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We propose event-related cortical sources estimation from subject-independent

electroencephalography (EEG) recordings for motor imagery brain computer interface

(BCI). By using wavelet-based maximum entropy on the mean (wMEM), task-specific

EEG channels are selected to predict right hand and right foot sensorimotor tasks,

employing common spatial pattern (CSP) and regularized common spatial pattern

(RCSP). EEG from five healthy individuals (Dataset IVa, BCI Competition III) were

evaluated by a cross-subject paradigm. Prediction performance was evaluated via a

two-layer feed-forward neural network, where the classifier was trained and tested

by data from two subjects independently. On average, the overall mean prediction

accuracies obtained using all 118 channels are (55.98±6.53) and (71.20±5.32) in cases

of CSP and RCSP, respectively, which are slightly lower than the accuracies obtained

using only the selected channels, i.e., (58.95±6.90) and (71.41±6.65), respectively. The

highest mean prediction accuracy achieved for a specific subject pair by using selected

EEG channels was on average (90.36±5.59) and outperformed that achieved by using all

available channels (86.07 ± 10.71). Spatially projected cortical sources approximated

using wMEM may be useful for capturing inter-subject associative sensorimotor brain

dynamics and pave the way toward an enhanced subject-independent BCI.

Keywords: inter-subject sensorimotor dynamics, brain computer interface, wavelet based maximum entropy on

the mean, motor imagery, electroencephalography

1. INTRODUCTION

Most brain computer interfaces (BCI) require subject-specific training sessions, which can annoy
users and limit BCI applications such as affective states assessment (Andujar et al., 2015), lie
detection (Wang et al., 2016), and gaming (van de Laar et al., 2013). Furthermore, not all the users
are able to control BCI due to BCI illiteracy (Allison and Neuper, 2010) and spatio-temporally
complex resting state network (RSN) dynamics over time and across individuals (Jensen et al.,
2011). Many factors including time-variant psychophysiological, neuroanatomical traits, and user’s
basic characteristics essentially cause unreliable estimate of RSN, which engender short and
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long-term brain signal variation over time and across individuals
(Goncalves et al., 2006; Ahn and Jun, 2015; Kasahara et al.,
2015; Zhang et al., 2015; Acqualagna et al., 2016; Athanasiou
et al., 2017). Resting state electroencephalography (EEG)-derived
spectral entropy and power spectral density are associated with
sensorimotor BCI performance (Zhang et al., 2015; Acqualagna
et al., 2016). Attention and motivation are psychological
predictors that reflect sensorimotor BCI performance (Hammer
et al., 2012). Taking anatomical information such as electrode
positioning and head morphologies into consideration can
augment subject-to-subject transfer learning and thus BCI
performance (Wronkiewicz et al., 2015).

The inter-subject and inter-session variabilities of brain
dynamics significantly degrade the performance of EEG-
based BCI (Saha et al., 2018). Subjects who show dissociative
brain responses, i.e., responses with negligible commonalities
across individuals, cannot be accommodated by a generic
BCI framework. On the contrary, subjects showing significant
commonalities in their brain responses achieve relatively high
performance in the context of subject independent motor
imagery (MI) classification (Saha et al., 2016, 2018). A recent
EEG-based experiment on drowsiness detection signifies the
influences of intra- and inter-subject variability and has proposed
multi-subject transfer framework for reducing calibration time
(Wei et al., 2018).

In this paper, we explore inter-subject associative brain
responses to identify pairs of individuals who demonstrate
similar EEG dynamics during MI tasks. We anticipate higher
classification accuracy in people with higher inter-subject
associativity. Previous works used the Indian Buffet process and
Kullback-Leibler divergence to identify inter-subject associative
individuals prior to classifying multi-subject EEG signals and
showed that inter-subject associativity could be potentially
used for multi-subject subspace learning (Kang et al., 2009;
Kang and Choi, 2014). Thus, inter-subject associative BCI
could eliminate the need for subject-specific calibrations despite
differences in cortical activities across subjects, mostly because
of various time variant psychophysiological factors (Goncalves
et al., 2006) and individuals’ basic characteristics (Ahn and
Jun, 2015). Compensating for inter-subject difference in brain
responses can be crucial for improving BCI performance. One
approach is to select inter-subject associative EEG channels
that exhibit robust activation during specific cortical tasks
(Saha et al., 2016). The implicit assumption is that eliminated
channels represent RSN and subject-specific MI dynamics free
from signatures that are common between subjects. Moreover,
individual brain dynamics sometimes show inter-subject cortical
association during external stimulation, i.e., visual (Hasson
et al., 2004) and auditory (Abrams et al., 2013) events. Subjects
having common psychological perspective share associative brain
responses during natural vision (Lahnakoski et al., 2014). An
ensemble of classifiers has been used to classifymental states from
single trial inter-subject EEG recordings (Fazli et al., 2009). In
carefully selected subjects, common spatial pattern (CSP)-based
subspaces learning methods deal with inter-subject/session data
efficiently (Samek et al., 2013, 2014). Subject independent BCI is
currently feasible (Abibullaev et al., 2013) and could be used in

research, rehabilitation, and gaming (Rana et al., 2013). A recent
study used a particle swarm optimization based inter-subject
common feature learning technique for BCI implementation
without subject-specific training (Atyabi et al., 2017). An
unsupervised spectral transfer using information geometry has
shown promising classification accuracy in cases, using fewer or
no trials from the target subject (Waytowich et al., 2016).

The aim of this study is to identify inter-subject associative
electromagnetic sources, estimated from wavelet-based
maximum entropy of the mean (wMEM) of single trial
EEG, and project them into a three-dimensional (3D) head
model. We show that wMEM captures associative inter-
subject sensorimotor dynamics, which can be utilized to assess
inter-subject cortical associativity.

2. METHODS

2.1. Data and Experimental Settings
We used dataset IVa of BCI Competition III, comprising EEG of
five healthy subjects specified as aa, al, av, aw, and ay recorded
during right hand and right foot MI (Blankertz et al., 2006). The
dataset consists of 280 trials for each subject, i.e., 140 trials for
each class. A visual cue was given before each trial, consisting
of 3.5 s of EEG recordings with 118 electrodes (Extended
10/20 system). To eliminate the effect of visual cues, 2.5 s of
recordings following 0.5 s of the visual cues were considered
for experimentation. Figure 1 illustrates the spatial distribution
of EEG channels (Extended 10/20 System) and the timing of
recording paradigm.

Two experiments for evaluating the inter-subject associative
sources and estimating the inter-subject classification
performance, respectively, were carried out on any two
subjects at once as shown in Figure 2, i.e., all possible pairs
of the subjects set were considered. Then, we compared the
classification performance achieved by using all 118 channels
versus that achieved by the selected channels.

Any two subjects’ EEG from the set of five participants (aa, al,
av, aw, and ay) are represented as X and Y , respectively. The total
number of trials Tr available for each subject (280) was divided
into 10 equal sets as follows:

X = [x1, x2, ........., x10];Y = [y1, y2, ........., y10]. (1)

Then, sets of inter-subject EEG are derived:

XY = [x1y1, x2y2, ........., x10y10], (2)

where each component of XY contains Tr
10 trials from subject X

that were used to train the classifier and the remaining Tr
10 trials

from subject Y that were used to test the classifier. On each set of
XY , wMEM was computed to estimate inter-subject associative
cortical sources and to test the classification performance. The
classification performance was averaged over the 10 sets.

Figure 2 shows the block diagram demonstrating the
experimental settings corresponding to preprocessing, channel
selection, and classification of inter-subject EEG signals. In the
preprocessing step, inter-subject set of EEG trials were band-pass
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FIGURE 1 | (A) Spatial distribution of 118 EEG channels based on the

extended International 10/20 System and selected channels for subject pair

al − ay. (B) Timing of the recording paradigm for dataset IVa of BCI

Competition III and example of selected 2.5 s EEG signal for channel Cz.

filtered (8 and 40 Hz), using a Butterworth filter of order 10
(Saha et al., 2016, 2018). For each class, trials were separated to
apply wMEM method to investigate class-specific inter-subject
associative cortical sources and then to select EEG channels
representing the mostly activated sensorimotor sources. The
union of two channel sets corresponding to right hand and
right foot was considered the set of optimal channel set for
specific subject pair. The numbers of channels used in this
study varied between two different cases: Case I—all available
118 channels were employed for classification; Case II—only
those channels selected by the wMEM approach (<118) were
employed for classification. Apart from the numbers of channel,
all other parameters were kept identical for evaluating BCI
classification performance.

To evaluate inter-subject BCI performance, common
spatial patterns (CSP) without and with covariance estimation
regularization (Ramoser et al., 2000; Lotte and Guan, 2011)
were computed to spatially project multichannel EEG. Wavelet
decomposition-based subband entropy (Daubechies 3, level: 3)
was calculated to obtain features (Saha et al., 2016, 2018) for a

two-layer feed-forward neural network classifier as described
previously (Svozil et al., 1997).

2.2. Wavelet-Based Source Localization
2.2.1. The Time-Frequency Forward Model and EEG

Source Distribution
Assuming that oscillatory brain activities result from underlying
processes occurring at different frequency bands located in
extended cortical areas (Lina et al., 2014), a time-frequency (t-
f) forward model utilizing discrete wavelet transform of the
data as well as the brain sources along with spatial clustering
in homogeneous parcels can be defined (Tadel et al., 2011).
To calculate the discrete wavelet transform, real Daubechies
filter banks with four vanishing moments were used. The
complete details of the numerical implementation of wMEM
method can be found in Lina et al. (2014). In this study,
we assume that single trial inter-subject EEG signals result
from diverse physiological background activity and MI induced
cortical activities. Ensemble-averaging over class-specific MI
trials effectively reduces the effect of independent physiological
fluctuations and, thus offers a potential tool for locating
sensorimotor cortical sources. The underlying hypothesis is that
wMEM based cortical sources on inter-subject EEG trials set
would give only inter-subject associative cortical sources, in
which only the inter-subject common EEG patterns related to
right hand or right foot MI are detected.

The t-f forward model depends on the lead field matrix
that governs the relationship between co-registered bioelectric
sources and set of sensors. A generalized anatomical MRI
template (ICBM152) estimated from MRI scans acquired
from 152 healthy subjects, was used to create a realistic head
model (Fonov et al., 2011). The template is included in the
Brainstorm software (Tadel et al., 2011). The template comprises
three head layers, i.e., scalp, outer skull, and inner skull,
which were approximated using T1 MRI sequences. It exhibits
good contrast and captures fine definition of the outermost
boundary of the brain. OpenMEEG software was then used to
solve steady-state Maxwell equations to calculate the lead field
matrix by establishing a realistic relationship between bioelectric
sources in the ICBM152 and co-registered sensors on the scalp
(Kybic et al., 2006; Gramfort et al., 2010).

The EEG inverse solution utilizes a distributed source model,
where a large number of dipolar sources are disseminated across
the cortex. Depending on the anatomical restrictions, each
dipole is oriented orthogonal to the local cortical surface. The
linear relation of the source amplitude to the recordings can be
written as

M = G J+E, (3)

where M is the recording matrix of size (q × τ ), which contains
EEG signals of q channels at τ time samples. E represents
Gaussian recording noise. J is an unknown matrix of the size
(r× τ ) that represents the current density of the r dipolar sources
along the tessellated cortical surface. G represents the lead field
matrix (q× r). G is estimated by solving the t-f forward problem
that evaluates the contributions of all dipolar sources to the
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FIGURE 2 | Block diagram representing the EEG trial structure and the proposed methodology to identify inter-subject associative EEG channels and to evaluate the

BCI performance. Preprocessing step includes constructing a set of EEG trials from two different subjects with a ratio of 1:1 and applying a Bandpass filter with corner

frequencies of 8 and 40 Hz. Inter-subject trials are separated according to the nature of motor imagery tasks, i.e., right hand or right foot. Class-specific sets of trials

were used to estimate inter-subject cortical sources and, consequently, EEG channels. For evaluating the BCI performance, trials from one subject were used to

establish the single-trial BCI classifier model, which was then evaluated on the trials acquired from a different subject.

electrodes. Hence, the inverse solution approximates J from the
recorded dataM and the evaluated lead field matrix G.

2.2.2. wMEM Inverse Solution
Solving the ill-posed inverse problem of source localization
requires some a priori information to be incorporated in the
regularization framework to obtain a unique solution. In the
MEM framework, the amplitude of the sources J is considered
a multivariate random variable j of r dimensions that has
a probability distribution dp(j). In the MEM framework, to
regularize the inverse problem some previous knowledge on j
is incorporated as reference distribution dv(j). This reference
distribution represents a realistic spatial model which presumes
the brain activity is organized into K(K << r) cortical
parcels and every parcel is related to a secret state variable.
This variable controls the parcel activity, whether or not
the parcel is active during a certain task. A data-driven
parcellization method is used to spatially cluster the cortical
surface into K non-overlapping parcels. The technique consists
of first applying a projection method named as the multivariate
source pre-localization technique, estimating a probability-like

coefficient for every dipolar sources distributed along the
cortical mesh. This coefficient characterizes the contribution of
every source to the data, followed by region growing around
local maxima.

In theMEM reference model, every parcel is assigned a secret
variable to model the probability of the parcel’s activity, whether
or not it is active. It is to be noted that themultivariate source pre-
localization coefficients of all the sources within the parcel was
used to initialize this probability. Based on the state of activation
of the parcels,MEM inference can switch any of these parcels on
or off. It is also able to approximate a contrast of source intensities
within the selected active parcels. Usually, MEM is applied for
solving the inverse problem in the time domain. wMEM is the
wavelet variant of MEM that operates in the time-frequency
(Lina et al., 2014).

While the joint probability of the wavelet coefficient of all
sources at a specific time and scale is represented as p(w), the
MEM estimation deduces the expectation Ep[w] by assuming
a reference probability µ(w) from which the entropy deviation
is minimized under the goodness-of-fit data constraint. The
entropy Sµ(f ) of any µ density, p(w) = f (w)µ(w), can be
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described as follows:

Sµ(f ) = −

∫

w
f (w)lnf (w)µ(w)dw, (4)

herew are the wavelet coefficients of the sources andw∗ = Ep∗ [w]
will give the optimum solution, where p∗(w) = f ∗(w)µ(w),
considering

{
f ∗ = argmaxf Sµ(f ).

with
∫
w Gwf (w)µ(w)dw = d∗,

(5)

where d∗ can be obtained from d∗ = W−1δτ (w) andW =
∑− 1

2
d

is the whitening matrix. This whitening matrix can be evaluated
from a baseline EEG recording assuming no signal of interest
is contained in the baseline recording. δτ (w) represents the soft
shrinkage of the wavelet coefficient which can be defined as

δτ (w) =

(
1−

τ

|w|

)

+

w

where w+ = w for w > 0 and w+ = 0 for other cases.
The threshold τ of each channel is obtained from the variance
of the highest frequency wavelet coefficients, evaluated using a
median estimator.

With respect to optimum µ-density f ∗, the mean of the
wavelet coefficients of the sources is used to estimate the
expectation of the coefficient. Finally, the expectation of the
coefficient with respect to the f ∗, can be expressed as the a
posteriorimean estimate of the wavelet coefficients:

w∗ =

∫
wf ∗(w)µ(w)dw =

d

dξ
F∗µ(ξ )

∣∣∣∣
ξ=Gtλ∗

, (6)

with F∗µ(ξ ) = ln
∫
eξ

twµ(w)dw and lnZ(λ) = F∗µ(G
tλ). In (6) λ∗

is the unique solution of

λ = argmaxλD(λ),

where

D(λ) = λtd∗ − F∗µ(G
tλ)−

1

2
λtη∗λ

and η∗ is the covariance matrix of residual noise.
For localizing cortical sources, either the time course of the

sources obtained by inverse wavelet transform or spatial cortical
map of the wavelet coefficients have been considered. A complete
description of wMEM-based localization can be found in Lina
et al. (2014).

To implement the wMEM-based source localization for the
inter-subject EEG, the open source Brainstorm software was used
(Tadel et al., 2011). MI induced sources were projected into the
3D anatomical headmodel. For each class, all available trials were
averaged and a noise covariance matrix was estimated. Finally,
the BrainEntropy MEM with the wMEM option was used to
calculate the sources from the averaged data.

2.2.3. Inter-subject Associative EEG Channel

Selection
Following class-specific wMEM-based cortical source
localization, careful visual inspection on the MRI head images
(i.e., coronal, sagittal, and axial view) and 3D cortex cartoon
model as shown in Figures 3, 4, respectively, was carried out. For
each class, all time instances were examined for activated sources
within the trial duration, i.e., 0–2.5 s. The EEG channels located
on/around the estimated sources on the 3D head model template
were considered as task-specific inter-subject associative optimal
channels. Figures 3, 4 illustrate inter-subject associative cortical
source estimation for subject pair al-ay at a time instance.
Notably, the 3D cortex head model can be examined visually by
rotating the view at any of the 3600.

2.3. Common Spatial Pattern With and
Without Covariance Estimation
Regularization
The aim of CSP is to maximize the difference between class
specific features (Ramoser et al., 2000). Here, we use CSP with
tuning the covariance estimation, which effectively deals with
undesired outliers and is suitable in cases of small training trials
(Lu et al., 2010; Lotte and Guan, 2011).

The EEG signal is represented by E and of size N × P, where
N is the number of channels and P is the number of samples
per trial. For the conventional CSP algorithm, the sample based
covariance matrix estimation is required. The sample covariance
matrix of a trial E is normalized to the total variance as (Ramoser
et al., 2000; Lu et al., 2010).

S =
EET

trace
[
EET

] , (7)

where T denotes the transpose of a matrix.
IfK trials are available for training corresponding to each class

for a subject, indexed by k as E(c,k) that refer to the S(c,k), based
on (7), k = 1, 2,......,K, the mean sample covariance matrix across
the trials is given by

S̄c =
1

K

K∑

k=1

S(c,k), (8)

where c ∈ {1, 2} represents two classes of the trial associated with
the MI tasks.

The discriminative spatial patterns in CSP are calculated based
on the sample mean covariance matrix estimation based on (8).
The next section will introduce regularization in CSP.

2.3.1. Covariance Matrix Estimation With

Regularization
Regularization is achieved by biasing the covariance estimation
away from their sample-based values toward more physically
plausible values, which reduces the variance of the sample-based
estimates while tending to increase bias (Lu et al., 2010). This is
done by using one or more regularization parameters (i.e., β and
γ in this paper).
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FIGURE 3 | Motor imagery induced inter-subject (subject pair al-ay) cortical sources on a MRI head model estimated via wMEM: from left-right, coronal view, sagittal

view, and axial view, respectively for two motor imagery tasks: (A) right hand and (B) right foot movement.

FIGURE 4 | wMEM based inter-subject (subject pair al-ay) associative cortical source localization illustrated on a 3D cortex cartoon model: from left-right, top view,

side view (right hemisphere), and side view (left hemisphere), respectively for (A) right hand and (B) right foot motor imagery. In (B), the activity visible in the top view is

not clearly projected on the side view (left hemisphere) as the activated sources lie mostly within relatively inner parts of the cortex (in between gyri).
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The regularized average spatial covariance matrix for each
class is defined as

∑̂
c
(β , γ ) = (1− γ )�̂c(β)+

γ

N
trace

[
�̂c(β)

]
· I. (9)

Here, β and γ are regularization parameters (0 ≤ β , γ ≤ 1) and I
is the identity matrix. �̂c(β) comprises the covariance matrix for
the trials from the specific subjects, as well as generic trials, and is
given by

�̂c(β) =
(1− β).Sc + β .̂Sc
(1− β).M + β .M̂

. (10)

Here, Sc is the sum of the sample covariance matrices for all M
training trials for class c :

Sc =

K∑

k=1

S(c,k). (11)

Ŝc is the sum of the sample covariance matrices for K̂ generic
training trials with covariance matrix E

(c,k̂)
for class c:

Ŝc =

K̂∑

k̂=1

S(c,̂k). (12)

Here, Sc and Ŝc are normalized and are analogous to the sample
covariance matrix in (7). The objective of Ŝc is to reduce the
variance in the covariance matrix estimation and produce more
reliable results.

2.3.2. Feature Extraction in RCSP
The regularized composite spatial covariance is formed and
factorized as Lu et al. (2010)

∑̂
(β , γ ) =

∑̂
1
(β , γ )+

∑̂
2
(β , γ ) = Û∧̂ÛT . (13)

Here, Û denotes the matrix eigenvectors and ∧̂ denotes the
diagonal matrix of corresponding eigenvalues. The eigenvalues
are assumed to be sorted in descending order throughout this
paper (Ramoser et al., 2000; Lu et al., 2010).

Finally, the projection matrix is formed as Lu et al. (2010)

Ŵ = B̂T∧̂−1/2ÛT , (14)

where B̂ denotes the matrix of eigenvectors for the whitened
spatial covariance matrix and defined as

B̂ = ∧̂−1/2ÛT
∑̂

c
(β , γ )Û∧̂−1/2. (15)

In RCSP, an input trial E is projected as Lu et al. (2010)

X̂ = ŴTE. (16)

To obtain the most discriminative features for both classes,
the optimal channels are to be selected from the leftmost and

rightmost channels. For example, the first channel represents
the most distinguished features for class 1 and the last channel
represents the most distinguished features for class 2. As the
channel selection converges to the central channel of the X̂,
the features become poor and may hardly distinguish different
classes. It is to be noted that RCSP equals traditional CSP when
β = γ = 0.

The following combinations of γ and β values were
considered during regularization (Wang et al., 2006; Lu et al.,
2010; Saha et al., 2018):
β = (0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
γ = (0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
A total of four CSP components, two for each class, were selected
for extracting features (Wang et al., 2006; Sannelli et al., 2016).

3. RESULTS AND DISCUSSION

3.1. Selection of Inter-subject Associative
Channels
Figures 3, 4 illustrate inter-subject associative source locations
for subject pair al-ay at a time instance. Table 1 lists the total
number of selected channels used to classify MIs (Case II).
Although the number of selected channels differed between right
hand and right foot MI, many common channels were identified
for both classes. Some of the projected cortical sources lie within
deeper regions of the brain, thus, maintaining good signal-to-
noise ratio in the scalp EEG becomes critical. Modeling the
signal attenuation from cortical sources located within deeper
brain areas to the EEG electrode montages might play an
important role for dealing with noise efficiently (Cosandier-
Rimélé et al., 2008). Specific parts of the interconnected cortico-
subcortical networks show sensorimotor signatures. For example,
basal ganglia and the ventrolateral part of the thalamus show
sensorimotor activations (Gerardin et al., 2000; Hétu et al.,
2013). Projections of sensorimotor activities to deeper brain
areas are present in motor cortex and supplementary area (Hétu
et al., 2013). Possibly, sensorimotor activities in subcortical
networks manifest in EEG signals. Previous works have exploited
subject-specific EEG source localization based information for
improving sensorimotor BCI performance (Congedo et al.,
2006; He et al., 2015). The cortical sources corresponding
to MI shown in Figures 3, 4, lie mostly within subcortical
areas. The validation of the implication about the subcortical
sources as mostly activated during inter-subject MI require
further investigation. Notably, it has been hypothesized that
the estimated sources delineate only the inter-subject associative
sources; the MI sources that are not common in the subject
pair should not present in this experimental context, because,
the source localization method was applied on inter-subject
set of EEG comprising an equal number of trials from
each subject.

3.2. Motor Imagery Prediction Performance
Table 2 shows the MI prediction performance averaged over ten
sets of inter-subject data of two subjects. Each set consisted of
56 trials in total, the first 28 trials from a subject were used to
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TABLE 1 | Number of selected EEG channels.

Subject pair RH RF Total

aa-al 36 36 43

aa-av 33 39 42

aa-aw 40 42 44

aa-ay 42 37 45

al-av 36 37 43

al-aw 40 23 46

al-ay 28 30 33

av-aw 42 37 46

av-ay 47 45 55

aw-ay 46 54 59

RH, Right Hand; RF, Right Foot.

model the classifier and the remaining 28 trials from another
subject were used to evaluate the performance. Each subject
pair was used twice, alternating the training and evaluation
subjects. The highest prediction performance (90.36 ± 5.59%)
was achieved for subject pair ay-al using CSP with covariance
regularization. This demonstrates the feasibility of inter-subject
BCI for subjects who show similar EEG patterns. In this
case, only 33 of the 118 available channels were employed,
reflecting the inter-subject associative cortical areas. Alternating
the order of training and evaluation trials for subject pair al-
ay reduced the prediction performance to (84.64 ± 13.15%),
suggesting that the performance of CSP depends on the training
data. Since CSP is a data driven method it can be overfitted,
adapting to outliers in the training set (Sannelli et al., 2016).
Tuning of the covariance estimation via two regularization
parameters, γ and β can alleviate this problem. Overall,
regularization of the covariance matrix enhanced prediction
performances compared to standard CSP. For subject pair aa-al,
significant improvements in performances were evident (64.64±
14.33 vs. 76.79 ± 9.11%), further demonstrating the potential
of wMEM as a tool for localizing inter-subject associative
cortical sources.

Figure 5 compares average prediction performance and
highlights cases where selected EEG channels outperformed
results obtained when using all available 118 channels. In
Figures 5A,C, compare the mean performances of first ten
subject pairs summarized in Table 2, while Figures 5B,D

compare the mean performances of the last 10 subject pairs for
CSP without and with covariance regularization, respectively.
Applying CSP with covariance estimation, the median values
of average classification accuracies for the first 10 subject pairs
using all channels and selected channels are 71.43% and 71.79%,
respectively, while they were 69.46% and 70% for last 10
subject pairs. Thus, the overall results might not indicate a
generalized trend of improved performance of inter-subject BCI
performance. However, particular subject pair-specific (al −
ay) improved performance would suggest a novel application
of wMEM and a probable role in investigating inter-subject
sensorimotor dynamics. A reduced number of channels can be
used to achieve comparable performance while lessening the
computational cost.

TABLE 2 | Single trial motor imagery prediction performances.

CSP RCSP

Subject Case I Case II Case I Case II

pair Mean ± SD Mean ± SD Mean ± SD Mean ± SD

aa-al 51.79 ± 14.70 64.64 ± 14.33 73.21 ± 9.71 76.79 ± 9.11

aa-av 54.64 ± 10.25 55.71 ± 7.38 66.79 ± 6.53 66.07 ± 10.00

aa-aw 55.36 ± 10.28 62.86 ± 11.93 68.93 ± 10.92 72.86 ± 7.93

aa-ay 53.93 ± 12.76 58.93 ± 17.11 75.00 ± 8.58 72.14 ± 13.24

al-av 53.93 ± 6.40 51.07 ± 4.47 68.21 ± 6.40 65.71 ± 7.75

al-aw 62.50 ± 7.39 53.93 ± 11.22 72.50 ± 11.91 71.79 ± 10.44

al-ay 73.57 ± 13.38 71.78 ± 11.47 83.21 ± 12.26 84.64 ± 13.15

av-aw 49.29 ± 8.55 53.93 ± 14.43 70.36 ± 6.74 68.57 ± 9.34

av-ay 62.50 ± 10.81 62.86 ± 11.81 72.50 ± 10.39 71.79 ± 8.49

aw-ay 47.50 ± 10.39 53.21 ± 11.84 66.79 ± 7.54 70.00 ± 9.25

al-aa 56.79 ± 10.97 58.93 ± 11.82 72.50 ± 5.84 70.71 ± 13.55

av-aa 52.14 ± 13.70 52.50 ± 5.84 67.14 ± 9.34 64.29 ± 7.14

aw-aa 56.07 ± 9.68 56.43 ± 13.86 64.64 ± 7.23 63.21 ± 8.43

ay-aa 57.86 ± 9.49 56.07 ± 10.11 69.29 ± 6.56 70.36 ± 11.05

av-al 46.07 ± 8.82 55.36 ± 12.17 71.79 ± 7.80 71.79 ± 9.74

aw-al 63.93 ± 14.72 68.21 ± 20.86 69.64 ± 12.05 75.71 ± 15.50

ay-al 63.21 ± 20.55 77.14 ± 14.40 86.07 ± 10.71 90.36 ± 5.59

aw-av 54.29 ± 11.88 55.36 ± 5.89 66.43 ± 5.38 65.71 ± 4.52

ay-av 53.93 ± 8.82 54.29 ± 5.53 68.93 ± 8.08 66.07 ± 4.84

ay-aw 50.36 ± 10.02 55.71 ± 5.11 70.00 ± 6.12 69.64 ± 5.39

Mean(Mean)

± SD(Mean)

55.98 ± 6.53 58.95 ± 6.90 71.20 ± 5.32 71.41 ± 6.65

CSP, Common Spatial Pattern; RCSP, Regularized Common Spatial Pattern; Case I, all

channels; Case II, selected channels. The meaning of bold values are highest prediction

performance.

3.3. Enhanced Inter-subject Associative
Sensorimotor Dynamics
Localizing task induced cortical sources is important because
specific sources provide more informative and inter-class
distinguishable attributes for predicting sensorimotor
events. The minimum current estimates algorithm, applied
to magnetoencephalogram recordings, suggest that the
contralateral motor cortex is highly active during intended
movement direction (Wang et al., 2010). Estimating
sensorimotor cortical sources with fine spatial resolution
EEG source imaging could augment BCI in decoding complex
MI tasks (Edelman et al., 2016). Measurement of entropy by
different means was shown to be useful for cortical source
localization. For example, Von Neumann entropy was applied
to classify MI tasks (Kamousi et al., 2007) and wavelet ridge
analysis-based MEM was applied to localize EEG sources
(Zerouali et al., 2013). However, the cortical sources vary
widely in the spatiotemporal domain across subjects making the
inter-subject source localization challenging, as evident from
an electromagnetic spatiotemporal independent component
analysis-based multi-subject EEG study (Tsai et al., 2014).

Selecting inter-subject associative cortical sources can not
only be used to identify optimal task induced EEG channels,
but can also provide enhanced weight of associativity between
subjects. Not well-understood variability due to functionally

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Saha et al. Inter-subject Associative Cortical Sources

FIGURE 5 | Box plots illustrating mean prediction performances for different subject pairs: the performances were measured while applying common spatial pattern

(C,D) with (RCSP) and (A,B) without (CSP) covariance estimation regularization.

relevant RSN (Wens et al., 2014) and, sometimes outliers
(Arvaneh et al., 2011) might manifest in undesired channels,
which negatively contribute to the prediction performance.
Basically, efficiently dealing with the EEG inverse problem is
challenging as the solution is non-unique and unstable (Grech
et al., 2008). However, the results presented here suggest that
wMEM is a potential tool for approximating cortical sources
originating inside the cortico-subcortical networks. Improved
prediction accuracies with a reduced number of selected inter-
subject channels indicate enhanced associativity of the subjects’
sensorimotor dynamics. In Hossain et al. (2016), wMEM was
adopted as a channel selection tool in subject-specific BCI
settings for the first instance. Clarke and Jandey proposed
MEM for solving the inverse problem (Clarke and Janday,
1989) and Rice had proposed this method as the most probable
solution to the inverse problem in EEG considering realistic
neurophysiological constraints (Rice, 1990). Lina et al. have
recently proposed wMEM in the context of localizing epileptic
sources from EEG data (Lina et al., 2014).

3.4. Study Significance and Limitation
Subject-to-subject and session-to-session transferability of
trained model parameters is inevitably critical for the
generalization of a BCI system (Jayaram et al., 2016). In
supervised machine learning-based applications, a principal
assumption is that the training and test data follow similar
distributions, which often fails and, consequently covariate
shift occurs (Pan and Yang, 2010). Covariate shift adaptation
has been a key strategy to compensate for inter-subject and
inter-session variability in BCI (Sugiyama et al., 2007). However,
this study investigated inter-subject associativity in cross-subject

BCI paradigm (Saha et al., 2016, 2018). The aim was to evaluate
if there are similarities between two subjects’ neural substrates
quantified by wMEM-based inter-subject cortical source
localization for MI tasks. Exploiting inter-subject associativity,
i.e., leveraging source space related neuroscience priors may
augment transfer learning (Wronkiewicz et al., 2015) and
reduce/eliminate the calibration effort for BCI. The advantage
of our cross-subject paradigm over a pooled-subject paradigm is
that it allows to directly assess associativity of any two subjects’
brain dynamics in source space. We suggest that wMEM
selection of EEG channels could advance this goal beyond the
reduction in computational cost due to fewer analyzed channels
because it has been hypothesized that the selected channels
manifest the inter-subject associative sensorimotor dynamics in
source space.

It is to be noted that our results do not indicate a common
trend of BCI prediction performance for all subject pairs.
Our goal was to identify pairs of subjects sharing common
sensorimotor dynamics. Thus, achieving poor BCI prediction
performance for any subject pair might manifest dissimilar MI-
related dynamics between subjects (Saha et al., 2016, 2018). On
the other hand, it might not be improbable to achieve good
prediction performance for one subject pair only, assuming both
subjects share common sensorimotor dynamics related to right
hand and right foot MI. Further studies would be necessary to
explore the role of wMEM-based cortical source estimation in
subject pairs showing poor classification performance. This study
is limited by using data from a few subjects with no individual
information on head/brain anatomy.

Another key limitation of this study is the manual selection
of EEG channels by visually inspecting the MI-related source

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Saha et al. Inter-subject Associative Cortical Sources

activation projected on the 3D head geometry. To the best of our
knowledge, this study is the first attempt to investigate the role
of any source localization method on inter-subject EEG signals
on BCI context to evaluate inter-subject associativity. Future
studies should aim at extracting optimal channels automatically,
by imposing selection criteria in the 3D head model geometry
source space.

4. CONCLUSION

Brain dynamics reflected on RSN are complex and variable
across individuals. Thus, compensating for inter-subject
variability is important for calibration-free BCI. In this paper,
we have demonstrated that wMEM could be used to identify
inter-subject associative sources within the cortico-subcortical
networks, which allow selecting optimal EEG channels for
classifying subject independent MI tasks. The improved
prediction performance utilizing fewer, optimal EEG channels

results in enhanced inter-subject coherence and suggests the
suitability of wMEM for assessing inter-subject associative
sensorimotor oscillations.
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