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Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific

research. Today there exist many open-source toolboxes for spike and LFP data

analysis implementing various functionality. Here we aim to provide a practical guidance

for neuroscientists in the choice of an open-source toolbox best satisfying their

needs. We overview major open-source toolboxes for spike and LFP data analysis

as well as toolboxes with tools for connectivity analysis, dimensionality reduction and

generalized linear modeling. We focus on comparing toolboxes functionality, statistical

and visualization tools, documentation and support quality. To give a better insight, we

compare and illustrate functionality of the toolboxes on open-access dataset or simulated

data and make corresponding MATLAB scripts publicly available.
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1. INTRODUCTION

Analysis of spike and local field potential (LFP) data is an essential part of neuroscientific research
(Brown et al., 2004; Stevenson and Kording, 2011; Mahmud and Vassanelli, 2016). There are
many already implemented open-source tools and toolboxes for spike and LFP data analysis.
However, ascertaining whether functionality of the toolbox fits users’ requirements is in many
cases time-consuming. Often neuroscientists are even not aware that some functionality is already
implemented and start writing their own scripts from scratch which takes time and is error-prone.
We aim to provide a practical guidance for choosing a proper toolbox on the basis of toolbox
functionality, statistical and visualization tools, programming language, availability of graphical
user interface, support and documentation quality. Compared to the existing reviews (Ince et al.,
2009, 2010; Ince, 2012; Mahmud and Vassanelli, 2016; Timme and Lapish, 2018), we

- include in the comparison important toolboxes and tools not covered by earlier reviews (e.g.,
Brainstorm, Elephant and FieldTrip);

- compare in detail common and discuss unique functionality of toolboxes;
- compare and illustrate functionality of the toolboxes on open-access datasets (Lowet et al., 2015;
Lawlor et al., 2018; Perich et al., 2018) and simulated data. For readers’ convenience we make the
corresponding MATLAB scripts publicly available1;

- overview specialized tools for dimensionality reduction and generalized linear modeling as they
are widely used in neuroscientific research (Truccolo et al., 2005; Cunningham and Byron, 2014);

- provide information about documentation and support quality for the toolboxes;

1https://github.com/ValentinaUn/Testing-open-source-toolboxes
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- indicate bibliometric information2: while popularity among
users alone does not guarantee quality, it can be an important
indicator that toolbox’s functions are easy-to-use and have
been tested.

1.1. Scope
We include into our comparison major open-source3

toolboxes (see Table 1) for spike and LFP data processing
and analysis which have a valid link for downloading,
documentation, scientific paper describing the toolbox’s features
or corresponding method, and which were updated in the
last 5 years. In Table 1 we provide a summary of the toolboxes
we consider, we list all toolboxes with a brief description
in alphabetical order in section 7 with paper reference and
downloading link. As a brief introduction to the toolboxes
listed in Table 1, Brainstorm (Tadel et al., 2011), Chronux
(Bokil et al., 2010), Elephant (Yegenoglu et al., 2017), FieldTrip
(Oostenveld et al., 2011), and Spike Viewer (Pröpper and
Obermayer, 2013) are toolboxes for the advanced analysis and
visualization of electrophysiological data including EEG, MEG,
spike, and LFP data, whereas SPIKY (Kreuz et al., 2015) toolbox
is focused on the spike data analysis and on monitoring spike
train synchrony, and gramm (Morel, 2018) is a visualization
toolbox for publication-quality plots of complex data including
neural recordings. Note that in our comparison we focus on
experimental data following a trial-based approach.

We have not listed in Table 1 toolboxes FIND (Meier et al.,
2008), infotoolbox (Magri et al., 2009) and STAtoolkit (Goldberg
et al., 2009), since they are not available under the links provided
by the authors (accessed on 27.03.2019); toolboxes BSMART (Cui
et al., 2008), DATA-Means (Bonomini et al., 2005), MEA-tools
(Egert et al., 2002), MEAbench (Wagenaar et al., 2005), sigTOOL
(Lidierth, 2009), SPKTool (Liu et al., 2011), STAR (Pouzat and
Chaffiol, 2009), since they have not been updated during the
last 5 years (since 2008, 2005, 2007, 2011, 2011, 2011, and 2012,
correspondingly); toolbox SigMate (Mahmud et al., 2012) since
it is a beta version; and toolbox OpenElectrophy (Garcia and
Fourcaud-Trocmé, 2009) which is not recommended for new
users by the toolbox authors4.

1.2. Documentation/Support
We have indicated “In part” in Documentation column for Spike
Viewer and SPIKY since, compared to other toolboxes from
Table 1, they do not provide a description of input parameters
for most of the functions. This complicates understanding of
implementation details for programming-oriented users that
use only a part of the toolbox functionality in their analysis
workflow. gramm toolbox specifies function input parameters
not in code comments but in separate documentation file5.
Considered version of Elephant only provides a getting started

2according to Google Scholar in March 2019 (https://scholar.google.com)
3when the code is available under a license which allows free redistribution and the
creation of derived works
4https://github.com/OpenElectrophy/OpenElectrophy
5https://github.com/piermorel/gramm/blob/master/gramm%20cheat%20sheet.
pdf

tutorial with more tutorials to be added6. Chronux and SPIKY
(MATLAB version) toolboxes are not uploaded to GitHub or
other public version control systems, which prevents tracking
version differences and smoothly reporting bugs (Python version
of SPIKY is on GitHub7).

1.3. Import/Export
Elephant and Spike Viewer are using Neo Python package8,9

(Garcia et al., 2014) with support of many spike and LFP data
formats. Brainstorm, Chronux and FieldTrip support working
with several spikes file formats (e.g., Blackrock, CED, Neuralynx,
Plexon etc.)10 as well as working with data from MATLAB
workspace or stored as .mat files. SPIKY and gramm support
working with data from MATLAB workspace; SPIKY also
supports working with data stored in .mat and .txt file formats.
In Table 2 we summarize spike and LFP data formats which
are supported by the toolboxes. Besides, FieldTrip provides a
standard procedure for converting own unsupported data to the
FieldTrip structure and Neo-library provides use cases for own
data format conversion11.

1.4. Software and Hardware Requirements
All toolboxes from Table 1 are supported by Microsoft
Windows, Macintosh and Linux operating system and are
easy to install. Considered toolboxes were developed in
MATLAB12 and Python13 languages that are popular in
the neuroscientific community. Brainstorm MATLAB version,
Chronux, FieldTrip, gramm and SPIKY MATLAB version
require MATLAB installation and setting path to the toolbox.
Elephant and SPIKY Python version require Python installation
and running Python instructions from the command line as
specified in documentation14,15. Brainstorm standalone version
and Spike Viewer require neither MATLAB nor Python
installation, they are installed via GUI-based interface.

As additional software requirements,

- Brainstorm standalone version requires installing freely
distributed MATLAB Compiler Runtime16. Brainstorm
MATLAB version requires MATLAB Signal Processing
Toolbox for some functionality;

- Chronux requires MATLAB Signal Processing (for common
functionality) and Data Acquisition (for specscope
utility) Toolboxes installed. Chronux under Macintosh
operating system requires compiling of the locfit

(by running locfit/source/compile.m) and
spikesort packages;

6https://elephant.readthedocs.io/en/latest/tutorial.html
7https://github.com
8https://github.com/NeuralEnsemble/python-neo
9http://neuralensemble.org/neo/
10see https://neuroimage.usc.edu/brainstorm/Introduction, Chronux folder
dataio and http://www.fieldtriptoolbox.org/dataformat for details,
correspondingly
11https://neo.readthedocs.io/en/0.7.1/usecases.html
12https://www.mathworks.com
13https://www.python.org
14https://elephant.readthedocs.io/en/latest/install.html
15https://github.com/mariomulansky/PySpike
16https://neuroimage.usc.edu/brainstorm/Installation
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TABLE 1 | Features of open-source toolboxes regarding graphical user interface (GUI), visualization tools (VIS), Import/Export of spike and LFP data in various file formats,

e.g., recorded with different software/hardware, principal programming language, availability of documentation (DOC), number of citations, and support by updates at

least once per year.

Toolbox, version GUI VIS Import/Export Language DOC Cited Support License

Brainstorm 3.4 + + + MATLAB + >1,000 + GNU GPLv3

Chronux 2.12 v03 − + + MATLAB + >300 In part GNU GPLv2

Elephant v0.6.0 − − + Python + <30 + BSD

FieldTrip 23.11.18 − + + MATLAB + >3,000 + GNU GPLv3

gramm 2.25 − + − MATLAB + <30 + MIT

Spike Viewer 0.4.2 + + + Python In part <30 + BSD

SPIKY 3.0 + + − MATLAB In part <30 In part BSD

Python

Bold values indicate the number of citations higher than 90.

TABLE 2 | Spike and LFP data formats which are supported by the open-source spike and LFP data processing and analysis toolboxes.

Toolbox Blackrock CED Intan MATLAB Plexon Tucker Additionally

(.nev, .nsx) Spike2 (.smr) (.rhd) files (.mat), variables (.pl2, .plx) davis techn.

Brainstorm + + + + + + FieldTrip structures (.mat),

Neurodata without

borders (.nwb)

Chronux − − − + + − −

Elephant and + + + + + + Neo-supported formats

Spike Viewer

FieldTrip + + − + + + MPI (.dap), Windaq (.waq),

Neuralynx (.ncs, .nse,

.nts, .nev, .nrd, .dma, .log)

gramm − − − + − − −

SPIKY − − − + − − text files (.txt)

Neo-supported formats include Alpha Omega (.map), Axon (.abf), Igor Pro (.ibw), kwik (.kwik), nest (.dat, .gdf), neuralynx (.nsc, .nse, .nev), Neuroscope, Neuroshare, nix, OpenEphys

etc., see the whole list at neo/io/neomatlabio.py.

- Elephant requires installation of Neo and standard numpy,
scipy, quantities Python libraries for common
functions as well as some libraries for particular packages
such as pandas (for using panda_bridge module),
scikit-learn (for using ASSET analysis), numpydoc
and sphinx (for building documentation) and nose (for
running tests);

- FieldTrip requires MATLAB Signal Processing (for filtering
and spectral analysis), Statistics and Machine Learning
Toolboxes (for spike data analysis and statistical functions);

- gramm requires MATLAB Statistics (for statistical functions)
and Curve Fitting (for curve fitting functions) Toolboxes;

- SPIKY MATLAB version requires compiling MEX-files
by running SPIKY_compile_MEX.m file. SPIKY does
not specify any dependencies on MATLAB toolboxes in
the documentation;

- Python Spike Viewer version (compared to standalone
version) requires installation of the following Python
packages: spykeutils, scipy, guiqwt, matplotlib,
tables, spyder, neo (see details at Spike Viewer website).

Hardware dependencies are not specified for the toolboxes
besides Brainstorm that requires 64 bit operating system to
run efficiently.

1.5. Test Dataset
We consider an open-access dataset (Lawlor et al., 2018; Perich
et al., 2018) to illustrate each toolboxes’ functionality and
refer to this dataset as “test dataset.” The dataset contains
extracellular recordings from premotor (PMd) and primary
motor (M1) cortex from a macaque monkey in a sequential
reaching task where monkey controlled a computer cursor
using arm movements. A visual cue specified the target
location for each reach. The monkey receives a reward
after making four correct reaches to the targets within
the trial.

In sections 2, 3, we compare toolboxes for the general spike
and LFP data analysis, respectively. In section 4, we compare
tools for the analysis of synchronization and connectivity in
spike and LFP data. Sections 2–4 are each divided into two
subsections: first, we compare functionalities common among
toolboxes, then we discuss those unique to some toolboxes,
i.e., functionality implemented only in one of the toolboxes
under comparison. In section 5, we compare toolboxes with
specialized tools for dimensionality reduction and generalized
linear modeling. Finally, we summarize the comparisons in
section 6. In section 7, we list all the considered toolboxes in
alphabetical order with links for toolbox downloading and brief
descriptions. We do not consider toolboxes specializing on spike
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sorting and modeling spiking activity in this review. These
specializations are referred to in Ince et al. (2010), Mahmud and
Vassanelli (2016) and web-reviews17,18,19 correspondingly.

2. TOOLBOXES FOR SPIKE DATA
PROCESSING AND ANALYSIS

In Table 3 we compare major open-source toolboxes for
spike data analysis, both for point-process data and for
spike waveforms. Functionality related to synchronization and
connectivity analysis (e.g., cross-correlation, coherence, joint
peri-stimulus time histogram, spike-LFP phase-coupling and
dissimilarity measures etc.) will be covered in section 4, and
functionality related to dimensionality reduction and generalized
linear modeling in section 5.

In Tables 1, 3 one can see that Brainstorm, Chronux and
FieldTrip toolboxes provide more versatile functionality (see
also below) than others, are highly cited, well-documented and
allow import from many file formats. The Elephant toolbox has
versatile functionality (see section 2.2) but it does not have built-
in visualization tools (Elephant provides visualization examples
in the documentation using matlabplot Python library).
Compared to other toolboxes from Table 3,

- Brainstorm and FieldTrip include detailed documentation
with tutorials and examples (documentation of other
toolboxes from Table 3 has less examples/tutorials for spike
data analysis) and have either a forum20 or a discussion list21

where users can ask questions on data analysis; both toolboxes
regularly hold hands-on courses22,23, while other toolboxes
from Table 3 provide neither forums nor courses;

- Brainstorm, Elephant and FieldTrip are actively developing by
including new functionality;

- FieldTrip provides many descriptive and inferential statistics
mostly not requiring MATLAB statistical toolbox (Brainstorm
provides statistical tools without examples for spike data
analysis24. and these statistical functions are not part of spike
data analysis functions, different to how it is often done in
FieldTrip and Chronux; Spike Viewer and SPIKY do not
provide statistical tools for general spike data analysis);

- FieldTrip and gramm allow versatile data plot customization
(color maps, line widths, smoothing, errorbars etc.); while
gramm provides better and quicker general visualization tools,
FieldTrip provides plotting customization specific for spike
data analysis (conditions/interval/trials/channels and optimal
bin size selection);

- for programming-oriented users, Chronux and FieldTrip
provide, to our opinion, most convenient, easy to automatize
and well-commented data analysis pipeline with clear uniform

17https://simonster.github.io/SpikeSortingSoftware/
18https://www.cnsorg.org/software
19https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_
Network_Simulators
20https://neuroimage.usc.edu/forums/
21http://www.fieldtriptoolbox.org/discussion_list/
22http://www.fieldtriptoolbox.org/workshop/
23https://neuroimage.usc.edu/brainstorm/Training
24https://neuroimage.usc.edu/brainstorm/Tutorials/Statistics

data structure (other toolboxes from Table 3 are lacking
at least one of three following components: detailed code
comments with description of input/output parameters,
uniform input/output to the functions throughout the analysis
pipeline, modular function design allowing to easily adapt
them into analysis workflow). Note that Brainstorm, Spike
Viewer, and SPIKY toolboxes assume using a GUI for data
analysis. Chronux reference documentation in the function
description provides a list of functions which are called from
the function and from which the function is called, this is
convenient for programming-oriented users.

2.1. Comparing Common Tools:
Peri-Stimulus Time Histogram, Raster Plot,
Inter-Spike Interval Histogram and Spike
Sorting
In this subsection we compare most common spike data
analysis functions: peri-stimulus time histogram (PSTH), raster
plot, inter-spike interval histogram (ISIH) and spike sorting
algorithms for toolboxes from Table 3. Regarding visualization,
the gramm visualization toolbox stands out with its publication-
quality graphics, which helps avoiding major post-processing.
This is illustrated in Figure 1, where we compare PSTH
and raster plots for test dataset produced in FieldTrip and
gramm toolboxes, both of which provide most adjustable plot
properties compared to other toolboxes from Table 3 (see below
a detailed comparison).

We do not provide raster plots and PSTH plots for other
toolboxes from Table 3 with visualization tools since

- Brainstorm does not provide PSTH plots; raster plots are
available only for one unit per figure25;

- Chronux does not provide raster plots and allows to plot only
smoothed PSTH for one unit per figure without built-in tools
to adjust line width, font size, colors etc.;

- in SPIKY raster and PSTH plots are available only for one unit
per figure (Kreuz et al., 2015, Figure 2) andwithout confidence
intervals for PSTHs;

- in Spike Viewer PSTH plots are available without
confidence intervals26.

Regarding statistical tools when computing PSTHs, Chronux
computes PSTH for adaptive or user-defined kernel width with
Poisson error or bootstrapped over trials (both with doubled
standard deviation error). Elephant computes PSTH for fixed
user-defined bin size without additional statistics (note that
Elephant provides many kernel functions for convolutions such
as rectangular, triangular, Guassian, Laplacian, exponential, alpha
function etc.). FieldTrip computes PSTH for optimal (by Scott’s
formula, Scott, 1979) or user-defined bin width with variance
computed across trials. Besides, FieldTrip, different to other
toolboxes from Table 3, allows statistical testing on PSTHs for
different conditions or subjects27 with a parametric statistical
or a non-parametric permutation test. Brainstorm provides

25https://neuroimage.usc.edu/brainstorm/e-phys/functions
26https://spyke-viewer.readthedocs.io/en/latest/
27http://www.fieldtriptoolbox.org/reference/ft_timelockstatistics/
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TABLE 3 | Comparing open-source spike data processing and analysis toolboxes.

Toolbox ISIH PSTH Raster Spike Tuning Statistical Unique features

plots sorting curves tools

Brainstorm − − + + + + −

Chronux + + − − − + Locfit, MTF

Elephant + + − − − + CV2, Fano factor, LV

FieldTrip + + + + − + Waveform statistics

gramm − + + − + + −

Spike Viewer + + + − − − −

SPIKY − + + − − − −

CV2, measure of inter-spike variability (Holt et al., 1996); ISIH, Inter-Spike Interval Histogram; locfit, local regression and likelihood based analyses (Loader, 2006; Bokil et al., 2010);

LV, measure of local variation (Shinomoto et al., 2003); MTF, MultiTaper Fourier transform for point-process data (Jarvis and Mitra, 2001; Bokil et al., 2010); PSTH, Peri-Stimulus

Time Histogram.

FIGURE 1 | FieldTrip (A) and gramm (B) provide most adjustable peri-stimulus (PSTH) and raster plots properties (plotting time is averaged over 1,000 runs, MATLAB

2016a, here and later for processor 3.2 GHz Intel Core i5 with 16 GB RAM) among toolboxes from Table 3. We considered 50 ms bin size, M1 units 6, 14, 42,

monkey MM for the test dataset. PSTHs are presented with standard error of the mean, neural activity is aligned to trial start for reaches toward the second target in

the trial. FieldTrip build-in tools do not allow to adjust font size in a raster plot and line width in a PSTH plot (one has to do it manually with MATLAB tools), and do not

allow to plot raster and PSTH in separate figures (though one can plot spike densities in a separate figure). Advantages of gramm toolbox for PSTH and raster plots

are quick plotting, raster plots separation for different units, vertical dashed lines for showing event times of the experiment protocol, and smooth adjustment of line

width, font size, color maps, errorbar, components positions, etc.

this functionality by calling FieldTrip functions. gramm allows
to compute PSTHs with (bootstrapped) confidence intervals,
standard error of the mean, standard deviation etc28 only for
user-defined bin width. Spike Viewer and SPIKY compute PSTH
only for user-defined bin width and do not compute statistics for
PSTHs across trials.

In Figure 2 we compare visualization of ISIH provided by
FieldTrip and Spike Viewer since other toolboxes from Table 3

do not provide ISIH visualization (Brainstorm, Chronux and
Elephant compute ISIH without visualization, see details below).

Regarding statistical tools when computing ISIH, FieldTrip
computes ISIH with a coefficient of variation (a ratio of
the standard deviation to the mean), Shinomoto’s local
variation measure (Shinomoto et al., 2005) or a shape scale
for a gamma distribution fit. Chronux computes ISIH with
two standard deviations away from the mean calculated

28https://github.com/piermorel/gramm/blob/master/gramm

using jackknife resampling. Elephant computes ISIH with a
coefficient of variation. Spike Viewer does not compute statistics
on ISIH.

Brainstorm and FieldTrip provide spike sorting algorithms
including spike detection and extraction, i.e., using time-
continuous broadband data as input. Spike sorting package is
no longer provided in Chronux. Brainstorm provides supervised
and unsupervised spike sorting according to the methods
WaveClus (Quiroga et al., 2004), UltramegaSort2000 (Fee et al.,
1996; Hill et al., 2011), KiloSort (Pachitariu et al., 2016), and
Klusters (Hazan et al., 2006). FieldTrip implements k-means
and Ward (for several Ward distances) sorting methods. While
Chronux and FieldTrip do not provide tutorials on spike sorting,
Brainstorm has a detailed tutorial29.

29https://neuroimage.usc.edu/brainstorm/e-phys/SpikeSorting?highlight=
%28sorting%29
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FIGURE 2 | Compared to Spike Viewer (B), FieldTrip (A) provides also a second-order statistic on inter-spike interval histogram (ISIH). We considered the test dataset

(M1 unit 14 aligned to trial start for reaches toward the first target, monkey MM) for FieldTrip plot and Spike Viewer test dataset for Spike Viewer plot. Font sizes in

FieldTrip have been adjusted with MATLAB tools since FieldTrip built-in tools do not provide this option.

Brainstorm provides computing and visualization of tuning
curves: they are plotted with one figure per unit for selected
units, conditions and time interval but without customization of
font size, line width and colors, no variance statistic across trials
is computed30. Gramm toolbox provides visualization of tuning
curves including fits from MATLAB curve smoothing toolbox
and user-defined functions (also in polar coordinates) with
(bootstrapped) confidence intervals, standard error of the mean,
standard deviation etc. As the considered gramm version is not
focused on spike data analysis, firing rates averaged per condition
need to be computed prior to tuning curves visualization (see
example in our open MATLAB script).

2.2. Description of Unique Tools
In this section we discuss unique tools of toolboxes from Table 3,
e.g., fitting tools, and higher order statistics (variability and
spectral measures) on spike timing.

Chronux provides two unique tools: local regression package
(locfit) and point-process spectrograms. locfit is based
on local regression methods (Loader, 2006; Hayden et al.,
2009; Parikh, 2009) and provides a set of methods for fitting
functions and probability distributions to noisy data. The idea of
local regression is that the estimated function is approximated
by a low order polynomial in a local neighborhood of any
point with polynomial coefficients estimated by the least mean
squares method (Bokil et al., 2010). In Bokil et al. (2010) and
Loader (2006), local regression methods are motivated by their
simplicity, non-parametric approach to kernel smoothing and by
reducing the bias at the boundaries which is present in kernel
smoothing methods. On the other hand, it was shown that fixed
and variable kernel methods (Shimazaki and Shinomoto, 2010,
Algorithm 2, Appendix A.2) as well as Abramson’s adaptive
kernel method (Abramson, 1982) outperform locfit for
simulated data examples (Shimazaki and Shinomoto, 2010).

Point-process spectrograms are usually used to illustrate
rhythmic properties of otherwise stochastic spiking patterns
rather than for statistical inference (Deng et al., 2013). We refer
to (Hurtado et al., 2004, 2005) regarding methods to evaluate

30https://neuroimage.usc.edu/brainstorm/e-phys/functions

statistical significance of point-process spectral estimators and
to Jarvis and Mitra (2001) and Rivlin-Etzion et al. (2006) for
a critical discussion. Chronux provides the only open-source,
to our knowledge, implementation of point-process spectral
estimates which is implemented according to Jarvis and Mitra
(2001) and Rivlin-Etzion et al. (2006, section 4, Formula 11); see
an example in our open MATLAB script.

Elephant provides several statistical measures for spike timing
variability such as Fano factor, CV2 measure of inter-spike
variability (Holt et al., 1996) and a measure of local variation
(Shinomoto et al., 2003) which were introduced to overcome
the sensitivity of the classical coefficient of variation to firing rate
fluctuations (Shinomoto et al., 2005). Elephant also provides a
kernel estimation based on Shimazaki and Shinomoto (2010) for
calculation of the instantaneous firing rate.

FieldTrip allows to compute mean average spike waveform
and its variance across trials, one can optionally align waveforms
based on their peaks, rejects outlier waveforms and interpolate
the waveforms.

3. TOOLBOXES FOR LFP DATA ANALYSIS

In Table 4 we compare open-source toolboxes for processing and
analysis of local field potential (LFP) data. Functionality related
to synchronization and connectivity analysis will be discussed
in section 4.

In Table 4 one can see that Brainstorm and FieldTrip
toolboxes provide most versatile functionality for LFP data
analysis. Compared to other toolboxes from Table 4,

- FieldTrip provides most flexible and versatile digital filtering
(in particular, a fast and accurate line noise removal technique)
and spectral analysis tools (see details in section 3.1);

- Brainstorm31,32 and FieldTrip33,34 provide detailed tutorials
with guidance on parameter choice and examples for digital
filtering and spectral analysis. Chronux provides examples

31https://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsFilter
32https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency
33http://www.fieldtriptoolbox.org/example/determine_the_filter_characteristics/
34http://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis/
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TABLE 4 | Comparing open-source toolboxes for processing and analysis of LFP data.

Toolbox Digital De-trending FFT Hilbert Line noise Multitaper Wavelet Statistical

filtering transform removal methods transform tools

Brainstorm + + + + + + + +

Chronux − + + − + + − +

Elephant + − + + − − + −

FieldTrip + + + + + + + +

FFT, Fast Fourier Transform.

on parameter choice for spectral analysis in manuals35

(Pesaran, 2008);
- Brainstorm and Elephant provide fast implementation of

Morlet wavelet transform (see details in section 3.1);
- Brainstorm, Chronux and FieldTrip provide statistical tools

for computing variance across trials and for comparing
between conditions when estimating spectra; Elephant does
not compute statistics on the estimated spectra;

- Brainstorm and FieldTrip allow adjustment of plot properties
for spectral analysis such as baseline correction, trials and
channels selection, colormaps and interactive selection of
spectrogram part for further processing. Neither Chronux nor
Elephant provide these options. Compared to Brainstorm,
FieldTrip also allows to adjust font sizes, titles, plot limits etc.

3.1. Comparing Common Tools: Filtering,
Detrending, and Spectral Analysis
Digital filtering is implemented in Brainstorm, FieldTrip, and
Elephant toolboxes. Compared to toolboxes from Table 4,
MATLAB and Python themselves provide more flexible filtering
tools. Yet, it is convenient to have filtering within the toolbox
pipeline. First, it allows avoiding extra conversion from the
toolboxes’ format to MATLAB/Python and back. Second,
toolboxes allow simplified setting of filter parameters for typical
neuroscientific datasets and offer tutorials for their choice for
non-experienced users.

Brainstorm, FieldTrip and Elephant toolboxes provide
low/high/band-pass and band-stop filters for user-defined
frequencies.

- Brainstorm provides Finite Impulse Response (FIR) filters
with Kaiser window based on kaiserord functions
from MATLAB Signal Processing Toolbox (Octave-based
alternatives are used if this toolbox is not available). The user
can set 40 or 60 dB stopband attenuation, data are padded with
zeros at edges with a half of filter order length (according to
the description of the filtering bst_bandpass_hfilter
function used by default);

- Elephant provides Infinite Impulse Response (IIR)
Butterworth filtering with adjustable order using
scipy.signal.filtfilt (with default padding
parameters) or scipy.signal.lfilter standard
Python functions;

- FieldTrip provides the most flexible filtering tools with user-
defined filter type (Butterworth IIR, window sinc FIR filter,

35http://chronux.org

FIR filter using either standard MATLAB fir1 or firls
function from Signal Processing Toolbox or frequency-
domain filter using standard fft and ifft MATLAB
functions), padding type and optional parameters such as
window type (Hanning, Hamming, Blackman, Kaiser), filter
order and direction, transition width, passband deviation,
stopband attenuation etc36. An automatic tool to deal with
filter instabilities (which MATLAB 2016a, to our knowledge,
does not provide) is implemented by either recursively
reducing filter order or recursively splitting the filter into
sequential filters.

Brainstorm, Chronux and FieldTrip also provide specific tools
for line noise removal. Brainstorm reduces line noise with
IIR notch filter (employing either filtfilt function from
MATLAB Signal Processing toolbox or MATLAB filter

function). Chronux reduces line noise using Thomson’s
regression method for detecting sinusoids (Thomson, 1982).
FieldTrip reduces line noise by two alternative methods:
with a discrete Fourier transform (DFT) filter (by fitting
a sine and cosine at user-defined line noise frequency
and subsequently subtracting estimated components) or by
spectrum interpolation (Mewett et al., 2004). In Figure 3 we
compare 60 Hz line noise removal by Chronux, FieldTrip
and Brainstorm toolboxes on the basis of an example
provided by MATLAB37 for open-loop voltage across the
input of an analog instrument in the presence of 60 Hz
power-line noise. One can see that FieldTrip selectively and
successfully attenuates 60 Hz while Brainstorm does not
fully suppress 60 Hz, Chronux suppresses also frequencies
around 62 Hz, the MATLAB solution contains some remaining
oscillations in the beginning of the signal, which is also
reflected in the periodogram by a slight inaccuracy around
61–62Hz. In Figure 3 (C) we present mean squared error
(MSE) between power spectrum values of the original
and estimated signal except the values estimated in 0.2 Hz
vicinity of 60 Hz.

Brainstorm, Chronux and FieldTrip provide detrending tools.
Brainstorm detrending removes a linear trend from the data,
Chronux detrending employs local linear regression38, whereas
FieldTrip detrending uses a general linear model approach and
removes mean and linear trend from the data (by fitting and

36http://www.fieldtriptoolbox.org/reference/ft_preprocessing
37https://www.mathworks.com/help/signal/ug/remove-the-60-hz-hum-from-a-
signal.html
38http://chronux.org/chronuxFiles//Documentation/chronux/spectral_analysis/
continuous/locdetrend.html
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FIGURE 3 | Open-loop voltage (A), Power spectrum (B), and Mean-squared error (C) for filtered with open-source toolboxes and unfiltered signal. FieldTrip (discrete

Fourier transform filter, default parameters) provides the fastest and the most accurate line noise removal compared to MATLAB solution (Butterworth notch filter with

2 Hz width), Chronux (default 5 tapers, bandwidth 3) and Brainstorm (IIR notch filter with 1 Hz width). Filtering times are averaged over 1,000 runs, MATLAB 2016a.

removing anNth order polynomial from the data)39. Brainstorm,
Chronux and FieldTrip offer similar performance in terms
of processing time and trend removal accuracy for a simple
MATLAB example40 (see our open MATLAB code).

Compared to the classic Fourier transform, multitaper
methods provide more convenient control of time and frequency
smoothing (Percival and Walden, 1993; Mitra, 2007). Spectral
decomposition with Morlet wavelets provides a convenient way
of achieving a time-frequency resolution trade-off (van Vugt
et al., 2007), since it is inherent to the method that wavelets are
scaled in time to vary resolution in time and frequency, see van
Vugt et al. (2007) for a comparison of multitaper and wavelet
methods and Bruns (2004) for a comparison of wavelet, Hilbert
and Fourier transform. Equivalent time-frequency trade-offs can
also be implemented with short-time Fourier or Hilbert methods
via variable-width tapers (Bruns, 2004).

Chronux and FieldTrip provide multitaper power spectrum
estimation using Thomson’s method (Thomson, 1982; Percival
and Walden, 1993; Mitra and Pesaran, 1999) with Slepian
sequences (Slepian and Pollak, 1961). Additionally, FieldTrip
allows more conventional tapers (e.g., Hamming, Hanning). In
FieldTrip, the user defines frequencies and time interval of
interest, width of sliding window and of frequency smoothing.
In Chronux, the user defines bandwidth product and number
of tapers to be used (see Prieto et al., 2007 for a discussion of
multitapers parameter choice).

39http://www.fieldtriptoolbox.org/reference/ft_preproc_detrend/
40https://de.mathworks.com/help/matlab/data_analysis/detrending-data.html

Brainstorm, Elephant and FieldTrip implement complex-
valued Morlet transform. FieldTrip provides time-frequency
transformation using Morlet waveforms either with convolution
in the time domain or with the multiplication in the frequency
domain. Brainstorm and Elephant implement convolution in the
time and frequency domain, respectively. FieldTrip implements
Morlet wavelet transformation methods based on Tallon-Baudry
et al. (1997), the user defines the wavelet width in number of
cycles and optionally wavelet length in standard deviations of the
implicit Gaussian kernel. In Brainstorm the user sets the central
frequency and temporal resolution. Elephant implements Morlet
wavelets according to Le Van Quyen et al. (2001) and Farge
(1992), where the user sets central Morlet frequencies, size of the
mother wavelet and padding type.

Different to other toolboxes in Table 4, FieldTrip also
implements Fourier transform on the coefficients of the
multivariate autoregressive model estimated with FieldTrip tools
(see section 4.1 for more details on MVAR implementation
in FieldTrip).

Elephant does not compute statistics on estimated power
spectrum whereas Chronux and FieldTrip compute confidence
intervals and standard error, correspondingly, in a standard way
or with jackknife resampling. To compare spectrum estimates for
different conditions or subjects, Chronux provides a two-group
test and FieldTrip performs a parametric statistical test, a non-
parametric permutation test or a cluster-based permutation test
(Brainstorm includes these FieldTrip statistical functions).

MATLAB R2016a, compared to Chronux, FieldTrip
and Brainstorm,
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- does not provide detailed tutorials for multitaper and wavelet
parameters choice;

- does not have built-in tools for computing average
spectrogram across trials;

- does not have built-in tools for generating multitaper
spectrograms;

- uses exclusively short-time Fourier transform for standard
spectrogram plotting.

In Figure 4 we compare spectrum estimation methods
implemented in Brainstorm (A), Chronux (B), Elephant
(C), FieldTrip (D-F) and MATLAB (G-H) for two simulated
signals, x1(t) and x2(t). Note that the results depend on the
chosen parameters for each toolbox, see Figure 4 caption for the
parameters values.

We generate x1(t) as a sum of sines and x2(t) by sinusoidal
frequency modulation, see Equations (1, 2). We add normally
distributed pseudo-random values with zero mean to the second
half of both signals:

x1(t) = sin(2π8t)+ sin(2π20t)+ sin(2π40t)+ sin(2π60t)+ ε(t) (1)

x2(t) = cos
(

2π40t + 6 sin(2π2t)
)

+ ε(t) (2)

ε(t) =

{

0, for t = 1, 2, . . . , 2000,

∼ N(0, 1), for t = 2001, 2002, . . . , 4000,
(3)

where t is time in ms.
The instantaneous frequency of the signal x2(t) is defined by

the following equation (Granlund, 1949):

f (t) = 40+ 12 cos(2π2t). (4)

To compare quantitatively the spectra estimated by the toolboxes
we compute power spectrum values of the ideal signal by
setting maximum spectrum values at theoretical frequencies
of the signals x1 (8, 20, 40, and 60 Hz) and x2 (given by
Equation 4) and minimum at all other frequencies. When
setting ideal power spectrum values, we allow a bandwidth of
1 Hz, i.e., we set the maximum power spectrum values also
at neighboring frequencies. Then in Figure 5 we compare the
estimated spectrum values with the ideal spectrum values using
mean squared error and two-dimensional Pearson correlation
coefficient as suggested in Rankine et al. (2005).

We conclude from Figures 4, 5 that

- MATLAB standard spectrogram tools are less robust
with respect to noise than spectrum estimation provided
by the toolboxes from Table 4 for the signal x2 with
changing frequencies;

- while Brainstorm, Chronux, Elephant and FieldTrip provide
equally good accuracy of spectra estimation, Brainstorm and
Elephant provide the fastest computing tools (see spectra
computing times in subplot titles of Figure 4).

See in our open MATLAB script an example of spectral analysis
with averaging over trials for real-world LFP data (Lowet et al.,
2015).

3.2. Description of Unique Tools
Compared to other toolboxes from Table 4, Chronux provides
several unique features for specialized computations (Bokil et al.,
2010) such as space-frequency singular value decomposition
(SVD) for univariate and multivariate continuous signals: for
theoretical details we refer to Mitra and Pesaran (1999) and
for an example of possible application to Makino et al.
(2017) and Prechtl et al. (1997). Space-frequency SVD can
be applied to the space-time data as, for example, in Prechtl
et al. (1997), where space-frequency SVD has been applied
for spectral analysis of transmembrane potentials optically
recorded in pixels distributed in space. Chronux also provides
computation of multitaper spectral derivatives and stationarity
statistical test for continuous processes based on quadratic
inverse theory.

Elephant provides computing of the current source density
from LFP data using electrodes with 2D or 3D geometries
(Pettersen et al., 2006; Potworowski et al., 2012).

4. TOOLBOXES WITH SYNCHRONIZATION
AND CONNECTIVITY ANALYSIS TOOLS

In Table 5 we compare open-source toolboxes providing tools
for spike-spike, field-field (LFP-LFP) or spike-field (spike-LFP)
synchronization and connectivity analysis. We refer to Blinowska
(2011) and Bastos and Schoffelen (2016) for reviews of functional
connectivity analysis methods and their interpretational pitfalls
(e.g., common reference, common input, volume conduction
or sample size problems). We do not include in Table 5 the
connectivity toolboxes ibTB (Magri et al., 2009) and Toolconnect
(Pastore et al., 2016), since they are not available under the links
provided by the authors (accessed on 27.03.2019). We also do
not list in Table 5 the following connectivity analysis toolboxes
that are not focused on spike and LFP data analysis: HERMES
(Niso et al., 2013), Inform (Moore et al., 2017), JIDT (Lizier,
2014), MVGC (Barnett and Seth, 2014), MuTe (Montalto et al.,
2014), PyEntropy (Ince et al., 2009), and TrenTool (Lindner
et al., 2011). TrenTool toolbox has a FieldTrip-compatible
data structure.

Compared to other toolboxes from Table 5,

- Brainstorm, Elephant and FieldTrip provide most versatile
set of connectivity measures: while FieldTrip provides many
classic and recent pairwise connectivity and synchronization
measures, Elephant provides tools for multivariate analysis of
high-order correlations in spike trains (see sections 4.1, 4.2);

- Brainstorm tutorials for connectivity measures are actively
developing41; Chronux has examples for connectivity
measures for real-world data in tutorial presentations;
FieldTrip provides detailed tutorials on connectivity
analysis for simulated and real-world data; Elephant
provides examples for connectivity measures with
simulated data;

- Chronux and FieldTrip compute confidence intervals for
connectivity measures with jackknife resampling or variance

41https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity
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FIGURE 4 | Comparing spectral analysis tools provided by the Brainstorm (A), Chronux (B), Elephant (C), FieldTrip (D–F), MATLAB (G,H) compared to ideal spectrum

(I). For each toolbox we plot estimated spectrum of signal x1 (left subpanel) and of signal x2 (right subpanel). For short-time FFT we used 0.512 s moving window with

0.001s step. For multitaper methods we used in Chronux a single taper with time bandwidth product 2 (left) and 8 (right); in FieldTrip a single taper with 2 Hz (left) and

0.1F (right) frequency smoothing for time window 0.512s (left) and 8/F (right) at frequency F. For wavelet methods we used in MATLAB and Brainstorm central

frequency 4 (left) and 1.5 (right) Hz; in Elephant and FieldTrip 20 (left) and 10 (right) cycles wavelets resulting in the spectral bandwidth F/10 (left) and F/5 (right) Hz at

frequency F. Spectrum estimating times were averaged over 1,000 runs in MATLAB 2016a.

FIGURE 5 | Mean squared error (A) and two-dimensional Pearson correlation coefficient (B) values between estimated and ideal spectra. These measures were

computed for the time span from 1 to 3 s for the signals generated according to Equations (1, 2). The lower MSE and the higher correlation coefficient are, the closer

is the estimated spectrum to the ideal spectrum.

estimates across trials, correspondingly (see sections 4.1,
4.2); Brainstorm computes significance values for common
connectivity measures, Elephant does not compute statistics
on common connectivity measures.

To provide a better feeling of connectivity measures, we classify
inTable 6 connectivity and synchronizationmeasuresmentioned
in Table 5. We indicate for which signals the measure is
applicable (Input), whether the measure is directed or not
(Directed), is defined in time or frequency domain (Domain) and
is bi- or multivariate (Dimension).

4.1. Comparing Common Tools:
Correlation, Cross-Correlation, Coherence,
Granger Causality, Phase-Amplitude
Coupling, Phase-Locking Value,
Spike-Field Coherence and
Spike-Triggered Average
In this subsection we compare implementations of common
synchronization and connectivity measures for toolboxes from
Table 5: correlation, cross-correlation, coherence, Granger
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TABLE 5 | Comparison of connectivity analysis toolboxes for spike and LFP data.

Toolbox (Cross)- Coherence Granger Phase- Phase- Spike- Spike- Unique

correlation causality amplitude coupling locking value triggered average field coherence features

Brainstorm + + + + + + − STAT

Chronux − + − − − + + STAT

Elephant + + − − − + + RSEQ, STD,

STTC

FieldTrip + + + + + + + DTF, JPSTH, MI,

NC, PDC, PPC,

PSI, STAT, WPL

DTF, Directed Transfer Function (Kaminski and Blinowska, 1991); JPSTH, Joint Peri-Stimulus Time Histogram; MI, Mutual Information (Cover and Thomas, 2012); NC, Noise Correlations

(Cohen and Kohn, 2011); PDC, Partial Directed Coherence (Baccalá and Sameshima, 2001); PPC, Pairwise Phase Consistency (Vinck et al., 2010); PSI, Phase Sloped Index (Nolte et al.,

2004); RSEQ, statistical methods for detected Repeated SEQuences of synchronous spiking (Staude et al., 2010; Torre et al., 2016; Quaglio et al., 2017; Russo and Durstewitz, 2017);

STAT, STATistical tools; STD, Spike-Train Dissimilarity measures; STTC, Spike Time Tiling Coefficient (Cutts and Eglen, 2014); WPL, Weighted Phase Lag index (Vinck et al., 2011).

causality, phase-amplitude coupling, phase-locking value,
spike-field coherence and spike-triggered average.

Brainstorm and Elephant implement correlation, a pairwise
non-directional time-domain connectivity measure. Brainstorm
computes Pearson correlation coefficient (or optionally
covariance) between spike trains and p-value of its significance;
correlation is computed equivalently to MATLAB corrcoef

function but in a faster vectorized way for N > 2 input
signals. Elephant computes either Pearson correlation coefficient
between binned spike trains (without additional statistics),
pairwise covariances between binned spike trains (without
additional statistics) or spike time tiling coefficient (STTC)
introduced in Cutts and Eglen (2014). STTC, compared to
correlation index introduced in Wong et al. (1993), is described
as not dependent on signals firing rate, correctly discriminating
between lack of correlation and anti-correlation etc. (Cutts and
Eglen, 2014). There is also a MATLAB STTC implementation42.

Cross-correlation is correlation between two signals
computed for different time lags of one signal against the
other. Elephant and FieldTrip implement cross-correlation, a
pairwise non-directional time-domain connectivity measure.
Between two binned spike trains Elephant computes cross-
correlation for user-defined window with optional correction of
border effect, kernel smoothing (for boxcar, Hamming, Hanning
and Bartlett) and normalization. Between two LFP signals
Elephant computes the standard unbiased estimator of the cross-
correlation function (Stoica and Moses, 2005, Equation 2.2.3) for
user-defined time-lags without additional statistics across trials;
note that biased estimator of the cross-correlation function is
more accurate as discussed in Stoica and Moses (2005). FieldTrip
computes cross-correlation between two spike channels for
user-defined time lags and bin size (correlogram can optionally
be debiased depending on data segment length). FieldTrip
computes shuffled and unshuffled correlograms: if two channels
are independent, the shuffled cross-correlogram should be the
same as unshuffled.

42https://github.com/Leo-GG/NeuroFun/blob/master/%2Bcorrel/calcSTTC.m

Brainstorm, Chronux, Elephant and FieldTrip implement
coherence, a frequency-domain equivalent of cross-correlation
(Bastos and Schoffelen, 2016):

- Brainstorm implements coherence according to Carter (1987)
computing also p-values of parametric significance estimation;

- Chronux computes coherence between two (binned) point-
processes or LFP signals using multitaper methos, with
confidence intervals or jackknife resampled error bars;

- Elephant computes coherence using Welch’s method with
phase lags but without additional statistics. Note that for
computing coherence across trials in Elephant one has to apply
a mean operation on the individual trials coherence values as
Elephant does not have a built-in averaging across trials;

- FieldTrip computes coherence according to Rosenberg et al.
(1989) with variance estimate across trials. Additionally,
FieldTrip provides computing of partial coherence according
to Rosenberg et al. (1998), partial directed coherence (Baccalá
and Sameshima, 2001) and imaginary part of coherency
(Nolte et al., 2004) with variance across trials. Partial directed
coherence (PDC) is a directional measure. Compared to
coherence, PDC is shown to reflect a frequency-domain
representation of the concept of Granger causality (Baccalá
and Sameshima, 2001).

Elephant does not provide built-in tools to compare coherence
values between two conditions, Chronux provides a two-group
test, FieldTrip provides an independent samples Z-statistic via
ft_freqstatistics function by the method described in
Maris et al. (2007), and Brainstorm is using the FieldTrip
ft_freqstatistics function.

Brainstorm and FieldTrip implement Geweke’s extension of
the original time-domain concept of Granger causality (GC)
introduced in Granger (1969) to the frequency domain (Geweke,
1982). GC implemented in Brainstorm and FieldTrip is a
frequency-domain pairwise directional measure of connectivity.
FieldTrip GC implementation is based on Brovelli et al. (2004).
The multivariate autoregressive (MVAR) model in FieldTrip uses
biosig or BSMART toolboxes implementation on user choice,
which are included in FieldTrip. FieldTrip computes variance of
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TABLE 6 | Classification of synchronization and connectivity measures

implemented in toolboxes listed in Table 4 regarding whether the measure is

directed or not (Directed), is defined in time or frequency domain (Domain) and is

bi- or multivariate (Dimension).

Measure Directed Domain Dimension

Correlation and

cross-correlation (CC)

− Time Bivariate

Coherence − Frequency Bivariate

Directed transfer information

(DTF)

+ Frequency Multivariate

Granger causality (GC) + Time, frequency Bivariate

Imaginary part of coherency

(iCOH)

− Frequency Bivariate

ISI and SPIKE distance,

SPIKE synchronization

(STD)

− Time Bivariate

Joint peri-stimulus time

histogram (JPSTH)

− Time Bivariate

Mutual information (MI) − Time Bivariate

Noise correlation (NC) − Time Bivariate

Phase amplitude coupling

(PAC)

− Frequency Bivariate

Partial coherence (pCOH) + Frequency Bivariate

Partial directed coherence

(pdCOH)

+ Frequency Multivariate

Phase-locking value (PLV) − Frequency Bivariate

Pairwise phase consistency

(PPC)

+ Frequency Bivariate

Phase slope index (PSI) + Frequency Bivariate

statistical methods for

detecting Repeated

SEQuences of

− Time Multivariate

synchronous spiking (RSEQ)

Spike field coherence (SFC) − Time Bivariate

van Rossum and

Viktor-Purpura spike train

dissimilarity

− Time Bivariate

measures (STD)

Spike time tiling coefficient

(STTC)

− Time Bivariate

Weighted phase lag index

(WPL)

− Frequency Bivariate

GC values across trials. Neither Brainstorm nor FieldTrip provide
built-in tools/prescribed procedure to statistically compare GC
values between conditions. Different to FieldTrip, Brainstorm
computes as well time-resolved GC between two signals using
two Wald statistics according to Geweke (1982) and Hafner
and Herwartz (2008). The directed transfer function and partial
directed coherence are multivariate extensions of Granger
causality (Blinowska, 2011).

In Figure 6 we compare values of several connectivity
measures computed in Brainstorm, Chronux and FieldTrip
for simulated data with autoregressive models43 according
to Equation (5) (computing coherence across trials is not

43http://www.fieldtriptoolbox.org/tutorial/connectivity/

included in the considered Elephant version). The considered
toolboxes show similar pattern of coherence and Granger
causality values. Coherence values computed with Brainstorm are
noisier than those by Chronux and FieldTrip since Brainstorm
employs Welch’s method for computing coherence in contrast
to multitapers in Chronux and multivariate autoregressive
modeling that we used for computing coherence in FieldTrip
(using multitapers for spectral decomposition in FieldTrip
provides similar results). Note that Brainstorm returns squared
coherence values compared to those provided by FieldTrip and
Chronux which is why we additionally square them in the code.
Note also that we present results for Brainstorm connectivity
module for which the tutorial is under development44. We also
present in Figure 6 the values of Directed Transfer Function
(DTF) and Partial Directed Coherence (PDC) to illustrate that
PDC correctly detects no interaction between signals in case there
is no direct interaction for X → Y direction (see section 4.2 for
more details about DTF and PDC).

x(t) = 0.8x(t − 1)− 0.5x(t − 2),

y(t) = 0.9y(t − 1)+ 0.5z(t − 1)− 0.8y(t − 2),

z(t) = 0.5z(t − 1)+ 0.4x(t − 1)− 0.2z(t − 2). (5)

One of the first steps in the analysis of spike-field coupling is
computation of a spike-triggered average (STA) of LFP that is an
average LFP voltage within a small window of the time around
every spike. While neither Brainstorm nor Elephant compute
any additional statistic on STA, Chronux computes STA with an
optional kernel smoothing and calculates bootstrapped standard
error on computed values and FieldTrip computes mean and
variance of STA values.

Brainstorm and FieldTrip implement phase-amplitude
coupling (PAC), a frequency-domain pairwise non-directional
measure (Canolty et al., 2006; Voytek et al., 2010; Samiee
and Baillet, 2017). FieldTrip implements two types of PAC45:
mean vector length and modulation index according to Tort
et al. (2010). Brainstorm implements PAC according to Özkurt
and Schnitzler (2011). Both Brainstorm and FieldTrip do not
compute additional statistics on PAC.

Brainstorm and FieldTrip implement phase-locking value
(PLV), a frequency-domain pairwise non-directional measure
(Lachaux et al., 1999). PLV checks how consistent the phase
relation between the two signals is across trials. We refer to
Vinck et al. (2011) and Bastos and Schoffelen (2016) for a
comparison of different phase synchronization metrics and their
biases. FieldTrip computes PLV based on (Lachaux et al., 1999)
with a variance estimate using jackknife resampling.

The combination of spiking activity and LFP is often used
to study rhythmic neuronal synchronization since spike-LFP
measures are more sensitive than spike-spike synchronization
measures (Vinck et al., 2012; Chakrabarti et al., 2014). To this
end, Brainstorm, Chronux, FieldTrip and Elephant implement
a spike-field coherence (SFC), a frequency-domain pairwise

44https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity
45http://www.fieldtriptoolbox.org/reference/ft_crossfrequencyanalysis/
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FIGURE 6 | Coherence estimation for X ↔ Y (A), X ↔ Z (B), and Y ↔ Z (C) directions and directional measures estimation for X → Y (D), X → Z (E), Y → Z (F),

Y → X (G), Z → X (H), Z → Y (I) by the open-source connectivity analysis toolboxes. Comparing Brainstorm, Chronux and FieldTrip implementations of connectivity

measures for signals simulated by autoregressive models (see Equation 5). While coherence is non-directional, Granger Causality (GC), Directed Transfer Function

(DTF, see section 4.2 for more details) and Partial directed Coherence (PDC) are directional measures. PDC allows to correctly detect interaction between signals (note

no direct X → Y interaction). Chronux and FieldTrip provide faster implementations compared to Brainstorm (see somputing times in plots legends) and return

variance across trials. Brainstorm coherence values are noisier since there Welch method is used in contrast to multitapers (Chronux) or multivariate autoregressive

modeling (FieldTrip).

non-directional measure. Brainstorm implements SFC according
to Fries et al. (2001) for user-defined window size around spikes
without additional statistics computed. Chronux implements
SFC with a multitaper approach for user-defined tapers and
frequency band, computing also a confidence level of coherency
and jackknife or standard error bars. Elephant implements
SFC using standard Python scipy.signal.coherence()
function, no additional statistics is computed. FieldTrip
computes SFC with variance across trials (see details in the
corresponding tutorial46).

4.2. Description of Unique Tools
In this subsection we describe tools unique to the toolboxes in
Table 5. Elephant provides five recent statistical tools to study
higher-order correlations and synchronous spiking events in
parallel spike trains:

- ASSET (Analysis of Sequences of Synchronous EvenTs)
implements the method by Torre et al. (2016) and is an
extension of the visualizationmethod by Schrader et al. (2008).
ASSET assesses the statistical significance of simultaneous
spike events (SSE) and aims to detect such events that cannot
be explained on the basis of rate coding mechanisms and arise
from spike correlations on shorter time scale;

46http://www.fieldtriptoolbox.org/tutorial/spikefield/

- CAD (Cell Assembly Detection) implements the method by
Russo and Durstewitz (2017) for capturing structures of
higher-order correlations in massively parallel spike train
recordings with arbitrary time lags and at multiple time-scale;
CAD makes statistical parametric testing between each pair
of neurons followed by an agglomerative recursive algorithm
aiming to detect statistically precise repetitions of spikes in
the data;

- CuBIC (Cumulant Based Inference of higher order
Correlations) implements a statistical method (Staude
et al., 2010) for detecting higher order correlations in parallel
spike train recordings;

- SPADE (Spike Pattern Detection and Evaluation) implements
the method by Quaglio et al. (2017) for assessing the statistical
significance of repeated occurrences of spike sequences
(spatio-temporal patterns) based on recent methods in Torre
et al. (2013) and Quaglio et al. (2017). SPADE aims to
overcome computational and statistical limits in detecting
repeated spatio-temporal patterns within massively parallel
spike trains (Quaglio et al., 2017); see Quaglio et al. (2018) for
a recent review of methods for identification of spike patterns
in massively parallel spike trains;

- UE (Unitary Event analysis) implements the statistical method
by Grün et al. (1999, 2002) for analyzing excess spike
correlations between simultaneously recorded neurons. This
method compares the empirical spike coincidences to the
expected number on the basis of firing rate of the neurons.
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Elephant and SPIKY toolboxes allow to compute measures
of spike train dissimilarity (also referred as measures
of spike train synchrony). Elephant implements well-
known time-scale dependent van Rossum (2001) and
Victor and Purpura (1996) dissimilarity distances whereas
SPIKY implements three recent parameter-free time-scale
independent measures: ISI-distance (Kreuz et al., 2007), SPIKY
distance (Kreuz et al., 2012) and SPIKE synchronization
(Kreuz et al., 2015). We refer to Chicharro et al. (2011),
Kreuz et al. (2012), and Mulansky et al. (2015) for a
comparison of dissimilarity measures. Note also MATLAB
implementations of dissimilarity measures at J.D. Victor47 and
T. Kreuz48 websites.

FieldTrip, compared to other toolboxes in Table 5, computes
and visualizes49 the following classic and recent connectivity and
synchronization measures:

- Directed Transfer Function (DTF) introduced in Kaminski
and Blinowska (1991) is a multivariate frequency-domain
directional connectivity measure; FieldTrip computes it
according to Kaminski and Blinowska (1991) from cross-
spectral density with a variance across trials. DTF, compared
to GC, makes a multivariate spectral decomposition which
accounts for interaction between all channels (see, e.g.,
Figure 6 in section 4.1). However, pairwise measures yield
more stable results since they involve fitting fewer parameters
(Blinowska, 2011; Bastos and Schoffelen, 2016);

- Joint Peri-Stimulus Time Histogram (JPSTH) is a pairwise
time-domain non-directional measure between spike trains
that allows to gain insight into temporal evolution of spike-
spike correlations (Aertsen et al., 1987; Brown et al., 2004). To
check whether the resulted JPSTH is caused by task-induced
fluctuations of firing rate or by temporal coordination not
time-locked to stimulus onset, FieldTrip also computes JPSTH
with shuffling subsequent trials;

- Mutual Information (MI) is a pairwise time-domain non-
directional connectivity measure. FieldTrip computes MI
using implementation from ibtb toolbox (Magri et al., 2009)
without additional statistics;

- Noise Correlations (NC) is a non-directional pairwise time-
domain measure that can be computed between two spike
trains; NC measures whether neurons share trial-by-trial
fluctuations in their firing rate; different to so called signal
correlations (SC), these fluctuations are measured over
repetitions of identical experimental conditions, i.e., are not
driven by variable sensory or behavioral conditions;

- phase-coupling pairwise spike-field measures compute the
phases of spikes relative to the ongoing LFP with a discrete
Fourier transform of an LFP segment around the spike time
(Vinck et al., 2012). FieldTrip implements recent methods
from Vinck et al. (2012): angular mean of spike phases,
Rayleigh p-value and pairwise-phase consistency according to
the method in Vinck et al. (2010). We refer to Vinck et al.

47http://www-users.med.cornell.edu/~jdvicto/pubalgor.html
48http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/VanRossum.html
49http://www.fieldtriptoolbox.org/reference/ft_connectivityplot/

(2010) and Bastos and Schoffelen (2016) for a discussion and
comparison of these measures;

- Phase-Slope Index (PSI) is a directional pairwise frequency-
domain measure that can be computed between two signals
from their complex-valued coherency. FieldTrip computes PSI
according to Nolte et al. (2008) with variance across trials;

- Pairwise Phase Consistency (PPC) is a directional pairwise
frequency-domain measure that can be computed from the
distribution of pairwise differences of the relative phases. PPC
compared to PLV is not biased by sample size (Bastos and
Schoffelen, 2016). FieldTrip computes PPC with leave-one-out
variance estimate;

- Weighted Phase-Lag index (WPL) introduced in Vinck
et al. (2011) is a non-directional pairwise frequency-domain
measure computed from cross-spectral density between
two signals. WPL was introduced to solve the problem
with sensitivity of phase-lag index (Stam et al., 2007) to
volume-conduction and noise (Vinck et al., 2011). FieldTrip
computes WPL according to Vinck et al. (2011) with variance
across trials.

5. SPECIALIZED TOOLBOXES FOR
DIMENSIONALITY REDUCTION AND
GENERALIZED LINEAR MODELING

In this section we overview specialized toolboxes for
dimensionality reduction (section 5.1) and generalized linear
modeling (section 5.2). Note that the considered specialized
toolboxes do not support importing/exporting from specialized
spike data formats and, except DataHigh, they do not have GUI.

5.1. Toolboxes for Dimensionality
Reduction
Dimensionality reduction of neural data allows to obtain a
simplified low-dimensional representation of neural activity. In
Table 7 we compare open-source toolboxes for dimensionality
reduction of neural data (note also a list of dimensionality
reduction software actively updated at B. Yu website50). See
examples for application of DataHigh, dPCA, and TCA toolboxes
in our open MATLAB script.

We have indicated “In part” in Documentation column
for GPFA and TD-GPFA toolboxes since they provide usage
examples and readme files with notes on parameters choice
but neither detailed manual nor tutorial instead referring to
the original publication (Yu et al., 2009) for details. We have
indicated “In part” in Documentation column for DCA tool since
it also does not provide a manual or tutorial (only example of use
in MATLAB script comments). DataHigh and GPFA toolboxes
are not uploaded to GitHub or any other public version control
system which prevents tracking of version changes and users to
submit bug reports. DCA and TD-GPFA toolboxes have not been
updated during the last 2 years.

50http://users.ece.cmu.edu/~byronyu/software.shtml
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TABLE 7 | Features of open-source dimensionality reduction toolboxes regarding visualization tools, principal and usage programming language, availability of

documentation, number of citations, and support by updates at least once per year.

Toolbox, version Visuali- Language Documen- Cited Support Methods

zation tation

DataHigh v.1.2 + MATLAB + <30 In part FA, GPFA, LDA, PCA

DCA v1.0 − MATLAB In part <30 In part DCA

Python

dPCA v0.1 + MATLAB + <300 + dPCA, PCA

Python

GPFA v.2.03 + MATLAB In part >300 In part FA, PCA, pPCA, GPFA

seqNMF + MATLAB + <30 + NMF, PCA

tensor-demo + MATLAB + <30 + TCA

Python

tensortools v0.3.0 + Python + <30 + ccpTD, nnTCA

TD-GPFA v3.0 + MATLAB In part <30 In part FA, GPFA, PCA, pPCA

ccpTD, coupled canonical polyadic Tensor Decomposition; DCA, Distance Covariances Analysis; (GP)FA, (Gaussian Process) Factor Analysis; LDA, Fisher’s Linear Discriminant Analysis;

NMF, Non-negative Matrix Factorization; (d,p)PCA, (demixed, probabilistic) Principal Component Analysis; (nn)TCA, (non-negative) Tensor Component Analysis. Bold values indicate the

number of citations higher than 90.

Compared to other toolboxes from Table 7,

- DataHigh provides a user-friendly GUI illustrating algorithm
steps such as choice of bin size, smoothing, components
number etc.;

- dPCA is applied on trial-averaged spiking activity; dPCA
breaks down the neural activity into components each of
which relates to time (condition-independent component) or
a single experimental condition of the task; the idea is an easier
task-relevant interpretation compared to the standard PCA or
ICA; the results can be summarized in a single figure (Kobak
et al., 2016);

- TD-GPFA allows to extract low-dimensional latent structure
from time series in the presence of delays;

- tensor-demo and tensortools allow to reduce dimensionality
both across and within trials (Williams et al., 2018).

In Table 8 we outline additional dimensionality reduction tools
provided by each toolbox.

It is important to check whether input data fit model
assumptions when applying dimensionality reduction methods:
whether the data can be non-stationary, contain outliers,
observational noise or be correlated, whether recorded activity
evolves in a low-dimensional manifold, which sample size
is sufficient etc. Discussing model assumptions for each of
dimensionality reduction methods is beyond the scope of this
paper so we refer to the original papers and to the model
assumptions for applying principal component analysis (PCA)
formulated in Shlens (2014).

5.2. Toolboxes for GLM Analysis
Generalized linear models (GLMs) are often applied for
predicting spike counts with the aim to understand which factors
influence simultaneous spiking activity: whether it is predicted
by the past or concurrent neural activity of the same or remote
brain area or by external covariates. InTable 9we overviewmajor
open-source toolboxes for GLM analysis. These toolboxes do not
contain any general spike data analysis functions besides GLM
analysis since they are either GLM tutorials or codes related to
particular analysis made in the paper.

GLMcode1 and GLMcode2 codes are not uploaded to GitHub
or any other version control system as they implement methods
for particular analysis made in the papers (see below) and are not
supposed to be updated.

Note that

- Case-Studies (see folders Chapter 9, 10, 11 on GitHub51)
implements basic steps of Poisson GLM fitting with
history dependence to the data on sample datasets for
the corresponding book (Kramer and Eden, 2016);

- GLMcode1, GLMcode2 implement the code for the papers
Glaser et al. (2018) and Lawlor et al. (2018);

- examples of use for nStat toolbox are located in helpfiles
folder in the corresponding GitHub repository;

- spykesML tool provides comparison of GLM performance
with several methods from modern machine learning
approaches (including neural networks);

- NIMclass uses MATLAB optimization toolbox and contains
many examples for real-world data;

- GLMspiketraintutorial is a tutorial for teaching purposes.
It is not memory-efficient implemented, but it makes
easy to understand the basic steps of fitting Poisson
and Gaussian GLMs, analysis and comparison for spike
data52. neuroGLM and GLMspiketools are more advanced
tools with efficient memory implementation. Additionally to
GLMspiketraintutorial, they support some advanced GLM
features such as smooth temporal basis functions for spike-
history filters, different time-scales for stimulus and spike-
history components etc.

6. CONCLUSIONS

In this review we have compared major open-source toolboxes
for spike and local field potentials (LFP) processing and analysis.
We have compared toolboxes’ functionality, statistical and
visualization tools and documentation. Besides summarizing

51https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
52https://github.com/pillowlab/GLMspiketraintutorial

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2019 | Volume 13 | Article 57

https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
https://github.com/pillowlab/GLMspiketraintutorial
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Unakafova and Gail Open-Source Spike and LFP Toolboxes

TABLE 8 | Comparing dimensionality reduction toolboxes: diagnostic and statistical tools.

Toolbox Cross-validation Tool to select optimal Fitting error, Statistical tests

dimensions number variance explained

DataHigh + + + −

DCA − − − −

dPCA + + + +

GPFA + + + −

seqNMF + + + +

tensor-demo − + + −

tensortools − + + +

TD-GPFA + + + −

In Statistical tests column we indicate whether the toolbox provides possibility to measure significance of results and provides permutation or re-shuffling tests on the data.

TABLE 9 | Features of open-source toolboxes for generalized linear modeling of spike data regarding visualization tools, principal and usage programming language,

availability of documentation, number of citations (for the paper with the introduced method), support by updates at least once per year and implemented methods.

Toolbox, version Methods Visuali- Language Documen- Cited Support

zation tation

Case-Studies pGLM + MATLAB + <30 +

GLMcode1 pGLM + MATLAB + <30 −

GLMcode2 pGLM + MATLAB + <30 −

GLMspiketools v1 cGLM, pGLM, SHF, + MATLAB + >900 +

STB

GLMspike- cGLM, gGLM, + MATLAB + >900 +

traintutorial pGLM, SHF

neuroGLM pGLM, SHF, STB + MATLAB + >90 +

NIMclass v1.0 GLM, GQM, GNM, − MATLAB − >90 +

NIM

nStat v2 ppGLM + MATLAB In part <30 +

spykesML v0.1.dev pGLM, SHF − Python + <30 +

cGLM, GLM with coupling filters; gGLM, linear Gaussian GLM; GNM, Generalized Nonlinear Model (Butts et al., 2011); GQM, Generalized Quadratic Model (Park and Pillow, 2011);

pGLM, Poisson GLM (Truccolo et al., 2005); ppGLM, point-process GLM (Paninski et al., 2007); NIM, Nonlinear Input Model (McFarland et al., 2013); SHF, Spikes and covariates History

Filters; STB, Smooth Temporal Basis. Bold values indicate the number of citations higher than 90.

information about toolboxes in comparison tables, we have
discussed and illustrated particular toolboxes’ functionality
and implementations, also in our open MATLAB code.
Below we summarize the comparisons that we made for
general spike and LFP analysis toolboxes and toolboxes with
connectivity tools.

Each considered toolbox has its own advantages:

- Brainstorm: graphical user interface (GUI), versatile and
cross-checked functionality (highly-cited), statistical tools,
detailed tutorials with recommendations on parameters
choice, support of many file formats, active user discussion
community and regular hands-on sessions, fast Morlet wavelet
transform implementation;

- Chronux: versatile and cross-checked functionality (highly-
cited), statistical tools (measures of variance across trials
and statistical comparing between different conditions),
detailed documentation, convenient data analysis pipeline for
programming-oriented users (detailed code comments and
modular code design);

- Elephant: support of many file formats, versatile functionality
with implementation of classic and recent methods for spike-
spike correlation and synchronization analysis, fast Morlet
wavelet transform implementation;

- FieldTrip: versatile and cross-checked functionality
(highly-cited), statistical tools (measures of variance
across trials and statistical comparing between different
conditions), detailed tutorials with recommendations on
parameters choice, support of many file formats, active
user discussion community and regular hands-on sessions,
flexible visualization tools, convenient data analysis pipeline
for programming-oriented users (detailed code comments
and modular code design), versatile filtering, connectivity
and synchronization analysis tools, fast and accurate line
noise removal;

- gramm: quick publication-quality PSTH, raster plots and
tuning curves with many easily adjustable plot properties;

- Spike Viewer: GUI, support of many file formats;
- SPIKY: GUI, implementation of recent spike train

dissimilarity measures.

7. LIST OF TOOLBOXES AND TOOLS IN
ALPHABETICAL ORDER WITH LINKS

Below all the considered toolboxes are provided with a brief
description, reference to the paper where the toolbox was
introduced and a link for downloading.
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- Brainstorm53,54 (Tadel et al., 2011) – a MATLAB toolbox for
the analysis of brain recordings: MEG, EEG, fNIRS, ECoG,
depth electrodes and animal invasive neurophysiology;

- BSMART55 (Brain-System for Multivariate AutoRegressive
Time series) (Cui et al., 2008) – a MATLAB/C toolbox for
spectral analysis of continuous neural data recorded from
several sensors;

- Case-Studies56 – a MATLAB set of examples on sample
datasets accompanying the corresponding book (Kramer and
Eden, 2016);

- Chronux57 (Bokil et al., 2010) – a MATLAB package for the
analysis of neural data;

- cSPIKE58 (Kreuz et al., 2017) – a MATLAB toolbox
for computing ISI-distance, SPIKE-distance, SPIKE
synchronization and their adaptive variants as well as
basic plot functions for plotting spike trains and profiles;

- DataHigh59 (Cowley et al., 2013) – a MATLAB-based
graphical user interface to visualize and interact with high-
dimensional neural population activity;

- DATA-MEAns60 (Bonomini et al., 2005) – a Delphi7
tool for the classification and management of neural
ensemble recordings;

- DCA61 (Cowley et al., 2017) (distance covariance analysis)
– an implementation (MATLAB and Python) of the linear
dimensionality reduction method that can identify linear and
nonlinear relationships between multiple datasets;

- dPCA62 (demixed Principal Component Analysis) (Kobak
et al., 2016) – a MATLAB implementation of the linear
dimensionality reduction technique that automatically
discovers and highlights the essential features of complex
population activities;

- Elephant63,64 (Yegenoglu et al., 2017) – an Electrophysiology
Analysis Toolkit in Python. Elephant toolbox includes
functionality from earlier developed toolboxes CSDPlotter65

(Pettersen et al., 2006) and iCSD 2D66, it is a direct successor
of NeuroTools;

- FieldTrip67,68 (Oostenveld et al., 2011) – a MATLAB
toolbox for advanced analysis of MEG, EEG, and invasive
electrophysiological (spike and LFP) data;

- FIND69 (Meier et al., 2008) – a MATLAB toolbox for the
analysis of neuronal activity;

53https://neuroimage.usc.edu/brainstorm/Introduction
54https://github.com/brainstorm-tools/brainstorm3
55http://www.brain-smart.org
56https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
57http://chronux.org
58http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html
59http://users.ece.cmu.edu/~byronyu/software/DataHigh/datahigh.html
60http://cortivis.umh.es
61https://github.com/BenjoCowley/dca
62https://github.com/machenslab/dPCA
63http://python-elephant.org
64https://github.com/NeuralEnsemble/elephant/commits/master
65https://github.com/espenhgn/CSDplotter
66http://www.neuroinf.pl/Members/szleski/csd2d/toolbox
67http://www.fieldtriptoolbox.org
68https://github.com/fieldtrip/fieldtrip
69http://find.bccn.uni-freiburg.de

- GLMcode1 – a MATLAB code implementing data analysis for
particular publication (Glaser et al., 2018) with GLM fitting
to analyze factors contributing to neural activity (this code is
available from the authors upon request);

- GLMcode270 (Perich et al., 2018) – a MATLAB code
implementing data analysis for particular publication (Lawlor
et al., 2018) with GLM fitting to estimate preferred direction
for each neuron;

- GLMspikestools71 (Pillow et al., 2008) – a Generalized Linear
Modeling tool for single and multi-neuron spike trains;

- GLMspiketraintutorial72 (Pillow et al., 2008) – a simple
tutorial on Gaussian and Poisson GLMs for single and multi-
neuron spike train data;

- GPFA73 (Gaussian-Process Factor Analysis) (Yu et al., 2009)
– a MATLAB implementation of the method extracting low-
dimensional latent trajectories from noisy, high-dimensional
time series data. It combines linear dimensionality reduction
(factor analysis) with Gaussian-process temporal smoothing in
a unified probabilistic framework;

- gramm74,75 (Morel, 2018) – a plotting MATLAB toolbox for
quick creation of complex publication-quality figures;

- HERMES76 (Niso et al., 2013) – a MATLAB toolbox
for assessing connectivity and synchronization between
time series;

- ibTB77 (Information Breakdown Toolbox) (Magri et al., 2009)
– a C/MATLAB toolbox for fast information analysis of
multiple-site LFP, EEG and spike train recordings;

- Inform78 (Moore et al., 2017) – a cross-platform C library for
information analysis of dynamical systems;

- infoToolbox79 (Magri et al., 2009) – a toolbox for the fast
analysis of multiple-site LFP, EEG and spike train recordings;

- JIDT80 (Lizier, 2014) – an information-theoretic Java toolbox
for studying dynamics of complex systems;

- MEAbench81 (Wagenaar et al., 2005) – a C++ toolbox for
multi-electrode data acquisition and online analysis;

- MEA-tools82 (Egert et al., 2002) – a collection of MATLAB-
based tools to analyze spike and LFP data from extracellular
recordings with multi-electrode arrays;

- MuTe83 (Montalto et al., 2014) – a MATLAB toolbox to
compare established and novel estimators of the multivariate
transfer entropy;

70https://crcns.org/data-sets/motor-cortex/pmd-1/about-pmd-1
71http://pillowlab.princeton.edu/code_GLM.html
72https://github.com/pillowlab/GLMspiketraintutorial
73http://users.ece.cmu.edu/~byronyu/software.shtml
74https://de.mathworks.com/matlabcentral/fileexchange/54465-gramm-
complete-data-visualization-toolbox-ggplot2-r-like
75https://github.com/piermorel/gramm
76http://hermes.ctb.upm.es
77http://www.ibtb.org
78https://github.com/ELIFE-ASU/Inform
79http://www.infotoolbox.org
80https://github.com/jlizier/jidt
81http://www.danielwagenaar.net/meabench.html
82http://material.brainworks.uni-freiburg.de/research/meatools/
83https://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_
Transfer_Entropy/1005245Entropy/1005245
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- MVGC84 (Multivariate Granger Causality MATLAB Toolbox)
(Barnett and Seth, 2014) – a MATLAB toolbox facilitating
Granger-causal analysis with multivariate multi-trial time
series data;

- neuroGLM85 (Park et al., 2014) – an MATLAB tool,
an extension of GLMspiketraintutorial allowing more
advanced features of GLM modeling such as smooth
basis functions for spike-history filters, memory-efficient
temporal convolutions, different timescales for stimulus
and spike-history components, low-rank parametrization of
spatio-temporal filters, flexible handling of trial-based data;

- NIMclass86,87 (McFarland et al., 2013) – a MATLAB
implementation of the nonlinear input model. In this model,
the predicted firing rate is given as a sum over nonlinear inputs
followed by a “spiking nonlinearity” function;

- nStat88 (neural Spike Train Analysis Toolbox) (Cajigas et al.,
2012) – an object-oriented MATLAB toolbox that implements
several models and algorithms for neural spike train analysis;

- OpenElectrophy89,90 (Garcia and Fourcaud-Trocmé, 2009)
– a Python framework for analysis of intro- and extra-
cellular recordings;

- PyEntropy91 (Ince et al., 2009) – a Python module for
estimating entropy and information theoretic quantities using
a range of bias correction methods;

- PySpike92 (Kreuz et al., 2015;Mulansky et al., 2015) – a Python
library computing the ISI-distance, SPIKE-distance as well as
SPIKE-Synchronization;

- seqNMF93 (Mackevicius et al., 2019) – a MATLAB toolbox
for unsupervised discovery of temporal sequences in high-
dimensional datasets with applications to neuroscience;

- SigMate94 (Mahmud et al., 2012) – a MATLAB toolbox for
extracellular neuronal signal analysis;

- sigTOOL95 (Lidierth, 2009) – a MATLAB toolbox for spike
data analysis;

- Spike Viewer96,97 (Pröpper and Obermayer, 2013) – a multi-
platform GUI application for navigating, analyzing and
visualizing electrophisiological datasets;

- SPIKY98 (Kreuz et al., 2015; Mulansky et al., 2015) – a
MATLAB graphical user interface that facilitates application
of time-resolved measures of spike-train synchrony to both
simulated and real data;

- SPKTool99 (Liu et al., 2011) – a MATLAB toolbox for spikes
detection, sorting and analysis;

84http://www.sussex.ac.uk/sackler/mvgc/
85https://github.com/pillowlab/neuroGLM
86http://neurotheory.umd.edu/nimcode
87https://github.com/dbutts/NIMclass
88https://github.com/iahncajigas/nSTAT
89http://neuralensemble.org/OpenElectrophy/
90https://github.com/OpenElectrophy/OpenElectrophy
91https://github.com/robince/pyentropy
92https://github.com/mariomulansky/PySpike
93https://github.com/FeeLab/seqNMF
94https://sites.google.com/site/muftimahmud/codes
95http://sigtool.sourceforge.net/
96https://github.com/rproepp/spykeviewer
97https://spyke-viewer.readthedocs.io/en/latest/
98http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
99https://sourceforge.net/projects/spktool/files/latest/download

- spykesML100 (Benjamin et al., 2018) – a Python toolbox
with a tutorial for comparing performance of GLM with
modernmachine-learning methods (neural networks, random
forest etc.);

- STAR101 (Spike Train Analysis with R) (Pouzat and Chaffiol,
2009) – an R package to analyze spike trains;

- STAToolkit102 (Spike Train Analysis Toolkit) (Goldberg et al.,
2009) – a MATLAB package for the information theoretic
analysis of spike train data;

- tensor-demo103 – a MATLAB and Python package (available
for both languages) for fitting and visualizing canonical
polyadic tensor decompositions of higher-order data arrays;

- tensortools104 – a Python package for fitting and visualizing
canonical polyadic tensor decompositions of higher-order
data arrays;

- TD-GPFA105 (time-delayed Gaussian-Process Factor
Analysis) (Lakshmanan et al., 2015) – a MATLAB
implementation of GPFA method extension that allows
for a time delay between each latent variable and each neuron;

- ToolConnect106 (Pastore et al., 2016) – a functional
connectivity C# toolbox with GUI for in vitro networks;

- Trentool107 (Lindner et al., 2011) – a MATLAB toolbox
for the analysis of information transfer in time series
data. Trentool provides user friendly routines for the
estimation and statistical testing of transfer entropy in time
series data.
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