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This work presents a pieces of Python code to rapidly simulate the spiking responses

of large numbers of single cutaneous tactile afferents with millisecond precision. To

simulate the spike responses of all the major types of cutaneous tactile afferents,

we proposed an electromechanical circuit model, in which a two-channel filter was

developed to characterize the mechanical selectivity of tactile receptors, and a spike

synthesizer was designed to recreate the action potentials evoked in afferents. The

parameters of this model were fitted using previous neurophysiological datasets. Several

simulation examples were presented in this paper to reproduce action potentials, sensory

adaptation, frequency characteristics and spiking timing for each afferent type. The

results indicated that the simulated responses matched previous neurophysiological

recordings well. The model allows for a real-time reproduction of the spiking responses

of about 4,000 tactile units with a timing precision of <6ms. The current work provides a

valuable guidance to designing highly realistic tactile interfaces such as neuroprosthesis

and haptic devices

Keywords: tactile receptor, tactile afferent, electromechanical circuit, two-channel filter, spike synthesizer, code:
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INTRODUCTION

Tactile receptors are sensory receptors that respond to mechanical pressure or distortion by
producing action potentials (spikes) in their associated afferents (Zhu and Rozell, 2015). Previous
neurophysiological research has found that four types of tactile afferents in skin are responsible for
tactile sensation (Vallbo and Hagbarth, 1968; Johnson, 2001). Different types of tactile afferents
respond to mechanical stimuli with different selectivity. Slowly adapting type 1 (SA1) afferents
respond to sustained pressure and low-frequency vibrations and convey information about shape
(Goodwin et al., 1997). Rapidly adapting type 1 (RA1) afferents respond to stimuli that bump
against the skin and convey information about motion across the skin (Johansson and Westling,
1987). The RA1 and SA1 afferents account for spatial acuity in psychophysical tests (Johansson
and Vallbo, 1979). Rapidly adapting type 2 (RA2) afferents, also called Pacinian Corpuscle (PC)
afferents, are very sensitive to high frequency vibrations and are thought to convey information
about distal events such as texture roughness sensed through a tool (Yoshioka et al., 2007). Slowly
adapting type 2 (SA2) afferents are sensitive to skin stretch and may provide information about the
hand conformation and posture during grasping and other hand movements (Collins et al., 2007).
The SA2 afferents have never been observed in neurophysiological studies of mechanoreceptors in
the monkey hand (Johnson, 2001). While the response properties of three major types of tactile
afferents (SA1, RA1 and PC) have been extensively studied in neurophysiological recordings.
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Therefore, a model of reproducing responses of SA1, RA1 and PC
afferents is feasible, and valuable to investigating tactile sensation.

Generally a model of simulating cutaneous afferent response
should at least consist of the receptor model to emulate the
selectivity of each afferent type, and the spiking neuron model
to generate action potentials in afferents. In current work we
treat the tactile receptor and its associated afferents as a single
tactile unit. A number of influential models have been developed
to characterize how a spiking neuron produce action potentials.
The most important and accurate of the early neural models is
the Hodgkin–Huxley model (Hodgkin and Huxley, 1952), which
describes a spiking neuron by a coupled set of four ordinary
differential equations (ODEs). The Hodgkin-Huxley model has
inspired several more simplified models, such as the Morris-
Lecar model, FitzHugh-Nagumo model and Izhikevich model,
all of which have two coupled ODEs (Fitzhugh, 1961; Izhikevich,
2003; Tsumoto et al., 2006). The integrate-and-fire (IF) model is
another spiking neuron model that has computational simplicity,
scalability and applicability to simulate SA1, RA1, and PC
afferents (Bensmaia et al., 2008; Becker et al., 2009; Saal et al.,
2017).

The previous work of spiking neuron has been fruitful.
Besides in neuromorphic applications, some models of
mechanotransduction have also been reported to characterize
the tactile afferents by using above spiking neuron models
(Spigler et al., 2012; Rongala et al., 2015; Nguyen et al., 2018;
Osborn et al., 2018). However without considering the filter
characteristics of tactile receptor, the reproducing of selective
responses (e.g., frequency and adaption) of the three major types
of tactile afferents is not mentioned in these work. By combining
a filter model of tactile receptor with IF neuron model, some
researchers developed more comprehensive models that can
replicate many response properties of SA1, RA1, and PC afferents
and even the afferent population responses (Dong et al., 2013;
Saal et al., 2017). However, most previous spiking neuron models
including the IF model fail to accurately recreate the neural
spiking responses of tactile afferents, particularly for the PC
afferents (Biswas et al., 2015).

Accurate characterization of the evoked action potentials
in response to a stimulus is paramount to designing
neuroprostheses with biological compatibility (Marmarelis,
1993; Bertaccini and Fanelli, 2009). In tactile neural nerve
system, the spike timing is important to encoding object
properties including vibratory frequency, surface texture,
and surface curvature (Saal et al., 2016). Recent literature
hints that the binary spike trains of the sensory receptors
can be quite accurately modeled with an pulse frequency
modulator (PFM) (Biswas et al., 2015). The non-linear stochastic
mechanotransduction (NSM) model consisting of a mechanic
filter and an adaptive relaxation PFM allows for accurate
reproduction of the spiking response of PC afferent and
captures the shape of the action potential more accurately
than the IF model (Biswas et al., 2015). Hower the NSM
model which has more than 10 coupled ODEs can only be
implemented to recreate the responses of PC afferents, and is too
complicated to allow real-time simulation of massive numbers of
tactile units.

The goal of current work was to propose an model that
could accurately recreate most single afferent response properties
observed in previous literature, but that was simple enough to
allow for fast computation. Most previous models of recreating
afferent response include a model of skin mechanics. However,
previous studies have shown that incorporating implementing
skin mechanics is not necessary to achieve high spiking precision
for only reproducing responses of the tactile afferents located
under stimuli sites (Saal et al., 2017), and previous work was
able to reproduce precise spiking patterns evoked by vibrating
probes without implementing a skin mechanics model (Kim
et al., 2010; Dong et al., 2013). The model of skin mechanics can
be seen as a model of computing the indentation distribution
over the skin from the pressure distribution. There are already
much experimental data about tactile afferent responses to skin
indentation depth (not applied force) in neurophysiological
literature [e.g., Muniak et al. (2007)]. Under a certain area
of surface indenting the skin, the caused indentation depth
on stimulus site change linear with applied pressure according
to elastic theory (Timoshenko and Goodier, 1970). In order
compare simulated responses with well-established response
properties in previous neurophysiological literature, the current
work only focus on simulating afferent responses of single unit to
skin indentation, which is the basic work for recreating afferent
population responses.

A cutaneous tactile unit involves not only the filtering
of the mechanical signal but also the modulation of the
electrical signal (Biswas et al., 2015). Inspired by previous
filter models of tactile receptor and frequency modulator of
generating spikes, we proposed an electromechanical circuit
model consisting of a two-channel filter (TCF) to characterize
the mechanical selectivity of a single tactile receptor and
a spike synthesizer using frequency modulator to accurately
recreate action potentials evoked in afferents. In the TCF
model, the signal of skin indentation is selected by the two-
channel filter, in which a low-pass filter (LPF) and band-pass
filter (BPF) were designed to select the static and dynamic
components of the response, respectively. The spike synthesizer
was designed to convert the the output signal of TCF model into
action potentials.

The main contributions of this work are as follows: (1) it
presents a electromechanical circuit model that allows a rapid
simulation of thousands of SA1, RA1, or PC afferents in response
to skin indentation; (2) it presents a spike synthesizer to rapidly
generate action potentials with millsecond timing precsion,
which may improves the biological compatibility for neural
prostheses; (3) it presents a method to train the parameters of
the TCF model using neurophysiological firing-rate datasets and
yield spike timing precision of <6 ms.

METHODS

The electromechanical model as illustrated in Figure 1A was
developed to replicate the afferent response properties of single
tactile unit. The whole model is comprised of the TCF model
to characterize mechanoreceptive end-organ (the receptor) and
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FIGURE 1 | Schematic diagram of current model. (A) Overall model of single tactile unit. x stand for the indentation displacement produced in the skin. (B) Schematic

diagram of spike synthesizer. (C) Typical shape of a spike. (D) Source code of implementing schematic diagram. The ‘f_sp()’ is the function of the waveform shown

in (C).

other models (Transducer, Normalizer, and Spiking synthesizer)
to characterize afferent fiber (the nerve).

Electromechanical Circuit Model
A good way to investigate the response properties of single
tactile unit is isolating from the afferent population (Muniak
et al., 2007). Previous neurophysiological experiments of single
tactile unit has indicated that stimulus intensity is encoded in
the firing rate (ips, impulses per second) of action potentials
rather than its firing amplitude (Goodwin et al., 1997; Muniak
et al., 2007). In this work, we proposed the TCF model
to quantitatively replicate the firing-rate response (vnf) of a

tactile unit to mechanical indentation, then constructed a spike
synthesizer to convert the signal of vnf to corresponding to
spikes. The main source code that implements the proposed
model is depicted in Figure 1D, which are available in
the link: https://github.com/ouyangqq/model_of_single_tactile_
unit/blob/master/Receptors.py. In this code, all the intermediate
and I/O signals were defined as two-dimensional Numpy arrays
(spatial∗temporal) to support simulating afferent population
responses in future. To speed up computation, all logistic
and loop operations were converted into vector or matrix
operations using Numpy library imported as “np” in the
source code.
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Model of Receptor
Previous neurophysiological experiments indicated that
each type of single tactile unit appears to mediate specific
portions of the overall stimulus frequency characteristic
(Bolanowski et al., 1988). SA1 afferents are most sensitive
between 0.3 and 3Hz (Johnson et al., 2000), RA1 afferents
between 2Hz and 50 Hz, and PC afferents between 30 and
500Hz (Mountcastle et al., 1972). These characteristics of
neural threshold are close to characteristics of a filter to the
mechanical stimulus (skin indentation). Thus, we designed
a two-channel filter to select the mechanical stimulus in
frequency range of sensitivity for each type of tactile units.
The Laplace transfer function of the filter is given as below.

H(s) =
Sm(S)

xin(S)
=

Kb1 · S+ Kb2 · S
2 + · · · + Kbn · Sn

S+ 2π · fBL
·

(
2π · fBH

S+ 2π · fBH

)n+1

︸ ︷︷ ︸

BPF

+
Ku · 2π · fL

S+ 2π · fL
︸ ︷︷ ︸

LPF

(1)

Where Ku and Kb(1∼n) are weights of the low-pass filter (LPF)
and the band-pass filter (BPF), respectively. n is the highest
order of taking derivation to the input stimulus. fBL and fBH are
the lower limit and upper limit cut-off frequencies of the BPF,
respectively. f L is the cut-off frequency of the LPF.

As illustrated in Figure 1A, the outputs of the two filters are
added together. xin, sm in equation (1) is the input stimulus and
the added signal of the two filters, respectively. For convenience
of processing, the added signal was rectified to a positive signal.
w is the negative contribution for rectifying. w = 0 for SA1
afferents, since they tend not to respond to the offset of stimuli
(Mountcastle et al., 1966); w > 0 for RA1 and PC afferents. As is
the mechanotransduction coefficient. The transfer function H(S)

was converted to a differential equation, which can be discreetly
solved in loop iterations as shown in Figure 1D. In the TCF
model, the LPF mainly cares about the static component of the
input stimulus, while the BPF is only sensitive to changes of
stimulus (the dynamic component). According to previous work,
the SA1 afferent is not only sensitive to static but also dynamic
stimuli (Johnson, 2001). SA1 afferents respond approximately
ten times more during dynamic stimulation than during static
stimulation (Johnson et al., 2000). Ku was set to zero For the
RA1 and PC afferents, since they adapt so quickly and tend
not to respond during static stimulation (Johnson, 2001). As
illustrated in equation (1), the current model includes several
inertia components (1/(S+2π · f )), which causes different time
delay between mechanical deformation on the skin surface
and mechanical deformation of the receptor for each type of
tactile units.

Model of Afferent Fiber
The transducer in Figure 1A proportionately converts the
mechanical signal to electric current (As proportion coefficient
of transducer), and drives the subsequent circuit to evoke spike
trains in the ascending afferents.

The tactile afferents tend not to fire until the stimulus
amplitude exceeds a minimum amplitude (the lower threshold)
(Vallbo and Johansson, 1984), and the firing rate of tactile

afferents do not increase when the stimulus amplitude exceeds
a maximum amplitude (the upper threshold) (Freeman and
Johnson, 1982). To simulate this neural threshold property
similar with a normalizer, a rectifying diode D1 of lower limit,
and a Zener diode D2 of upper limit were added in the model.
Turn-on voltage (VL) of D1 was set as the lower limit of the action
potential relative to the resting state (Figure 1C). For a typical
neuron, the resting potential is around −70 millivolts (mV) and
the threshold potential is around −55mV. Thus, in the current
study, VL was set to 15mV. The breakdown voltage (VH) of D2

was set to 1,000 mV.
The frequency response characteristics of the filter can

obtained by substituting S = j·2π·f into equation (1). The

frequency response characteristics of the neural threshold (um)
is given as follows:

T(f )=
VL

As·|H
(

j·2π ·f
)

|
(2)

Where j is the imaginary unit, f is the frequency. The lowest
indentation threshold (Tlow) of a tactile unit can be evaluated as
following equation.

Tlow=T(
fBL+fBH

2

)=
VL

As·|H
(

j·2π ·(
fBL+fBH

2 )
)

|

(3)

The spike synthesizer as illustrated in Figure 1B was developed
to produce a biological neural spike with a firing rate that is
proportional the signal of vnf . vnf is the output of the neural
threshold model. The vnf was sampled (sampling period: Ta)
with holding into vs, and the vs was then modulated into
the frequency-adjustable triangular wave (vf). The vf was then
compared with a constant (0.5) to produce a pulse wave (vr).
The Kf in Figure 1B was defined as the max firing-rate for each
afferent tpye. f c (1/Tc =Kf·vs) is the frequency of carrier wave.
The action potentials (va) were finally generated by superposing
the base wave from rising edge of the pulse wave. The base wave
was synthesized with a typical spike shape as shown in Figure 1C.
Ta is the period of a spike, which was set to 4ms for each
afferent type.

Model of Noise
As shown in Figure 1A, the mechanical and neural noises are
separately incorporated in current model. The reason behind
these two separate provisions is that the non-linear signal
processing in tactile receptor and afferent fibers alters the
statistical and morphological properties of mechanical noise
(xN) and neural noise (vN) differently (Muniak et al., 2007).
For simplicity the mechanical noise was considered as pseudo-
Gaussian noise with 0.1 um of standard deviation and filtered
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with 1,000Hz cut-off first-order low pass filter (Biswas et al.,
2015). Neural noise was modeled as an additive random noise
associating with the action potential (va see Figure 1C). For
simplicity the neural noise was considered as pseudo-Gaussian
noise with SD = 10mv and filtered with 1,000Hz cut-off first-
order low pass filter.

Model Training
The neurophysiological firing-rate datasets (recorded from
rhesus macaques, see Figure 3 in Muniak et al., 2007) in response
to sinusoidal vibrations, were used as the training data. Before
training, the firing-rate data was normalized using a feature
scaling method to bring all values into the range of 0 to
1. The normalized firing rate of this model in response to
peak amplitude (x) of sinusoidal stimulus and frequency (f ) is
illustrated in the following equation.

hθ

(

x,f
)

=As·|H
(

j·2π ·f
)

·x |·
1+w

π
(4)

Using the above equation, the loss function of training the model
was obtained as follows.

J(θ)=
1

2
·

m
∑

i=0

(

hθ

(

x(i),f (i)
)

−y(i)
)2

(5)

Where m is the size of the training dataset, y(i) is the target value
of ith training set. θ= [Kb1, Kb2, . . . , Kbn, Ku, f BL, f BH, f L, As, w]
is the parameter array of the model.

The goal of optimizing the parameters of the model is
to find values of θ so that J(θ) reaches its minimum. There
are three major parameters optimization methods: gradient
descent (steepest descent), Newton’s method and the quasi-
Newton method. The quasi-Newton method is good enough to
produce superlinear convergence to a global minimum, thus the
improvement over the steepest descent is dramatic especially
on difficult problems (Wright and Nocedal, 2006). Since second
derivatives are not required, the quasi-Newton method is more
efficient than Newton’s method (Wright and Nocedal, 2006).
We implemented the BFGS quasi-Newton method to train
the parameters using Scipy.optimize library (https://github.com/
scipy/scipy/blob/v1.1.0/scipy). During updating, Ku and f L were
constrained to 0 for RA1 and PC units. w is constrained to 0
for SA1. The learning stepsize (α) was set to 0.55. The partial
derivative of J(θ) to each entry of θ was solved using central-
difference formula. All the parameters were initialized to zeros.
To evaluate the parameter variation as shown in Table 1, the
whole training was repeated for 10 times.

As seen in Figure 2A, after training of about 1000 iterations,
the model for each type of tactile unit can be trained to be
convergent (i.e., J(θ) remains stable). The fitting precision in
Figure 2B represents root mean squared error between the
predicted firing rates and observed ones. The fitting precision
was calculated by taking mean square root of J(θ)/m across from
the 1000th to the 1100th iteration, then multiplying with Kf. The
Kf was set to 180, 200 and 300 for SA1, RA1, and PC units,
respectively, referring the maximum firing rate of each afferent

type (Muniak et al., 2007). The fitting precision changing with
the highest order of BPF is shown in Figure 2B. The fitting
precision decreased significantly from order 1 to 3 for the PC
units (P = 0.028, ANOVA), and from order 1 to 2 for the RA1
units (P = 0.022). While there was no significant decrease with
the rise of order for the SA1 units (P = 0.486). For a trade-off
between precision and fast computation, the highest orders for
SA1, RA1 and PC receptor was set to 1, 2, and 3, respectively.
The summary of parameters obtained by this training method at
the preferred set of highest order of BPF are shown in Table 1.

EXAMPLES OF IMPLEMENTING THE
MODEL TO SIMULATE TACTILE AFFERENT
RESPONSES OF SINGLE UNITS

In the following section, we systematically compare simulated
responses of tactile units with published data across well-
established response properties in previous literature. We
simulated the responses of single tactile unit to stimulus scaled
as indentation depth. Simulations were performed on a personal
computer with Intel processor i7-7700HQ, 8 GB of memory. The
source code of current model and all simulations was written
in Python3.6 using Numpy libraries and has been uploaded
on a Github repository (https://github.com/ouyangqq/model_
of_single_tactile_unit). In all simulations, we used parameters
given in Table 1.

Reproducing Action Potentials Above
Threshold
In order to describe how the TCF and spike synthesizer covert
mechanical indentation (xin) into the action potential (va), the
details of intermediate signals in response to typical sinusoidal
stimuli are presented. As shown in Figure 3, each type of tactile
unit will not evoke spike activity until the amplitude of stimulus
exceed its threshold. The evoked spike captures the typical shape
of action potential as shown in Figure 1C.

Reproducing Selective Responses of
Tactile Afferents
The adaptation and frequency sensitivity are two basic selective
response properties of a tactile unit. Hence a simulated
experiment was conducted to evaluate the effectiveness of
current model in predicting the selective responses recorded
in previous neurophysiological experiments. A animation of
simulating the selective responses of single tactile units can be
found in Supplementary Material.

Tactile Sensory Adaptation
The wave of mechanical indentation for SA1, RA1, and PC units
were set referring to the literature of Mountcastle et al. (1966),
Talbot et al. (1968) and Knibestöl (1973), respectively. As seen
in Figure 4, SA1 units respond to the onset and hold phase but
typically not its offset stage. The firing rates in SA1 afferents
increase almost linearly as indentation depth increases. The firing
rate is higher during the dynamic phase of indentation than
during steady indentation. When the probe is removed from the
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TABLE 1 | Summary of parameters (mean ± SD).

Parameters Mean in this model SA1 RA1 PC

Ku Weight of LPF 0.094 ± 0.031 0 0

Kb1 Weight of 1st order BPF 0.205 ± 0.008 0.232 ± 0.021 0

Kb2 Weight of 2rd order BPF 0 0.0031 ± 0.00021 0.128 ± 0.014

Kb3 Weight of 3th order BPF 0 0 0.00111 ± 0.00011

fBL Lower cutoff Frequency of BPF (Hz) 8.01 ± 0.21 60.10 ± 1.61 80.40 ± 1.82

fBH Upper cutoff Frequency of BPF (Hz) 10.03 ± 0.41 80.09 ± 2.32 220.02 ± 4.21

fL Upper cutoff Frequency of LPF (Hz) 100.20 ± 0.72 0 0

As Coefficient of transducer (V/mm) 3.80 ± 0.13 44.00 ± 1.33 0.36 ± 0.03

w Negative contribution for rectifying 0 0.015 ± 0.002 0.212 ± 0.021

Kf Firing-rate encoding coefficient 180 200 300

FIGURE 2 | (A) Averaged loss value (J(θ)) changing with iterations under different highest order of BPF (n). (B) Fitting precision changes with highest order of BPF.

Error bars represent the standard deviation. The difference between the fitting precisions at two orders was evaluated using post-hoc tests.

FIGURE 3 | Details of intermediate signals in response (100ms frame) to two typical sinusoidal stimuli with frequency of 100Hz and peak amplitude below (first 37ms)

and above (37 to 100ms) the threshold for afferent type. The black dotted line in bottom trace indicates the threshold at 100Hz, which was calculated according to

equation (2) by substituting the fitting parameters in Table 1. x, skin mechanical indentation; sm, mechanical output of TCF; qm, mechanical output of rectifier; vnf,

voltage encoding normalized firing rate; vs, voltage of sampling firing rate; vf, voltage of frequency modulation; vr, comparer output voltage; va, Action potential.
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FIGURE 4 | Adaptation properties of different types of tactile units. The recorded data of SA1, RA1, and PC are adapted from Mountcastle et al. (1966), Talbot et al.

(1968), and Knibestöl (1973), respectively. (A,B) Recorded (left) and simulated (right) responses of single SA1 unit to ramp-and-hold indentations at different

indentation depths, and single RA1 unit to ramps approaching indention of 850 um at different speeds. The stimulus amplitude and time course are shown in the

lower trace of each pair; the upper trace shows the action potentials recorded from the sensory nerve fiber in response to the stimulus. (C) Recorded (left) and

simulated (right) responses of a PC unit to stimulus with reduction of indentation amplitude. The upper traces show the recorded action potential for five amplitude

levels in descending order downwards, and the lower traces show the analog signals of the corresponding stimuli.

skin, the spike activity ceases. RA1 units respond strongly to
onset and offset but typically adapt so quickly that they do not
respond during static indentation. RA1 afferents can signal the
rate at which the stimulus is applied and removed: rapid changes
evoke a brief burst of high-frequency spikes, whereas slow
changes evoke a longer-lasting, low-frequency spike train. PC
receptor is highly sensitive to acceleration and higher derivatives.
The PC afferents respond not only when the indentation is
increasing, but also when the stimulus is retracted, however
they are not very sensitive to punctate stimuli and completely
independent of indentation velocity and amplitude. The above
simulated responses of the three afferent types match well with
the neurophysiological observed counterparts.

Frequency Characteristics of Neural Threshold
The frequency sensitivity for each type of tactile unit is reflected
in its frequency characteristics of neural threshold as illustrated
in Figure 5A. In current model, since the firing rate of the
outputting spikes is determined by the output signal of vnf, the
predicted frequency characteristics of neural threshold for each
afferent type can been a calculated according to equation (3). As
shown in Figure 5B, the human thresholds for vibration closely
match those of the most sensitive afferent fibers in each range
(R2 = 0.94).

Reproducing Spiking Timing
As indicated in neurophysiological experiments investigating
tactile encoding in the nerve, the cutaneous tactile afferents
exhibit very precise and repeatable timed spike responses to
vibratory stimuli (Talbot et al., 1968). The importance of spike
timing in tactile coding has since been established across a
variety of tactile sensory modalities (Saal et al., 2016), including
vibratory frequency (Harvey et al., 2013), surface texture (Weber
et al., 2013), surface curvature (Mackevicius et al., 2012), and

FIGURE 5 | The average frequency-threshold curves of single-unit. (A)

Observations [adapted from SA1, RA1 (Verrillo and Bolanowski Jr, 1986), PC

(Mountcastle et al., 1972), HM (Gescheider et al., 1985)]. (B) Prediction of our

model. The human threshold (HM) is the minimum of the thresholds of the 3

mechanoreceptive types. The R2 in the legend is the coefficient of

determination between the observed data in panel (A) and the predicted data

in panel (B) for each afferent and for the human threshold (gray).

direction of tangentially applied forces (Johansson and Birznieks,
2004). To evaluate the performance of this model in reproducing
spike timing, we carried out another simulation by using the
recorded data of spiking responses to sinusoidal vibration from
Muniak et al. (2007).

As shown in Figure 6A, the simulated responses to sinusoidal
stimuli match well with their recorded counterparts. To quantify
the timing precision of current model in predicting the recorded
spiking responses, we computed the similarity between the
simulated and recorded spike trains at different time scales using
themetric of ISI (interspike interval) distance (Kreuz et al., 2007).
We could then determine how much we needed to jitter the
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recorded spike trains to achieve the level of temporal precision
of the simulated responses using distance difference (dist. diff,
referring to Saal et al., 2017). The jittered spike trains was
generated by sampling randomly from a zero-mean Gaussian
distribution with a given SD and then adding to each recorded
spike (Bensmaia et al., 2008). We tested SDs ranging from 1
to 10ms. As illustrated in Figure 6B, the model is worse if
the averaged difference is greater than zero (horizontal black
dotted line). The jitter value that averaged difference curve cross
zero was defined as the precision of the model (vertical black
dotted line Figure 6B). We found that the current models of
all afferent types achieve a temporal precision better than 6ms.
The PC models are the most precise, down to precision of about
2.5ms, The SA1 and RA1models achieve precisions ranging from
3 to 6 ms.

In order to compare current model with the work (Saal
et al., 2017) in terms of timing precision, we also reproducing
the spiking trains in response to the same stimulus using code
in work of (Saal et al., 2017) (http://bensmaialab.org/code/
touchsim/). The code of reproducing the spike trains as shown in
Figure 6B are also available in our Github repository. As shown
in Figure 6B, the current model performs relatively better the
work of (Saal et al., 2017), especially for SA1 afferents.

PERFORMANCE EVALUATION AND
COMPARISON WITH PREVIOUS WORK

Computational Efficiency
To evaluate the computational efficiency of simulating massive
numbers of tactile units, we present the averaged consuming
time and the maximum number of tactile units that allow real-
time simulation (MNTARS) at different sampling rates for each
afferent type (Figure 7). When simulating multiple tactile units,
the input, all intermediate or output variables were written
in a two-dimensional Numpy arrays (see Figure 1D), and the
consuming time was measured with time stamp of Python. As
seen in Figure 7B, the model runs in real time with about 300
units at a sampling rate of 4 kHz, and 2,000 units at rate of 1 kHz,
and 4,000 units at rate of 500Hz (running under the condition of
62% remaining free physical memory).

Comparisons With Previous Work
In order to compare with the previous spike neuron models,
we also implemented the Hodgkin-Huxley, FitzHugh-Nagumo,
Izhikevich Model, and IF models referred from the literature
(Hodgkin and Huxley, 1952; Fitzhugh, 1961; Izhikevich, 2003;
Brette and Gerstner, 2005), respectively. The codes of these
compared models were rewritten with Python and available in
our Github repository. The NSMmodel was not implemented for
comparison, since its code is not available.

Comparing firing spike reproduction by the previous spiking
neuron models, the spike waveform generated by spike
synthesizer matches the typical recorded ones almost perfectly
(see Figure 8A). Although the spike synthesizer did not show
computational efficiency over some spiking neuron models (e.g.,
FN, IF, IZ, see Figure 8B) especially at high sampling rate,
improvement of matching recorded spiking shape (6th trace in

Figure 8A) over these models is dramatic. In addition, the spike
synthesizer can be implemented to accurately reproduce action
potential of any shape by changing base wave in Figure 1B.

A multifaceted comparisons between this model and previous
related work are shown in Table 2. Compared to the NSM
model and the Work of (Saal et al., 2017), our model have
less parameters, but it can be implemented to characterize 3
major types of tactile units, and allow for a faster computation
of reproducing most of their response properties with higher
timing precision.

DISCUSSIONS

In the present work, we simulated the responses of single
tactile receptors and their afferents activated by a punctate
or vibrating stimuli. The current model creates a biologically
plausible response using many characteristics taken from the
known neurophysiological literature.

As depicted in Figure 5B, the adaptation properties
of simulated units (Figure 4) create accurate frequency
characteristics of neural threshold (Figure 5B). It supports the
hypothesis that frequency characteristics of neural threshold is
mostly due to the adaptation properties (Bolanowski et al., 1988).
As illustrated in Figure 6, we found a high temporal agreement
between the observed spike timing and that predicted by this
model, which can be attributed to the training method using
neurophysiological dataset. Compared to model developed by
Saal et al. (2017), this model make use of frequency modulator
as illustrated in Figure 1B to generate action potentials whose
firing rate is linear to the output of TCF model. Therefore, the
current model can be simplified easily and trained accurately,
which allows for quickly simulating thousands of tactile units
with high timing precision (see Figures 6, 7B).

The model developed by Saal et al. can also be implemented
to reproduce spiking responses with millisecond precision for
the 3 types of tactile units, and runs in real time with 300
units at a rate of 300Hz (Saal et al., 2017). Their work includes
an IF model, and the continuum mechanics (CM) model to
simulate the skin mechanics. As illustrated in Figure 6, the
current model achieve almost same timing precision for PC
units, but performs better for SA1 and RA1 units. As seen in
Figure 7B and Figure 8B, the current model allow for the real-
time simulation of about 4,000 tactile units at a rate of 500Hz
and reproducing the accurate spike shape of tactile afferents. The
spiking synthesizer can be implemented to reproduce biological
action potentials of different tactile neuron types by replacing
different base waves (see Figure 1C). Since there is a diversity
in shape of action potentials in peripheral and central neurons,
the spiking synthesizer may be extended simulate other sensory
neurons (Bean, 2007). Compared to model developed by Saal
et al. the current work lack of CM model to simulate skin
mechanics. The CMmodel adopted by Saal et al is fast to compute
(Sripati et al., 2006), thus the current model combining with the
CM model will perform better in biological compatibility and
computational efficiency than the model by Saal et al.

It should be noted that the simulations were mostly compared
to responses recorded from nerves innervating the monkey
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FIGURE 6 | Evaluation of spike-timing precision for each afferent type. (A) Recorded (gray dotted marks) and simulated spike trains of 5 sampled tactile units for each

afferent type in response to a sinusoidal stimulus of 20Hz vibration (black solid line) with amplitudes of 35 (left), 130 (center) and 250 um (right). Recorded spike trains

and the stimulus were adapted from Muniak et al. (2007). (B) Difference in the spike distance between the simulated and jittered spike trains to recorded spike trains

as a function of jitter SD. The vertical black dotted line localizing at the cross of zero horizontal line and the quadratic fitting curve of current model determine the

timing precision.

FIGURE 7 | Evaluation of computation efficiency for simulating population units. (A) Averaged consuming time for simulating each type of tactile unit for 1 second at

different setting number under different sampling rate. Error bar represent the standard deviation of the mean. (B) MNTARSs at different sampling rates. The MNTARS

was evaluated as the setting number at cross of consuming time curve and horizontal dotted line in panel (A).

fingertip, but the model can also be expanded for the human
by only adjusting the mechanotransduction coefficient (As),
since the individual tactile afferents in human and macaque
behave nearly identically in basic response properties (Muniak
et al., 2007). Interestingly, we also found that all three types of
mechanoreceptors were sensitive to a stimulus with a sudden
ramp change. It is common among sensory systems for dynamic

stimuli to generate short, but strong, responses. This can be seen
in vision (Bisley et al., 2004), and the auditory system (Flint
et al., 2011), as well as in the tactile system. This phenomenon
could be associated with orienting reflex, which is an organism’s
immediate response to a change in its environment. Animals
constantly focus attention to changes of the stimulus, which is
an important way to survive.
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FIGURE 8 | Performance comparison between different spiking neuron models. (A) Reproduction of spiking waveform (200ms frame) using our spike synthesizer and

previous neuron models (from top 1 to 5th trace), their applied current (ia, nA) is shown in gray curve in each simulated trace. The recorded typical spiking waveform

reprinted from Hodgkin et al. (1952), are depicted in bottom. (B) Consuming time of converting applied current into action potential for simulation in left figure at

different sampling rate using different neuron models. Error bars represent the standard deviation.

TABLE 2 | A comparison between the contributions of this work and the related works.

Models Parameter

number

MNTARS

(units)

TP

(ms)

Properties allowed to be simulated Type of afferent fiber

FC AT AP SA1 RA1 PC

This work 10 ≈4000 <6 Y Y Y Y Y Y

Work of Saal et al., 2017 13 <350 <7 Y Y Y Y Y

NSM model Biswas et al., 2015 >20 Y Y Y N N Y

TP, Timing precision; FC, Frequency sensitivity; AT, Absolute threshold; AP, adaptation properties; Y, supported; N, unsupported.

APPLICATIONS

A mathematical model to quantitatively characterize tactile
unit in response to stimuli and to output a response in
a biological code has great potential. For instance, the
proposed model can be a powerful tool to investigate the
sense of touch. Indeed, recording the responses of human or
monkey afferents is technically challenging and only yields
responses at a time. The model could also be used to create
hypotheses about how more complex stimuli are encoded
in the tactile periphery, which can then be tested in the
human or animal model. The whole hand contains about
17,000 tactile units (Johansson and Vallbo, 1979), which work
together to transmit information about shape, texture and
movement. After a certain simplification, our model allows
for real-time simulating the responses of tactile afferents in
whole hand.

The model can be used as a tool to investigate shape and
texture encoding in nerve system. The PC afferents play a role in
the perception of fine textures whose elements are too small and

closely spaced to be processed spatially (Hollins et al., 2002), and
even for the perception of relatively coarse textures (Cascio and
Sathian, 2001; Gamzu and Ahissar, 2001). This model lays the
groundwork for researchers to investigate the interactive effect
between PC and SA1 afferent responses to fine textures, which
provide a valuable insights to improving realism of rendering
virtual fine texture with haptic devices.

An exciting use of this model is in brain-machine
interfaces. Using a model such as this, signals transduced
by sensors located on a prosthesis could be converted into
patterns of neural activity, which could then be sent to a
peripheral nerve to accurately represent how the nerve in
hand would respond to skin indentation. In addition, the
spiking synthesizer could be used to convert any spike rate
input into a burst of biological action potentials with high
timing precision, which may improve the biocompatibility
of the current sensory prosthesis. The current model
may also leads to new ways of designing highly realistic
tactile interfaces such as neurorobots and bionic hands
(Bologna et al., 2001).
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LIMITATIONS OF MODEL

This model faithfully reproduces key response properties of
tactile afferents, but it is also subject to some limitations.

First, while we were able to simulate single-afferent response
for SA1, RA, and PC afferents, we did not simulate SA2 fibers,
since there are very few neurophysiological experimental data
for fitting the SA2 model, and the primary function of SA2
fibers is thought to be encoding stretch, rather than indentation
(Johnson, 2001).

Second, this model treats the tactile unit as a single-
unit isolated from other units, when in reality, it is not.
Histological studies reveal that the connections are ubiquitous in
tactile afferents, with single afferent fibers innervating multiple
receptors and single receptors receiving multiple afferent fibers
(Par et al., 2002). However, the model can be extended to
accommodate afferent branching, especially when mechanisms
by which input from the multiple receptors is integrated
to evoke the afferent responses are better understood by us
Lesniak et al. (2014).

Third, the current model rapidly recreates the temporal firing
characteristics of tactile units with high temporal precision,
however the mimicry of their spatial characteristics is not
addressed. The spatial characteristics of spikes is reflected in
afferent population response (Yoshioka et al., 2001; Weber et al.,
2013). To simulate population response, parameters such as the
skin elasticity and relative positions between the contact points
and the receptors on the contact area are required. The skin
biomechanics which includes these parameters can be included
in has been proven to be important to simulating tactile afferent
response (Birznieks et al., 2010). Although skin mechanics is not
considered in this study, the current model is also useful. As
shown in Figure 1D, all the signal variables were defined as two
dimensional arrays to set an interface for simulating population
responses. By adding an accurate skin mechanics model to
compute the skin indentations from stimuli, the current model
has the capability of reproducing afferent population response to
stimuli of different shape and size with high timing precision.

CONCLUSION

The current work provides a pieces of Python code to
accurately reproduce the selective responses of single tactile
units in a biological pattern using an electromechanical circuit
model. This model has the potential of giving us a better
understanding of afferent firing patterns in response to skin

indentations. This work may provide valuable guidance to
designing prostheses with tactile feedback, enhancing the realism
of haptic rendering of virtual tactile stimuli, and building a
digitized human hand with physiological response in a virtual
surgical system.

Although the current work has mimicked the responses
of single tactile receptors and afferents comprehensively, it
is not enough to recreate the tactile afferent population
responses. Complex tactile stimuli such as texture, shape,
roughness of a grating, and edge orientation, are encoded
in population responses (Khalsa et al., 1998; Hollins and
Bensmaïa, 2007; Weber et al., 2013; Suresh et al., 2016). In
the future, we will address these issues by constructing a
computing model of population responses. This is beyond the
scope of the current work but we think this might allow
for a better understanding of peripheral representation of
tactile stimuli.
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