain was sliced, and digested by
1-h incubation in collagenase/dispase solution (2,000 Kunitz
units/mL) that contain serine proteases inhibitor tosyl-L-lysyl-
chloromethane hydrochloride (0.147 mg/ml) in HBSS, pH= 7.3.
Microvessels were separated as a pellet from the homogenate by
centrifugation at 1,490 × g for 15min, washed twice in HBSS
and then incubated in collagenase/dispase solution for 2.5–3 h.
At the end, digested microvessels were seeded into flasks (25 cm2

surface) that were pre-coated with rat tail collagen in Dulbecco’s
Modified Eagle Medium (DMEM) that contained 20% (v/v) fetal
bovine serum, 5µg/ml vitamin C (all from Sigma) and 1% (v/v)
antibiotic/antimycotic solution. The cultures were washed with
PBS and the medium replaced after 48-h and every 2–3 days
thereafter. Cultures were passaged after 7–10 days to uncoated
flasks in order to eliminate endothelial cells. Cultures were used
for experiments 4–5 days after the passage.
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For oxygen glucose deprivation (OGD) experiments, flasks
were transferred to an anoxia glove box (Plas BY Labs-Lansing,
MI. USA) with in inner atmosphere consisting of 5% CO2 and
5% H2 in N2 and incubated for up to 6-h in glucose and
pyruvate—free DMEM (Gibco, UK). A palladium catalyst (Plas
BY Labs-Lansing, MI, USA) was used to remove any residual
oxygen. Anaerobic conditions were confirmed with anaerobic
strip indicators before and during the time course of incubation,
following instructions by the manufacturer (Oxoid, Hampshire,
UK). All media and buffers that were used for OGD experiments
were maintained inside the glove box for at least 12 h prior to the
experiments in order to equilibrate pressure of gasses.

Chicken Telencephalon Cell Culture
Telencephalon cortices were dissected from E14 chicken embryos
(4–6 brains/experiment) and cells were isolated and cultured as
described earlier (Pettmann et al., 1979). Cultures were grown
at 37◦C in a humidified atmosphere of 95% air and 5% CO2,
and experiments were performed at the fifth day in vitro (Henkel
et al., 2006).

Cell Culture Imaging
Two days old hippocampal cultures (30,000 cells/cm2) were kept
in 25 cm2 closed PLL-coated culture flasks, and clamped on a 2D
movable holder into a temperature controlled chamber on the
phase-contrast microscope (“Cell Observer,” Zeiss, Germany).
The microscope was mounted on an anti-vibration air table
(Newport, USA). The focus was visually controlled and adjusted
(every 8–12 h) since the autofocus system was not working
reliably at the magnification through a 10 × objective. Images
were collected every 15min over a period of 2 days.

Twelve days old primary cultures of pericytes were transferred
to the “Cell Observer” incubation microscope and images were
taken every 5min for 15 h. The higher frequency of imaging
and shorter observation period were chosen to better resolve fast
cellular motility. Images were taken only from areas that did not
contain confluent cell layer or obviously overlapping cells, which
permitted individual cells to be digitally excised from the original
image frame and analyzed separately.

Imaging of telencephalon chicken cells was performed on an
Axiovert 135 microscope (Zeiss) and images were collected every
2 s to observe intracellular trafficking of organelles, stained with
acridine orange (100 nM, Molecular Probes, Eugene, USA). For
application of staurosporine (0.1–1µM, Calbiochem, San Diego,
USA) during the experiment, image acquisition was stopped for
1min, the drug was carefully added by perfusion and image
acquisition was resumed at the same recording frequency.

Image Analysis
Preprocessing of Images
Images were initially stored in uncompressed Audio Video
Interleave (AVI) video format, transferred to an external
computer, converted to lossless images in BMP format and
systematically organized in folders to ease automated images
analysis. Transfer, extraction and batch processing was carried
out by SynoQuant software. Since many image series suffered
from uneven illumination and low contrast, SynoQuant was

used to correct and standardize the images. As a first step,
all images were resized to 640 × 480-pixel size and converted
from 24 bit RGB color to 8-bitmap gray-scale images (brightness
range: 0–255). Images were then normalized to a mean
brightness level of 127-pixel brightness, using SynoQuant’s build-
in “Center bright” function. “Center bright” calculated symmetric
brightness distribution of the pixel values in a histogram.
Morphometric analysis required an additional processing step
to compensate uneven illumination. Therefore, the background
was corrected with the function “Flatten Background” to obtain a
uniform brightness distribution.

Image Processing Algorithms
Several image processing algorithms were employed to
standardize the images in order to compare image series
between each other and remove artificial image defects that
could compromise the cell mobility analysis. Fully automated
batch processing allowed a high throughput of several folders
containing the images series. All SynoSoft programs (∼190MB),
including SynoQuant, and the complete Visual Basic code for all
procedures and algorithms can be downloaded from:

https://www.dropbox.com/sh/y7b78jwrzvooyz1/
AAB4yV4X1P4ByDOtoPv66RDHa?dl=0
The zipped setup file: SynoSoft_Setup.7z can also directly
downloaded athttps://www.dropbox.com/s/a9l7zpq5d3a0vih/
SynoSoft_Setup.7z?dl=0
An overview on the program package is shown at www.
synosoft.de.

Sharpen Images
Images were sharpened to amplify cells and processes shapes.
There were several algorithms available in SynoQuant’s repertoire
but the most common used methods were removal of hazy areas
from the original image by local subtraction of a Gaussian blur
from bright center pixels or employing the digital “Unsharp
mask” algorithm (Ferrari et al., 2009).

Particle Removal
Cell culture images were very often contaminated with small
debris particles that were removed by the “Remove debris
particle” algorithm. The particles were detected by a contrast-
based function and further defined by their small size.
Their positions were finally filled with a highly blurred local
background that had the same brightness as the neighborhood.

Background Normalization
The extended “Subtract background image” algorithm generated
a brightness equalization (flattening) combined with smooth
background. All stationary structures were removed by
subtraction of a brightness-scaled mean image that was
composed of all images in the series.

Focus Determination
The focus of images changed sometimes during the course
of video imaging. Since unsharp images could severely affect
subsequent quantitative mobility determination, the focus was
measured according to the following procedure: First brightness
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gradients were processed with a Laplacian edge detector, resulting
in an image with enhanced differences between neighboring
pixels. The degree of image sharpness (F) was quantified by
calculating the logarithm of the squared total brightness standard
deviation (sd) of this image.

F = ln
(

sd2
)

− 1

The range of F was between ∼-1 (homogenously blurred flat
image) and ∼8 (binary image with clear edges). Optionally, the
software could automatically remove all sections when the focus
quality felt below a preset threshold.

Structure Processing for Individual Cell Analysis
Motility quantification of plasma- and intra-cellular membranes
in large cells, like pericytes, required standardization, brightness
normalization and cell segmentation to conduct cell-to-
cell comparison of morphodynamics parameters. Initially,
a brightness equilibration, combined with a background
flattening was performed; cells were contrast-enhanced and
small stationary debris particles were removed. Finally, moving
debris particles were removed too and stationary cells (5–10
per series), that showed membrane ruffling and organelle
trafficking but no large-scale translocation were manually
labeled and automatically segmented for individual motility
and membrane dynamic analysis. Circular label masks were set
spaciously onto the individual cells to provide enough room
for expansion and constriction. The cells were automatically
sorted into separate folders and membrane ruffling velocity was
measured with the COPRAMove algorithm. Figures 1A–D show
the results of these processing steps.

Segmentation of Plasma Membranes
Quantification of cell constriction and expansion required
a segmentation of the perimeter, and exclusion of internal
organelles, cytoskeleton and membranes. Cell perimeters were
segmented by two algorithms. The first, “Statistical Cell
Detection” (SCD), used a statistical approach to select similar
groups of pixel intensities the corresponded to specific cellular
structures. It selected brightness- and area clusters in brightness
histograms that had a higher frequency than a user defined
threshold and connected adjacent pixels to each other. In a
second stage, only objects were selected that exceeded a minimal
size and small spiky appendages were removed. The output of
this algorithm were grayscale images that contained only the
cells and had a plain background. The cell perimeters were than
labeled with a line mask and only these structures (corresponding
to plasma membranes) were analyzed by motility detection
algorithms. Figure 1E shows an example of labeled membranes.

An alternative algorithm “Isolate cells from background”
(ICB) used another principle to detect cell perimeters. Its
detection was based on contrast differences between the
background and the cell borders and on and object size range.
Since this mechanism also labeled high contrasted intracellular
structures, it was followed by a completion-fill function that
identified all enclosed structures and leveled them. The result
of was a homogenous mask that covered the whole cell area.

Figure 1F shows the perimeter of the mask, overlaid onto the
original image.

Removal of Light Diffraction
Phase contrast images often contained bright diffraction light
halos around cells that were not fully attached to the surface
(Figure 1G). The halos were a specificmarker for loosely attached
neuronal soma but were not desirable if neurite movements were
quantified, since they contributed over-proportionally to general
motility. Therefore, these artifacts were removed by SynoSoft’s
algorithm “Level diffraction light” in the “Reduce diffraction
light (Phase contrast)” menu. First, the 5% brightest pixels were
selected, low pass filtered and their intensity was reduced by 50%.
The resulting image was stored and subtracted from the original
image. In a second step, the intensity histogram of the original
image was normalized to 1 and each pixel was multiplied with
the reciprocal of its respective intensity distribution.

intensitynew = intensity ∗
1

(

(Histogram
(

intensity
)

∗ 255)+ 1
)

Finally, the new image wasmerged with first processed image and
inverted, resulting in a diffraction-free picture (Figure 1H). Some
image series were further enhanced by inversion and shaded
contrasting, using the “Correct phase contrast” algorithm to
obtain a pseudo differential interference contrast (pDIC) image
(Figure 1I).

Cell Soma Segmentation
Neuronal cells consist of a soma and sprouting neurites. In order
to study the motility of cell somata and neurites separately, the
two structures were segmented and analyzed independently. Cell
somata extraction was achieved by three algorithms, where their
application depended on the image quality and experimental
design. The first algorithm “Extract bright objects” (ExtObj)
used diffraction halos around non-tightly attached neurons as
soma marker (Figure 1J). It detected brightness peaks that
surpassed a local percentile threshold. Single neighboring pixels
were connected, holes in cell bodies filled and small debris
particles removed. This algorithm was the fastest of all soma-
detector algorithms.

Two alternative algorithms were used to detect neuronal
somata in unprocessed images The “Neuronal somata detector”
(NSD) algorithm used also diffraction halos to detect somata
(Figure 1K). The detection principle was based on high contrast
differences around halo regions. Smaller high-contrast debris
artifacts were subsequently removed and the halos were reduced
by subtraction of a blurred image of these regions. Finally,
the image was brightness-corrected to compensate the loss of
intensity due to the subtraction operation.

The “Statistical Cell Detector” (SCD), removed elongated thin
structures and background areas from the image by selection of
conjugated brightness- and area clusters in intensity histograms.
It performed better if the images were enhanced with the
“Correct phase contrast” algorithm prior to its application. SCD
selected only pixels in the brightness histogram that had a higher
frequency than a user defined threshold. In a second stage, only
objects were selected that exceeded aminimal size and small spiky
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FIGURE 1 | Segmentation algorithms. (A) Original raw image of cultured pericytes; (B) raw image processing: brightness normalization and background equalization;

(C) grayscale contrast enhancement and stationary particle removal; (D) removal of mobile particles; (E) plasma membrane detection with “Statistical Cell Detection”

and subsequent enhancement with red mask; (F) set of pericytes, processed with brightness normalization and background equalization but no contrast

enhancement. Plasma membrane detection with “Isolate cells from background” and subsequent enhancement with red mask; (G) Original raw image of

hippocampal cells, 3 days in culture; (H) raw image processing: light diffraction halos around somata removed by “Level light diffraction” algorithm; (I) raw image

processing: pseudoDIC effect and brightness inversion subjected to “Phase-contrast correction” algorithm; (J) segmentation of hippocampal cells with the “Extract

bright objects” algorithm; (K) segmentation of hippocampal cells with the “Neuronal somata detector” algorithm; (L) segmentation of “Phase-contrast corrected”

hippocampal cells with the “Statistical Cell Detection” algorithm.

appendages were removed. Figure 1L shows the result of this
procedure, applied to the image in Figure 1I.

Neurite Segmentation
Neurites were segmented to study their soma-independent
mobility by two multi-procedural algorithms. The “Remove
cell somata” function (RCS) identified large areas that had
a lower local contrast that the neuronal somata, which were
characterized by bright halos. Figure 2A shows the original image
and Figure 2B the first step of this procedure that started with
the removal of small debris particle. The low—contrast areas
were protected while the high contrast areas became excised.
The position of the cell somata were filled with background and
smoothed to blend into the immediate environment (Figure 2C).
Figure 2D shows the somata as they were detected in parallel
by the “ExtObj”—function. Figure 2E shows the inverted and
background-subtracted neurites from Figure 2C as they were

used as input for both motility quantification algorithms. The
separation of somata and neurites was complete as shown
in Figure 2F, which displays the colored overlay of neurites
and somata.

Neurites were also segmented by the “Trace and Quantify”
module. This algorithm (NeurSegm) generated a binary skeleton
of the neurites. At first, it selected dark elongated structures
and removed cell somata and background areas, defined by
local contrast, local threshold and size classification. Figure 2G
shows only neurite skeletons, segmented from the original image
Figures 2A,H visualizes the complete separation of somata and
neurites in an overlay image.

Analysis of Cell Motility
Motility analysis was conducted with build in algorithms
of “SynoQuant” and results were compared to particle
tracking results, obtained from the Fiji-ImageJ2 (Rueden
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FIGURE 2 | Neurite segmentation with “Remove cell somata” (RCS) algorithm. (A) Original raw image of hippocampal cells, 2 days in culture; (B) contaminating

particles removed by “Remove debris particle” algorithm; (C) RCS: somata removed, (D) somata obtained with the “Extract bright objects” algorithm from image

(B); (E) inverted and background subtracted neurites from image C; (F) overlay image of somata (red) and neurites (green); (G) skeletonized neurites, segmented with

“Trace and Quantify” module; (H) overlay image of neurites frim image (G) (red) and somata (green), segmented with “Neuronal somata detector” algorithm.

et al., 2017) plugin “TrackMate” (Tinevez et al., 2017).
The software worked independent from the cell species,
because it measured differences and correlations between
successive whole images. However, since different cell types

exhibited different motility velocities, it was advisable to
acquire images of fast moving cells at higher frequencies,
because “SynoQuant” had no lower limit for detecting slow
cell motility.

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2019 | Volume 13 | Article 15

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Henkel et al. Determination of Cell Motility

Definition of Movement
Different movement categories were defined to characterize
several types of cellular mobility (van Larebeke et al., 1992).
The term “Motility” included any form of active cell movement.
“Translocation” specified movement of the cell soma on
the substrate while “ruffling” described formation, retraction,
or any type of plasma membrane movement, including
sheet-like pseudopodia and cytopodia (Bracke et al., 1991).
“Trafficking” was defined as any movement of intracellular
objects, including lysosomes, transport vesicle, nuclei, Golgi
apparatus, granules, etc.

Correlation-Based Motility Quantification
Statistical correlation between images was performed by
measuring their relative similarity of the spatial brightness
distribution. SynoQuant implemented a correlation-based
algorithm, “P-move,’ to measure cell motility speed by calculation
of a Pearson’s correlation coefficient between successive images.
An advanced modification of the correlation algorithm was
adopted by the “COPRAMove” algorithm that included an
image-ratio method to compensate focus-change related artifacts
and used a set of digitally simulated cells to calibrate the absolute
translocation speed of cell somata between successive images in
[pixel/frame]. The “COPRAMove” function was only slightly
affected by variable cell numbers, focus changes and robust
against brightness fluctuations.

Prior to the analysis, all images were size-standardized to
either 640 × 480 or 512 × 512 pixels to allow absolute speed
calibration. The algorithm consisted of a two-step process. At
first, subsequent images were mean-filtered (3 × 3 matrix) for
noise reduction and a Pearson’s correlation coefficient (rP) was
calculated between successive images. Figures 3A–E visualizes
the effect of cellular movement by correlating 2 images that were
taken at T = 15min (Figure 3B) and at T = 90min (Figure 3C)
with respect to the start image at T = 0. The local correlation
appeared to be high (white areas in the correlation image in
Figure 3D), if no or only minor movement had occurred while,
high cell motility speed corresponded to a proportionally lower
correlation, shown in Figure 3E. Then the images were subjected
to a Sobel edge-detection filter (Uppala and Sahr, 1997) operation
and a ratio between successive images was calculated. Ratios
that surpassed a user-defined threshold were counted by a linear
increment of the ratio factor (rF). The ratio speed operator (rSO)
was calculated as the square root of the product of inverse image
size× rF × 20 and scaled up by a factor of 10:

rSO =

√

(

1

img size ∗ rF ∗ 20

)

∗ 10

Finally, the COPRA motility descriptor (COPRAMove) that
corresponded to the relative motility of the cells, was calculated
from the rP and rSO, according to the formula:

COPRAmove =
(1− rP) ∗ 100

rSO

The absolute mean translocation of cells [pixels/frame] was then
calculated by means of SynoQuant’s “CellSimulator” module,

using a linear transform function, obtained from a set of
simulated cells, moving at different defined velocities.

Difference-Based Motility Quantification
Any active cellular motility resulted in position and/or shape
changes and these differences corresponded to local brightness
variations. The magnitude of this difference corresponded to
the relative displacement of cells. Figures 3F–H visualizes a
simplified principle of the measurement under ideal conditions.
If one cell changed its position (cell with arrow in image 2,
Figure 3G), the difference image, resulting from the subtraction
of the second from the first image, showed a difference
area (Figure 3H), which was principally proportional to the
translocation velocity of the cell. The faster the cell moved, the
larger was the difference area in the subtraction image. The
“DiffMove” algorithm is described as follows:

Successive images were subtracted from each other and the
number of pixels that changed their brightness was calculated.
Whenever there was a brightness change that surpassed a preset
threshold, the pixel was counted. The threshold was defined to
avoid that random noise could significantly contribute to the
movement measurement. It was set to a brightness level of 10,
in all experiment series.

The motility descriptor “DiffMove” of the difference
algorithm, corresponding to the relative movement of cells,
was derived from dividing the number of pixels, surpassing the
threshold, by the total number of non-black pixels, multiplied by
a scaling factor of 10,000.

absolute difference =
∑xn,yn

x1,y1

∣

∣img1− img2
∣

∣ |

If the absolute difference between corresponding pixel intensities
surpassed a user-defined threshold in successive image frames,
the number of valid difference pixels (Z) was incremented.

Z = Z + 1

Finally, the sum of Z corresponded to the total mobility of cells
in the image pair. To obtain a normalized mobility score for an
image pair, the following formula was used:

Diffmove =
Z

N(pixel)*10000

“DiffMove” was defined as the relative cell motility in the
difference algorithm.

Ratio-Based Mobility Measurement

Assistance Algorithm
The brightness ratio between consecutive time laps images in
a series corresponds to their relative differences. In order to
measure the degree of object translocation, edge detection of
image structures was performed and the ratio between successive
images was calculated. This procedure reduced random noise
from images and focused on the motility of larger highly
contrasted objects like cells and neurites. Finally, a user defined
threshold was set. A low threshold (<10) included small
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FIGURE 3 | Motility detector algorithms and “Cell simulator” test module. (A–E) Principle of COPRAMove algorithm; (A) Original image of hippocampal cells at the

start (t = 0) of the experiment, (B) image acquired after 15min; (C) image acquired after 90min; (D) scaled correlation image between images (A,B); (E) scaled

correlation image between images (A,C). (F–H) Principle of “DiffMove” algorithm; (F) schematic simulated cells; (G) schematic simulated cells with one cell shifted;

(H) difference image F and G shows partially shifted cell section. (I–J) Principle of ratio corrector algorithm; (I) scaled ratio image between 2 a dwell time of 15min time

difference; (J) scaled ratio image between 2 images with a dwell time of 90min time difference. (K) Screenshot of “Cell simulator” module: 50 simulated cells are

overlaid onto a background image of a hippocampal cell culture preparation. Twenty-one cells, left from the red line are colored in cyan for better visibility, upper black

inset: overlay image of 2 consecutive frames, assigned to red and green channels, respectively, where cell translocation speed was set to 6 pixels/frame, lower black

inset: overlay image of 2 consecutive frames, assigned to red and green channels, respectively, where cell translocation speed was set to 10 pixels/frame.
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changes between successive image frames, while a high threshold
(>30) emphasized the movement of fast objects. Figure 3I

shows the ratio image of two consecutive frames (15min dwell
time), while Figure 3J shows the ratio image between 6 frames
(90min dwell time). Based on the procedural strategy, the
algorithm was sensitive to focus change, brightness fluctuation
and structure density.

Simulation of Cell Soma Motility
Simulation of moving cell-like objects allowed the determination
of absolute cellular translocation speed in an images series, which
was used for quantitative analysis and calibration of the mobility
algorithms. Cell somata were either modeled as ellipsoids with a
variable shape, diameter and fuzziness or images of real cells were
used as moving object sprites. Figure 3K shows the SynoQuant’s
simulation module “CellSimulator” user interface with images
of real cells (highlighted in blue), moving over a real image of
hippocampal neurons. “CellSimulator” controlled motility speed,
cell size, cell shape, membrane movement (wobbling, ruffling),
background noise, cell brightness and cell number. Simulated
cells or images of real cells could be overlaid onto a static
background image to simulate a realistic environment. The red-
green images (insets) demonstrate two different translocation
velocities that could be visualized by assigning successive frames
with moving cells to red and green channels. The colored
images showed larger distances between the centers of faster
moving cells (10 pixels/frame) compared to slower moving
cells (6 pixel/frame). The simulator generated several sweeps
of 50 images each, where the cells moved over an original
background picture. Each sweep corresponded to a defined
mean translocation speed of the digital cells, expressed in
[pixels/frame]. The image series were then quantified by the
motility analysis algorithms and linear correlated to the motility
descriptor results from COPRAMove and DiffMove algorithms.

Two parameters were defined to describe the dynamic activity
of the cell membrane. First, the ratio between cell area and cell
perimeter: APr = Cellarea

Cellperimeter
and second the cell membrane

contractility (CtraM). CtrM was defined as the dynamic change
in cell area according to the formula:

For each frame [i], containing one single cell:

CtrM =

√

√

√

√

(

pAi − pAi−1
)2

(

pAi + pAi−1
)2

where pA is:

pA =
Cell areai

Maximal cell area
∗ 100

Statistics
Statistical analysis was performed with SynoStat 1.22 (SynoSoft)
and Microsoft Excel 2013 (Microsoft). Kolmogorov-Smirnov
test and Shapiro-Wilks test were used to check if the data
followed a normal distribution. ANOVA test was used to check
if differences between experimental groups were larger than
intra-group variations. Normally distributed data were tested for

significant differences between groups with Student’s t-test, while
a non-parametric data distribution was analyzed with Wilcoxon-
Mann-Whitney U-test. The significance acceptance level was
set to p < 0.05 in both tests. To assess the effect size of an
experimental intervention, Cohen’s D was calculated to compare
experimental groups. The effects size was determined to: 0.2 to
0.3 “small,” around 0.5 “medium,” > 0.8 “large” (Cohen, 1988).
Pearson’s and Spearman’s correlation coefficients for assessment
of mutual dependencies were calculated with SynoQuant’s build-
in module “Histogram and Correlation Plot Analysis.”

RESULTS

Visual and Quantitative Simulation of Cell
Motility With “Cellsimulator”
Verification and quantitative performance of the motility
algorithms were analyzed by means of cell motility simulations,
conducted by SynoQuant’s movement simulator module
“CellSimulator.” Since the translocation velocity of randomly
moving cells was directly defined in units of [pixels/frame], a
linear function could be derived to calibrate the COPRAMove
velocity descriptor in SynoQuant’s mobility analysis module.
Figures 4A–C show calibrated translocation traces, derived
from both tested motility algorithms, and the ratio correction
algorithm, including their linear transfer functions and
corresponding R2 correlation coefficients (see insets). Each step
represented a sweep of 50 frames. It is noteworthy to point
out that the ratio algorithm is an integral part of the COPRA
algorithm, and functions as a compensator for focus changes.

The translocation velocity of digital cells was stepwise
increased by 1 pixel/frame, generating 8 sweeps that were
subjected to quantification. The “COPRAMove” and the
“DiffMove” algorithms (Figures 4A,B) showed an approximately
linear correlation at increasing translocation velocities, but also a
trend to level-off and becoming less discriminative in the higher
velocity range. Their random noise increased also at higher
speed. The ratio algorithm in Figure 4C showed a fast increase
at very low velocity but was not able to quantitatively describe
the translocation of faster moving cells.

Besides velocity, “CellSimulator” controlled individual cell-
brightness and a global intensity level of the image; therefore,
it was employed to test, if a global brightness affected the
translocation measurement results of the algorithms. The total
image intensity was reduced to 50% by and the translocation
of the original and the darker image series were quantified.
Figure 4D showed that translocation, measured with the
“DiffMove” algorithm was significantly 3.5-fold decreased, while
COPRA response was 0.75-fold higher in darker images. Besides
testing effects of a global brightness variation, we changed the
brightness of individual simulated cells. Figure 4E showed that a
progressive cell-associated brightness increase had a strong effect
on the translocation results, obtained with “DiffMove” algorithm.
The translocation motility values correlated closely to the cellular
brightness (R² = 0.893). Translocation measurements with the
“Ratio-move” algorithm where generally independent from cell
brightness (R² = 0.548), except for the transition at low light
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FIGURE 4 | Motility velocity measured on simulated cells. (A) translocation velocity measured with “COPRAMove” algorithm on 8 image sweeps, 50 frames each, of

simulated moving cells (n = 200), increasing their mean velocity linearly by 1 pixel per step; (B) translocation velocity measured with “DiffMove” algorithm on the same

set of images as in (A); (C) translocation velocity measured with “Ratio” algorithm on the same set of images as in (A); (D) motility algorithms sensitivity to global

brightness changes (mean and standard deviation); (E) motility algorithms sensitivity to cellular brightness changes (mean and standard deviation); (F) motility

algorithms sensitivity to cell number changes (mean and standard deviation).

levels. COPRAMove’s results were largely independent from an
increasing cellular intensity (R²= 0.2067).

Finally, the effect of a variable cell number on translocation
results was analyzed. Changing cell numbers are commonly
observed in cell lines with a high rate of mitosis or in cultures,
where cells migrate substantially, leading to cluster formation
or disintegration. Figure 4F showed that an increasingly higher
number of cells, moving constantly at a speed of 4 [pixels/frame],
exhibited a significantly higher translocation as measured by
all algorithms. The extent of the increase varied considerably
among the algorithms. The “COPRAMove” algorithm increased

the apparent relative translocation only 1.1-fold, when the
number of cells was raised from 100 to 500. The “DiffMove”
(increase 3.9-fold), the “Ratio-move” (increase 1.9) and the basic
Pearson’s correlation “P-move” (increase 2.3-fold) algorithms
showed much stronger effects. The results of all algorithms
were statistically significant elevated when the lowest cell
density, n = 50 was compared to the highest, n = 500
cells. The relative cell-number-independent performance of the
COPRAMove algorithm, which was composed of ratio and “P-
move” algorithms, was attributed to a mutual compensation
between these both components.
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Organelle Motility in Fluorescently
Stained Cells
Chicken telencephalon cell preparations are composed of several
cell types, including neurons and glial cells (Mangoura et al.,
1995). Large, flattened glia cells were selected to measure
intracellular trafficking velocity of acidic organelles, fluorescently
labeled with acridine orange (Figure 5A) in time laps videos.
The apparently random movements of lysosomes and vesicles
was determined during a control period to obtain a baseline
trafficking value. The velocity of the organelles was slowed
down by addition of staurosporine, a drug that reduced
vesicle movement in the frog neuromuscular junctions and
chromaffin cells (Betz and Henkel, 1994; Henkel et al., 2000). The
Supplementary Video 1 showed the dynamic of the organelle
movement. Figure 5B visualized the vesicle traffic in an overlay
image that was composed of two consecutive images, assigned to
different color channels. The two images were collected during
the initial phase of the experiment, before any drug was added.
The first image was assigned to the green and the second to the
red color channel and overlaid, providing an optical visualization
of dynamic organelle trafficking. Background areas and objects
without substantial trafficking appeared in yellow, while objects
in red or green indicated a pronounced organelle velocity.
Figure 5C showed that the addition of staurosporine significantly
(p< 0.01) slowed down themovement of all organelles, indicated
by the predominant yellow color. Since there were several degrees
of the color overlays, it was very difficult to quantify the overall
trafficking velocity of the organelles by just measuring the
apparent brightness of the two color channels.

The organelle trafficking in the image series was then
quantified by the algorithms “COPRAMove,” “DiffMove,” and
“Ratio-move.” This experimental setup (fluorescently stained
preparation) was chosen as a test example for a class of images
with a dark background and bright moving objects. Figures 5D,E
showed that the “COPRAMove” and the “DiffMove” algorithms
mimicked the subjective visual impression of organelle trafficking
very close, while the “Ratio-move” algorithm (Figure 5F) did
not reflect the apparent vesicle trafficking very well. Figure 5G
showed that increasing concentrations of staurosporine inhibited
organelle trafficking dose-dependent.

Motility Measurements in
Hippocampal Cultures
Our hippocampal cultures consisted of neuronal and glia cells (10
image series, 152.6 ± 32.3 cell somata per frame). The neurons
developed an increasingly denser network of neurites within the
course of the 48 h experiment, but their number did not increase.
Figure 6A and the video (Supplementary Video 2) showed a
scenario of the neurite development over 48 h. The neurons,
glia cells and neurites moved in an apparently random process
and this overall motility was quantified in detail. Figure 6B
shows examples of three motility traces, measured in a typical
experiment. The “COPRAMove” and the “DiffMove” algorithms
indicated that the general motility decreased slightly in this
time laps series, despite a large increase in neurite number and
density. Motility, determined with the “Ratio-move” algorithm

indicated no general trend but rather a wave-like time course that
mimicked the focus trace (data not shown). The mean motility,
averaged from 10 time lapse series (Figure 6C) confirmed that
cellular motility speed decreased a little, but not significantly
within the observation period, while neurites formed an extended
clearly visible dense network.

Then we investigated the effect of image sharpness on motility
measurements, because there were frequent temporary focus
changes observed during a 48-h long imaging experiment. The
“COPRAMove” algorithm was examined in particular, because it
included an image correlation- and an image ratio algorithm. The
performance of a simple Pearson’s correlation- based algorithm
(“P-move”) without any subsequent corrective functions and
the “COPRAMove” algorithm were compared on simulated-
and real cells. Figure 6D showed that “COPRAMove” and “P-
move” performed very similar on simulated cells that moved
with increasing velocities, but “P-move” could not compensate
temporary focus variations in real life experiments and its
motility trace resembled very much the course of the focus
trace. “COPRAMove” motility measurements were apparently
not affected by fading focus.

To further investigate the phenomenon on motility
measurement, an image series was chosen that had a large
step-like focus change. Cellular motility together with the
global image focus were measured. Figure 6E showed that the
Ratio-corrector algorithm, and to a lesser extent the “DiffMove”
algorithms were very sensitive to focus changes too, since
their motility traces followed largely the focus trace. The
“COPRAMove” algorithm appeared to have no correlation with
focus fluctuations, because of the compensatory effect its inverse
ratio-correction term.

The effect of variable cell number on motility quantification,
which was observed in the study with simulated cells,
was checked in hippocampal neuron-glia co-cultures. These
preparations were composed of a variety of neuron- and
glia cell types, among them microglia. These immune cells
moved with extremely high speed, compared to all other cells,
and were a good tool to judge the performance of motility
algorithms (McGlade-McCulloh et al., 1989). We chose a field
of view that contained a high dynamic range of cell numbers
and -motility, including temporary appearance of microglia
cells. The Supplementary Video 3 provided a visual impression
of the dynamic activity. Figures 7A–D clarified the cellular
translocation and shape changes by means of consecutive
red-green overlay-images, where pure red and green colors
indicated high local motility. Two motility traces, measured by
“DiffMove” and “COPRAMove,” emphasized the busy cellular
motion in Figure 7E. These traces provided quantitative data of
the visual impression that the general movement velocity stayed
generally constant despite an increase of structure count. At
begin, the view field was sparsely populated but as the neurite
network started to grow, a very fast moving microglia cell
(Figure 7B) was temporary swirling over the scene. The view
field was constantly filled with invading cells and a growing
neurite network (Figures 7C,D), which moved at an apparent
steady velocity. “COPRAMove” and “DiffMove” traces showed
a transient motility increase in the presence of the fast moving
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FIGURE 5 | Vesicle motility in chicken telencephalon glia cells. (A) Fluorescence image of acidic organelles in a glia cell, labeled with acridine orange; (B) overlay

image of two consecutive frames, frame 40 (red) and 41 (green) before addition of staurosporine; (C) overlay image frame 300 (red) and 301 (green) after addition of

staurosporine; (D) vesicle trafficking velocity trace, recorded with “COPRAMove” algorithm; (E) vesicle trafficking velocity trace, recorded with “DiffMove” algorithm; (F)

vesicle trafficking velocity trace, recorded with Ratio corrector algorithm; (G) Vesicle motility reduction by staurosporine (mean and standard deviation, asterisks

indicate significant difference to control, p < 0.05).

microglia cell, but the “DiffMove’s” motility trace continued
to rise, due to the increasing number of cluster-forming cells.
COPRA’s motility trace returned to the initial level, indicating a
constant motility speed.

Comparison of Cell Somata Motility
Quantification by Tracking and
Copramove Algorithm
Direct tracking of cells is an establish method to obtain motility
data from individual cells. The ImageJ plugin “TrackMate” is
an advanced software that detects and measures the speed
of roundish cells by an automated algorithm. “COPRAMove”
velocity results of cell somata were compared to “TrackMate”

on a series of 192 images of hippocampal cells. “TrackMate”
detected 112 cells in a frame and recorded their positions
and velocities. The program lost increasingly more cells during
the course of the series, as they changed their shape and
intensities. The resulting individual velocities were plotted in
a histogram (inset in Figure 7G) that showed a heavily right
side—skewed distribution with a mode of 1.2 pixel/frame. The
mean value of 2.6 ± 2.8 s. d. and the median of 2 pixels/frame
were in the same order of magnitude like the velocity data,
which were obtained by “SynoQuant.” Figure 7, right panel,
showed that the velocity distribution over the course of the
image series did not vary much, but was also skewed toward
the right with a 5.9-times lower skewness and a 3.8 times
lower kurtosis.
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FIGURE 6 | Motility measurements on hippocampal neurons. (A) Visual presentation of a neurite network development (3 upper) and its quantification (lower). Neurites

are masked with “Trace and quantify” module; (B) exemplary motility velocity traces without soma-neurite separation; (C) quantification of neurite density and motility

changes within 48 h; (D) focus dependency of motility recordings in simulated and real hippocampal cells; (E) Comparison of motility speed and focus dependency.

Somata and Neurite Analysis
Selective extraction of somata and neurites (segmentation)
allowed the separated determination of their motility. We have
tested three somata (SCD, NSD and ExtObj) and two neurites
(RCS, and NeurSegm) segmentation algorithms. All algorithms
detected the cell somata and neurites consistently but the
detection probability was focus dependent. A weaker focus
resulted in a lower detection probability and hence increased
random noise in the motility traces. The NeurSegm algorithm
was more sensitive than the RCS algorithm but this problem
could be alleviated by averaging of successive frames. The RCS
algorithm proved to be more selective for thicker neurites that
were not easily lost upon a variable focus and therefore exhibited
a lower noise level. Figure 8A shows three traces that were
recorded from a typical time-lapse series. The first trace was

recorded from unprocessed non-segmented hippocampal cells
and motility was analyzed with the COPRAMove algorithm. The
motility velocity did generally not change during the course of
the experiment. This was consistent with the overall result in
the set of 11 experiment series, which showed no statistically
significant change in motility (Mean/SD: 1.88 ± 0.29, n = 11).
The absolute motility values depended on the setting of the
COPRAMove motion detection system and were only consistent
when all experiment series were measured with the unchanged
parameter. Absolute values required a calibration with the
“CellSimulator” module.

Then neurites and somata were measured separately and their
motility velocities were compared to the unprocessed series.
The visual impression that the neurites moved slower than
the somata, was confirmed by the COPRAMove quantitative
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FIGURE 7 | Motility measurement on soma-neurite networks with increasing density. (A–D) Successive image frames, assigned to red and green channels, visualize

neurite movements and growth of neurite network at different time points. (A) at 2.5 h; (B) at 12.5 h; (C) at 32.5 h; (D) at 44 h; (E) COPRAMove motility velocity trace;

(F) DiffMove motility velocity trace; (G) Comparison of velocity distributions by COPRAmove and TrackMate (ImageJ plugin). The insets are histograms of velocity

measurements, obtained by the respective algorithms. TrackMate automatically tracked mean velocities of 113 cells over 20 frames, COPRAmove measured the

velocities of segmented cell somata in a series of 192 frames.

analysis. Figures 8A,B show that the neurite trace had a lower
mean velocity than the somata trace. If both traces were summed
up, they were slightly larger than the trace, obtained from

the non-segmented cells (somata with neurites). Differences
between all four traces were statistically significant. The
Supplementary Video 4 shows a colored overlay of separated
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FIGURE 8 | Motility measurements on segmented structures. (A) COPRAMove motility traces, obtained from isolated somata, neurites and combination of both.

“Complete cells” refers to unsegmented hippocampal cultures, “Somata + Neurites” refers to the summed traces of segmented neurites plus segmented somata; (B)

Quantification of motility result; (C) representative image of segmented neurites (green) and somata (red). Motility speed of both components was measured separately

by COPRAMove algorithm; (D) results of motility speed measurements of segmented neurons and somata (mean motility speed ± standard deviation, n = 11

experiments). Neurites are significantly faster after ketamine application. Somata speed does not change.; (E) plasma membrane ruffling velocity of pericytes,

measured on isolated cell perimeters; (F) Pericyte perimeter outlined by automatic plasma membrane segmentation with the “Isolate cells from background” (ICB)

algorithm; (G) contractility and area/perimeter traces show alternation contraction and extension of typical pericyte plasma membrane. The 4 insets show segmented

cell perimeters, acquired at corresponding times (arrows) of the experiment; (H) moving average of membrane velocity trace, calculated with the “Trace and Quantify”

module. The velocity corresponds to the 1st derivative of contractility trace in (E).

somata and neurites. The images were averaged before the
generation of the video to provide a better visual impression of
the dynamic process.

Finally, we tested the COPRAMove algorithm on a large image
dataset of 2 experimental series obtained from hippocampal
mixed neuron and glia-cell preparations. We compared the
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motility speed of untreated control cells (n = 11 independent
experiments) to cells that were treated with 1µM Ketamine
(n = 10). Somata and neurites were segmented (Figure 8C)
and measured them separately to quantify the visual impression
that ketamine accelerated the neuronal network motility speed.
Figure 8D shows that there was no significant effect on the
motility of segmented cell somata (t-test: n. s., DCohen = 0.35)
but the digitally isolated neurite network moved significantly (t-
test: p < 0.001, DCohen = 2.065) faster after ketamine application
compared to untreated controls.

Pericyte Motility
Pericytes were grown at low density that allowed subsequent
analysis on individual cell basis (6–8 image series, 5.76 ± 2.27
cell somata per frame). Their individual motility speed was
measured with the “DiffMove” algorithm, before and after they
were subjected to an oxygen and glucose deprivation (OGD).
Figure 8E shows that the motility of 16 pericytes was consistently
and significantly (t-test: p < 0.01, DCohen = 1.069) decreased
after 1-h of OGD, a condition that is known to reduce migration
in human pericytes (Chen et al., 2015; Schneider et al., 2015).

Dynamic Plasma Membrane Ruffling
The motility of large highly magnified pericytes was examined to
quantify membrane ruffling, cell constriction and pseudopodia
extrusion. Stationary pericytes were chosen to exclude cell
translocation from the ruffling speed measurements. Figure 8F
shows that the plasma membrane was segmented by means of
the ICB algorithm; single cells were segmented and separately
analyzed. The cells showed alternating periods of extension
and retraction of pseudopodia and membrane extrusions
under control conditions. We measured two parameters, cell
area/perimeter ratio (APr) and membrane contractility (CtrM),
which were used to describe this activity. We obtained a
mean APr to characterize the steady-state roughness of the
cell membrane which was 8.3 ± 0.76 sd, n = 25 cells. Six-
hour exposure to reduced oxygen-glucose conditions caused a
significant increase (p < 0.001) of the APr to 10.8 ± 0.73
sd, n = 17. A higher AP ratio indicated that the pericytes
had fewer membrane protrusions compared to controls. The
change of APr was rather slow (data not shown) and the
plasma membrane ruffling speed, measured with the “DiffMove”
algorithm, was slightly but not significantly increased (11.5
%, ± 25% sd, n = 16) over the course of the experiment.
Then we analyzed the dynamic of plasma membrane changes,
defined as contractility (CtrM). This parameter quantified the
change of the 2-dimensional cell area in contrast to membrane
roughness that was measured by the APr parameter. Under
control conditions, the membrane exhibited sudden motility
changes between extension and retraction that corresponded
closely to the CtrM parameter, while the AP ratio indicated
an overall largely constant cell shape. Figure 8G compares the
contractility dynamic and the cell membrane shape (APr) on
a typical pericyte. The shape of the cell did not show many
or large protrusions, but the area size changed suddenly to a
great extent. Since the cell volume couldn’t change back and for
so dramatically, as suggested by the images and the membrane

ruffling velocity (Figure 8H), it was assumed that the cell was
extending in height, invisible to the phase contrast microscope.

DISCUSSION

This study addressed two major challenges for efficient analysis
of cellular morphodynamics, namely the segmentation of whole
cells, cell membranes and cellular elements and secondly,
their velocity analysis in densely grown cell cultures and
cellular neuronal networks. We have tackled the problem of
segmentation by the development of different procedures, based
on independent mathematical methods that provided optimized
solutions to almost any specific set of cells. A major challenge
for these algorithms was to cope with images that have been
acquired under more or less sub-optimal conditions (Dow et al.,
1987). A human observer may easily distinguish a cell from other
structures or debris, because he identifies the structures by a
neuronal network, his brain, which integrates shape, contrast and
brightness into a holistic picture (Spoerer et al., 2017). But even
after successful object recognition, it is still very difficult and time
consuming to quantify identified parameters manually or with
help of semi-automated software tools. SynoQuant works largely
fully automated after initial setting of detection parameters. In
this study we separated cellular components into 3 categories:
(1) Cell somata, (2) Cell appendages (e.g., neurites, growth cones,
processes etc.), and (3) Plasma membranes.

In order to detect neuronal somata, most studies relayed
on some form of labeling for soma detection (Kayasandik and
Labate, 2016) or used confocal microscopy for this task (Ozcan
et al., 2015).

Segmentation of Somata
Segmentation of complex neurons with dendrites is a challenge
that has been successfully addressed on fluorescent individual
cells at high magnification. Morphological parameters in such
cells were quantified to characterize morphodynamics changes
on individual neurons (Billeci et al., 2013). Phase-contrast
images at low magnification however, contained very different
intensity distributions that are uncorrelated to cell boundaries
and intracellular structures. Neurons showed usually a light
diffraction halo around the soma membrane in phase contrast
images, because they are not tightly attached to the substrate
(Li and Kanade, 2009; Yin et al., 2012). This feature could be
exploited to segment them from flatted glia cells and neurites,
which both appeared to be much darker (Kandel et al., 2018).
However, a complete separation of glia and neuronal cells was
not possible without specific labeling, because some glia cell types
showed also halos around their soma. Two algorithms, ExtObj
andNSD, obtained soma segmentation by identifying their center
positions by the corresponding halos and processed these regions
different to extract alternative structures from it. ExtObj did not
separate individual cells but rather cell clusters, enclosed in halos.
NSD preferred the halo centers, isolating mostly individual cell
somata. Subsequent velocity measurements revealed that both
algorithms did not differ much regarding the motility results.
One problem, however was that both algorithms, particularly
ExtObj, did not consistently detect the somata boundaries
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always at the same positions in consecutive images, causing a
flickering effect that added noise (∼15% of the signal in both
“COPRAMove” and “DiffMove”) to the segmented image series.
NSD was marginally more consisted in “COPRAMove” motility
analysis but this had only little effect on the overall velocity
results (∼12% of the signal “COPRAMove,” 18% in “DiffMove”).
The responsible factor was mainly a locally variable focus due to
vertical cell movement that mainly contributed to the problem.
The SCD algorithm segmented very specifically the somata when
halos were removed by preprocessing with the “Phase-Contrast-
Correction” algorithm, but the principal local focus sensitivity
remained still a problem. In summary, all three segmentation
algorithms were similar suited for velocity measurements, even
if the visual impression of the segmented cells appeared different
to the human eye.

Segmentation of Neurites
Segmentation of neurites in hippocampal cultures have been
obtained by several groups on highly resolved neurons to analyze
neurite development and 3D structures with conventional
algorithms (Meijering, 2010; de Santos-Sierra et al., 2015) or
convolution neuronal network (CNN) software implementations
(Kandaswamy et al., 2013; Li et al., 2017; Spoerer et al., 2017).
Very successful results were paid for by long computation times
(de Santos-Sierra et al., 2015) (in the order of minutes per image)
or sophisticated neuronal network software, running on large
computer systems (Li et al., 2017). One simple segmentation
strategy was the transformation of the neuronal network into
a binary skeleton, a technique that we tested with SynoQuant’s
build in grayscale skeletonization algorithm and compared it to
binary skeleton algorithm of “Ne.Mo” Software (Billeci et al.,
2013). It worked well on the neurites but the cell bodies were
also skeletonized in such a way that the cell somata were included
in the segmented image (data not shown). Our approach was
developed to detect neurite networks reliable without somata
in a large number of images in a reasonable timeframe (less
than 10min for ∼200 images, 640 × 480 pixel on an average
laptop PC). The two algorithms were quite different because the
RCS algorithm extracted rather thicker neurites while NeurSegm
created an artificial skeleton of the neurite paths. As discussed
before, both algorithms were sensitive to focus change, resulting
in noise for time laps velocity measurements.

Computer based plasma membrane segmentation and
automated detection of highly magnified cells was used since
20 years in many studies, mostly relaying on the contrast
and brightness differences between membranes and substrate
(Dimopoulos et al., 2014; Kaur and Sahambi, 2016; Meijering
et al., 2016; Lee et al., 2018). The task appeared easy, when
the image quality was good and the contrast high. However,
in some images the membrane structures were only partially
recognizable and some stretches of the cell perimeter faded into
the background. Our algorithms could compensate for missing
membrane pieces by employing a completion method, based on
proximity of distinct membrane sections. The computational
time per image were linear (slope = 2) correlated to the image
size, e.g., 25 s for a 1,300 × 1,000, 12- s for a 900 × 700- and 4 s
for a 640× 480-pixel image.

The common difficulty of all segmentation algorithms were
the occurrence of a flickering effect, when the segmented objects
were viewed in time laps videos. The images are two-dimensional
projections of cells, moving also very slightly up and down
and causing thereby local focus variations. The resulting partial
detection of the structures could be eliminated reliably by
averaging successive image frames, however at the cost of time
resolution loss. Image series that were filtered in this way could
not be used for motility measurements, because the apparent
velocity was rendered much lower than in reality. Therefore, it
proved the best strategy to use the original segmented objects for
motility analysis even at the cost of higher noise.

Motility Measurement
Measuring the motility speed of individual structures in dense
cellular networks, where individual cells were not readily
discernable, is very challenging. Experiments on a long-term
basis (48 h) were often problematic, because cell density
and focus could change. Additionally, there were also limits
that prevented even our program “SynoQuant” to conduct a
meaningful measurement. These included general very low image
contrast, very bad focus or very large images that took a long
time to process. These parameters needed to fall into reasonable
ranges. As a rule of thumb, the programworked well on gray scale
image series that are subjectively sharp, and contrasted and not
larger than 1,000× 1,000 pixels.

The widely used method of individual particle tracking (IPT)
could not address those issues. IPT had been implemented
in many image analysis programs (Chenouard et al., 2014),
but in our system it failed, because neighboring cells and
other mobile objects (organelles, debris and neurites) were
moving across or partially overlapped their structures, causing
the tracking software to produce severe errors. We tried
SynoSoft’s particle tracker (data not shown) and could confirm
that the automated tracking algorithm lost their targets,
every time cells tightly touched each other. Manual optical
tracking of individual cells produced very similar results as
“TrackMate” (see Figure 7G) and “COPRAMove,” but was very
time consuming. Therefore, so far, only cells without neurites
or extended appendages that were plated at a sufficiently
low density could be analyzed with IPT (Jaqaman et al.,
2008). Our alternative approach was the pre-segmentation
of cellular structures and subsequent global determination of
general mean motility by either differential subtraction or
correlation methods.

In order to test the robustness of our motility speed
measurement algorithms, we used a “Cell simulator” software
module to vary mutually interfering parameters. Our results
showed that the “COPRAMove” algorithm was best suited
for velocity determination, because it was very stable against
variable cell densities, brightness and focus changes. Its core
process was based on a Pearson’s correlation coefficient between
consecutive image frames that proved to be largely insensitive
to brightness changes. An additional integration of a ratio
component compensated a changing focus and neutralized
highly variable structure densities (cells and neurites). Our
results on simulated cells showed that the major sensitive
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parameter was the velocity of moving cells, while all other
contributing factors played a minor role for the calculation of the
velocity descriptor.

The algorithm “DiffMove” that focused on local brightness
differences between frames, was also very effective, calculating
the cellular velocity, when no other system components
were changed. The idea of differential frame analysis was
successfully tested on plasma membrane dynamics of single
glia cells and produced a sensitive and effective motility index
(Sild et al., 2013). However, the very common increase of
cell and neurite densities in our system was very disturbing
for this algorithm, leaving only experiments with constant
focus, brightness and cell number for reliant motility
speed analysis.

Another general problem, involving global average cell
mobility measurement, was the lack of absolute values for
motility speed (van Larebeke et al., 1992), which made it
difficult to compare two or more independent data series
that were obtained under different imaging conditions. In
order to overcome this problem, we standardized images
with respect to size, brightness, magnification and calibrated
them according to an independent simulated dataset. This
was achieved in SynoQuant by a “Cell simulator” module
that simulated the velocity, the shape and the environment
of cells. The artificial cells resembled the observed cells with
respect to size, brightness and contrast. The simulation software
moved them in a defined pattern with variable velocities
and generated a linear velocity transfer function that was
used to calculate an absolute velocity (e.g., in µm/frame) for
real cells.

Pericyte Plasma Membrane Motility
Besides the determination of global cell mobility in low
magnification images, membrane contractility and intracellular
structures could be quantified, if individual cells were separated
and higher magnified. We studied the dynamics of plasma
membranes in pericytes and measured the changes in membrane
contraction and extension velocities. After exposure of pericytes
to 1-h of OGD, all cells became more stationary and reduced
their motility when measured with the “DiffMove” algorithm.
Since we used isolated stationary single cells, for shorter
times, the motility results matched the visual impressions
very well, because the focus, brightness and cell density were
kept constant. However, there were large individual differences
in the relative ruffling velocity in between the single cells.
This was not contributed to their variable size, but most
likely to the unknown individual-specific metabolic status of
the cells.

The ruffling of pericyte plasma membrane and their
extension/contraction was monitored by measuring the
perimeter length and the cell area. Since there were fast,
apparently random, changes due to extension/contraction of
the cell, it appeared not appropriate in our experimental system
to merge these motility parameters into one single velocity

descriptor, however, this might be dependent on the specific
scientific question.

CONCLUSION

General motility analysis of dense cellular preparations is a
relatively new field in cell biology. We have found surprisingly
little literature addressing this problem, although many
methods are available for time lapse video analysis in the
artificial intelligence field. In this study we have analyzed
and tested two newly developed algorithms for general
motility measurement in cell cultures and we introduced
several image processing and segmentation algorithms. Our
strategy was based on automated segmentation of individual
structures and their subsequent dynamic quantification with
“COPRAMove” and/or “DiffMove” velocity algorithms. The
results show that “COPRAMove” is far more robust than
“DiffMove” when the operator has to deal with unstable
micro-environmental conditions, like variable focus, brightness-
and density changes. “DiffMove” is faster and very precise
in a clear defined, and well-structured situation, especially
suited for isolated single cell analysis. Our SynoQuant software
package could help to get access to the dynamic aspect of
cellular morphometry.
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