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Neurons perform computations by integrating inputs from thousands of

synapses—mostly in the dendritic tree—to drive action potential firing in the axon. One

fruitful approach to studying this process is to record from neurons using patch-clamp

electrodes, fill the recorded neurons with a substance that allows subsequent staining,

reconstruct the three-dimensional architectures of the dendrites, and use the resulting

functional and structural data to develop computer models of dendritic integration.

Accurately producing quantitative reconstructions of dendrites is typically a tedious

process taking many hours of manual inspection and measurement. Here we present

ShuTu, a new software package that facilitates accurate and efficient reconstruction

of dendrites imaged using bright-field microscopy. The program operates in two

steps: (1) automated identification of dendritic processes, and (2) manual correction of

errors in the automated reconstruction. This approach allows neurons with complex

dendritic morphologies to be reconstructed rapidly and efficiently, thus facilitating the

use of computer models to study dendritic structure-function relationships and the

computations performed by single neurons.

Keywords: neuron morphology, reconstruction, dendrite, automatic reconstruction method, software

INTRODUCTION

The geometry of dendritic arbors directly influences synaptic integration and the resultant firing
patterns of neurons (Henze et al., 1996; Mainen and Sejnowski, 1996; Stuart and Spruston,
1998; Krichmar et al., 2002). Dendritic morphologies vary widely across and within regions of
the brain (Parekh and Ascoli, 2013), so consideration of morphology is an important aspect
of understanding the mechanisms by which different neurons carry out their unique functions.
Intracellular recording of neurons is a common technique for studying dendritic integration of
input signals (Hamill et al., 1981; Stuart and Spruston, 1998). To fully understand the implications
of these experiments, numerical simulations of the recorded neurons are often needed (Jaeger, 2001;
Krichmar et al., 2002; Gidon and Segev, 2012; Menon et al., 2013). Informative simulations require
accurate reconstructions of the geometry of the recorded neurons, including branching structures
and diameters of the branches.
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The traditional method of reconstructing neuron morphology
requires intensive human labor (Zandt et al., 2017). A slide
containing a neuron filled with biocytin is mounted on a
motorized stage and imaged using a video camera mounted to
a bright-field microscope. The neuron image is displayed on a
computer screen, and the reconstruction is done manually. The
user clicks the mouse along the images of dendritic branches on
the screen. While clicking, the user adjusts the cursor size to
match the diameters, and turns the focus knob (z position) on
the microscope to keep the branches in focus. Each click records
the x, y, and z positions and the radius r at a single point, and
connects the point to the previously clicked point. Bifurcations
are marked and followed up sequentially. The morphology is
recorded in a series of these clicked points.

Manual reconstruction in this way is computationally
straightforward. Since it requires no image storage or
processing, the computational demand is minimal. However,
there are several drawbacks, especially when the accuracy of
reconstruction is crucial. Repetitive clicking while measuring the
radii and turning the focus knob makes manual reconstruction
labor-intensive and time-consuming. The problem is exacerbated
at high magnification. To see fine processes of neurons, it
is desirable to image neurons with an objective at 100×
magnification and a large numerical aperture (Jaeger, 2001;
Brown et al., 2011). In our experience, however, it can take
10–15 h or more of continuous work to reconstruct the dendritic
tree of a pyramidal neuron in this way. Over this period of
time, instability of the sample in the microscope can lead to
problems. Furthermore, the accuracy of the reconstruction
can suffer from fatigue-induced mistakes. Another problem
with manual reconstruction is that the accuracy is hard to
check independently because it is difficult to precisely align the
previous reconstruction with the neuron image after remounting
the slide.

Automatic reconstruction of neuron morphology using
computer algorithms promises to reduce manual labor and
increase productivity. There have been intensive efforts toward
this goal for decades (Capowski, 1983). Recent work includes
open-source projects, such as the Digital Reconstruction
of Axonal and Dendritic Morphology Challenge (DIADEM)
(Gillette et al., 2011a,b; Liu, 2011; Svoboda, 2011) and the
BigNeuron project (Peng et al., 2015). Commercial software is
also moving in this direction. A recent paper reviews many
algorithms for automatic reconstruction proposed over the years
(Acciai et al., 2016). In our experience, however, available
software still suffers from a variety of problems, including limited
automation and tedious approaches for error correction. In
particular, algorithms for automatic reconstruction of neurons
stained with a dark reaction product are lacking. Thus, we
sought to develop an open-source software platform that would
overcome these limitations. In this paper, we describe our open-
source software package, ShuTu (Chinese for “dendrite”)—a
system for reconstructing biocytin-filled neurons efficiently and
accurately by combining a novel automatic tracing algorithm
and a graphic user interface (GUI) designed for efficient manual
editing and error corrections. To avoid the impression of
marketing our software, we make no attempt to compare

it to other open-source or commercial software; instead, we
encourage others to try it and judge for themselves.

RESULTS

We demonstrate the use and design of ShuTu by going
through the steps involved in reconstructing a single CA3
pyramidal neuron from a mouse hippocampal slice. We then
present reconstruction results for other cell types as well.
Neurons were stained following patch-clamp recordings in
brain slices prepared from 17 to 30 days-old male mice
(C57Bl/6), using biocytin-containing intracellular solution and
stained with a dark reaction product. Following recording and
staining, neuron reconstruction proceeded according to the
following steps: (1) image acquisition; (2) image processing;
(3) automated reconstruction; (4) manual editing and error
correction. Additional details regarding slice recordings and
computer systems requirements are provided in the Materials
and Methods section. Operational commands for ShuTu
are provided in Appendix 1. Technical details regarding the
algorithms used in ShuTu for automated reconstruction are
provided in Appendix 2.

Image Acquisition
ShuTu uses tiles of tiff stacks covering the entire neuron
(Figure 1). Nearby tiles should overlap by ∼20%, in order
to facilitate accurate stitching of tiles into a single image.
We imaged hippocampal neurons using a Zeiss AxioImager
microscope with AxioCam and ZEN blue software. Once the
boundary in the field of view (xy) and the range of the
depths (z) that contain the neuron were set, the images at
each tile position and depth were acquired automatically, and
the positions of the these images were stored in an xml file
(image metadata). Other microscope/software combinations can
be used, as long as tiff stacks and their relative positions are
provided to ShuTu (see Materials and Methods for details). It is
also possible to use ShuTu to reconstruct neurons imaged using
two-photon, confocal, or wide-field fluorescence microscopy
(see Discussion). However, we focus our description of the
software mainly to neurons stained using biocytin and a dark
reaction product.

The number of images required to capture the full three-
dimensional (3D) morphology of a neuron depends on its
size and the magnification of the microscope objective. The
CA3 pyramidal neuron reconstructed here was relatively large
and we imaged it using 100× objective (NA 1.4) (Figure 1).
Therefore a total of 51 tiles were required, with 224 images
per tile (0.5 µm increments through the depth of the
slice), thus yielding a total of 11,424 images. This neuron
is contained in a volume of ∼400 × 600 × 100 µm3 and
has a total dendritic length of ∼8,800 µm. The full imaging
process for the CA3 pyramidal neuron took ∼2 h on the
Zeiss microscope system we used. Faster imaging times (and
fewer tiles) can be accomplished using lower magnification
objectives, but in our experience 100× provides more accurate
estimates of diameters for small-caliber dendrites. During
imaging, care was taken to ensure that the microscope settings
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FIGURE 1 | Tiles of tiff stacks covering the entire neuron. (A) A mouse CA3 neuron imaged at 100× (biocytin fill, dark reaction product, bright-field microscopy, NA

1.4). There are 51 tiles covering the entire neuron. 2D projection is shown. (B) Dimensions of one tile. Each tiff stack consists of 224 planes of images. The distance

between successive image planes is 0.5 µm. Four planes at different depths in the tiff stack indicated by the black rectangle in (A) are shown below.

were optimized to obtain images of all dendrites, including
those with the smallest diameter. This resulted in significant
background noise, which was removed automatically in a final
step of the reconstruction process (see below). We made
no attempt to image or reconstruct axons, as these were of
finer caliber than dendrites and for many neurons they were
difficult to discern beyond a short distance from their origin
near the soma.

Image Processing
Because the ZEN blue microscope software provides individual
image files in each tile, ShuTu first converts the image files into
tiff stacks using the image metadata file (xml) and parsing the file
names for depth information. Each tile was imaged successively
through the depth of the slice, so no alignment of the images is
required to form a stack. As each stack consists of 224 images,
about 5 min of CPU time was required for each stack (see
Materials and Methods for the system used). The CA3 pyramidal
neuron reconstructed here consists of 51 tiles, and creating the
stacks required a total of just over 4 h. With multiple CPU cores
and sufficient memory, ShuTu can automatically distribute the
task across multiple cores in parallel, resulting in approximately
linear reduction in the real time required to construct the stacks.

After the tiff stacks are created, the tiles need to be stitched
to find precise relative positions between the tiles. ShuTu also
accomplishes this task in a parallel manner, requiring a similar
amount of computational time as construction of the stacks.
These two image processing steps are performed in series, but
they can be executed sequentially without user intervention.
In the case of our example CA3 pyramidal neuron, both of
these steps were performed in just a few hours by using
multiple CPU cores.

Automated Reconstruction
After image processing, ShuTu produces a draft reconstruction
of the neuron using an automatic reconstruction algorithm
(Materials and Methods). We devised the algorithm to
specifically deal with several challenges posed by the bright-field
images of biocytin-filled neurons (Figure 2). One is background
noise (Figure 2A). While patching a neuron, biocytin can spill
out and create blobs in the image stacks. Dirt or dust can be
picked up, resulting in structures that share some features of
neurites, especially as color information is not used. Second,
during the process of fixing the tissue, thin dendrites can become
beaded, with very faint signals between the beads (Figure 2B).
Third, close crossings of adjacent branches require special
attention to resolve (Figure 2C). Fourth, shadows of out-of-focus
branches can be as strong as signals from thin dendrites in focus
(Figure 2D), making it hard to trace some dendrites without
being fooled by the shadows. These challenges make it difficult to
create a perfect reconstruction from automated algorithms. Our
algorithmwas designed to address many of these issues, but some
manual correction is nevertheless required. In the following, we
outline the steps involved in the algorithm, using the tile shown
in Figure 1B as an example. Technical details of the algorithm are
presented in Appendix 2, which should be useful for adjusting
the parameters for specific situations encountered by users.

Conversion to Gray Scale and 2D Projection
The color images are converted into grayscale images, and the
pixel intensities are scaled so that the maximum is 1. Aminimum
intensity projection of the tiff stack is then created, which has the
same dimension as a single 2D plane in the stack. The intensity at
each pixel is chosen to be that of the darkest pixel among all pixels
in the stack having the same xy position. This minimum intensity
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FIGURE 2 | Aspects of bright-field images of biocytin-filled neurons that make

automatic reconstruction challenging. Parts of images in single planes of the

tiff stacks are shown. (A) Biocytin spills can create spurious signals. Dirt or

dust can also add noise. (B) Thin branches can be broken into “beads.”

(C) Close crossing between adjacent neuron branches. (D) A branch can cast

bifurcating shadows in z with darkness level comparable to weak signals from

nearby faint branches.

projection reveals all neurites in the tiff stack (Figure 3A),
along with noise from the sources mentioned above. To remove
smooth variations due to uneven lighting, the 2D projection
is blurred by Gaussian smoothing (Figure 3B) and subtracted
from the original 2D projection (Figure 3C). Additionally, this
processmakes faint branches nearly as visible as well-stained ones
(Figure 3D); the inverse peaks corresponding to the branches in
the intensity profile have more even heights after the background
removal (purple curve) than before (green curve).

Binary Mask
The 2D projection is used to create a mask, which is a
binary image with the white pixels indicating the neurites and
dark pixels the background (Figures 3E–I). An accurate mask
is crucial for our reconstruction algorithm. Considering the
intensity as heights, the neurites in the original 2D projection
can be viewed as valleys of dark pixels. To create the mask,
we evaluate the possibility that each pixel in the 2D projection
belongs to a valley. This is accomplished by comparing the local
patch of image centered at the pixel with valley detectors of
varying orientations (Figure 3E) (Frangi et al., 1998). A valley
detector is a 2D image consisting of an oriented dark band
flanked by two bright bands. The response of the detector is the
sum of the products of the corresponding pixels in the detector
and the local patch (Figure 3F). The response has a maximum
(λ1) at one orientation, and a minimum (λ2) at the orthogonal
orientation (Figure 3F). If the local patch is nearly uniform in
intensity, the response is close to zero at all orientations, and λ1 is

small (Figure 3F, blue curve, which describes the responses at the
blue pixel in Figure 3C). In contrast, if the local patch contains
a valley, the maximum response (λ1) is large and the minimum
response (λ2) is small (Figure 3F, red curve, at the red pixel in
Figure 3C). If the patch contains a crater corresponding to a blob,
λ1 can be large, but so can λ2, because there is no privileged
orientation. These features are used to select pixels in valleys but
not in blobs or in the background by thresholding λ1 while also
factoring in the difference between λ1 and λ2, creating the binary
mask (Figure 3H). The mask is further smoothed to eliminate
noisy speckles and rough edges in the boundaries, creating the
smoothed mask (Figure 3I).

SWC Points
We use the “SWC” format for representing the neuron
morphology (Cannon et al., 1998). It consists of a list of SWC
points. An SWC point is defined by six values: ID, branch type, x-
position, y-position, z-position, radius, and the ID of the parent
SWC point (-1 if there no parent). ID is an integer unique to
the point. The value for branch type can be 1 for soma; 2 for
axon; 3 for basal dendrite; and 4 for apical dendrite. x, y, z specify
the position of the point, which should be on the center line
of the branch; and radius specifies the radius of the branch at
that position. The parent ID gives the connections between the
SWC points. An SWC point and its parent specifies a cylindrical
trapezoid volume that represents the small segment of the branch
between the positions of the two points.

The mask is used to place SWC points along the neurites. The
SWC points are placed along the centerlines of the binary mask
(Figure 4A). The radii of the SWC points are computed as the
shortest distance from the positions of the SWC points to the
nearest boundaries of the binary mask (Figure 4B). To determine
the depths of the SWC points in the original tiff stack, we dissect
the centerlines into segments between end points and/or crossing
points. These segments are called “xy-paths” (e.g., Figure 4A, red
arrow). Cutting through the tiff stack while following an xy-path,
we create a “z-image” for that segment (Figure 4C). This z-image
contains all pixels in the tiff stack whose xy positions lie in the
xy-path. The branch whose 2D projection falls on the xy-path
manifests as a dark valley in the z-image spanning from the left
edge to the right edge (Figure 4C). ShuTu finds the line through
the dark valley (red dotted line in Figure 4C), from which the
depths of the neurites (and the SWC points) are determined. The
distance between successive SWC points is set to roughly the
sum of their radii. The distance is made shorter when the radii
changes rapidly along the centerlines to reflect large changes in
short distances in the dendritic morphology.

Invalid SWC points are automatically removed (see below
regarding validity of SWC points), and the z of a valid SWC
point is further adjusted to the nearby depth of minimum of
intensity in z-dimension (Figure 4D). Adjacent SWC points
along one xy-path are connected. If the removal creates a
large distance between two consecutive SWC points, they are
not connected. Biologically, sharp turns in neurites are rare.
Therefore, to safeguard against possible errors, we do not connect
SWC points if doing so creates sharp angles in consecutive
lines of connections. To avoid connecting branches far away in
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FIGURE 3 | The process of creating a binary mask from 2D projection. (A) 2D projection from the image stack. The intensity profile across the green line is shown in

(D). (B) Smoothed background obtained from Gaussian smoothing of the 2D projection. (C) 2D projection after removing the smoothed background. The intensity

across the purple line is shown in (D). The red and blue arrows indicate the points to be tested with valley detectors in (F). (D) Intensity across the midline in the

original 2D projection [green line in (A)] and after removal of the background [purple line in (C)]. (E) Images of valley detectors at four orientations. (F) Responses to

valley detectors at varying orientations for two points shown in (C) (red point, red line; blue point, blue line). λ1 and λ2 are the maximum and minimum responses,

respectively. (G) The maximum responses to the valley detectors (λ1) for all pixels. (H) The binary mask obtained from thresholding λ1. (I) The smoothed binary mask.

depth, SWC points are not connected if the difference in z is
too large. These decisions depend on parameters set by the user
(Appendix 2).

Validity of SWC Points
In some cases, the xy-paths from the centerlines of the binary
mask are incorrect. For example, nearby branches can be merged
in the mask. Checking the validity of the SWC points is thus
crucial for eliminating mistakes. To do so, we take a square
patch of the image centered at an SWC point in the plane of
the point’s depth. The size of the patch is set to four times
the radius of the SWC point or 4 µm, whichever is greater.
To reduce the possibility that a tilt in the intensity across the
patch might interfere with the check, we subtract a linear fit
to the intensity and scale the result to the original intensity
range. We then create intensity profiles in eight directions

centered at the SWC point (Figure 5A). For each profile, we
look for a significant inverse peak after smoothing the profile
(Figures 5B,C). The significance is checked against the baseline
and fluctuations in the intensity. The baseline is set to the
top 20% intensity value in the patch, and a parameter σ =

0.03 is used to characterize the fluctuations. A threshold, set
to the half point between the maximum and minimum of the
smoothed profile (Figure 5B, dotted gray line), is used to judge
whether the smoothed profile has two flanks. Another threshold,
set to the baseline minus 2σ , is used to judge whether the
inverse peak is deep enough (Figure 5B, gray line). If both
criteria are met, the profile is judged to have a significant
inverse peak. The width of the inverse peak is the distance
between the steepest descending point and the steepest ascending
point of the peak, identified by the derivatives of the smooth
profile (Figures 5E,F).
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FIGURE 4 | Creating SWC structure from the mask. (A) The skeleton obtained by thinning the mask. (B) Distance map computed from the mask. The square region

highlighted in (A) is shown. The brightness of each pixel is proportional to the distance to the nearest boundary in the mask. (C) Finding the depth of the path. The

image is constructed by cutting through the stack in z-dimension following the xy path indicated by the arrow in (A). The dark band is the neurite along the path. The

dotted line is the depth (z) computed using the left-right shortest path algorithm. (D) The depth of a candidate SWC point is further adjusted using the intensity profile

in z at the xy position of the candidate point (black line). The point of minimum intensity in the smoothed profile (green line) is set as the depth of the candidate point.

The z distance in the graph is relative to the z position of the end point.

If none of the profiles have a significant inverse peak, the
SWC point is invalid. Otherwise, we chose the profile with
the minimum width among the valid ones. In some cases,
an SWC point can be at the edge of thick dendrite or soma
(see below). To eliminate them, we check wether the intensity
within the half radius of the SWC point is low enough
(Figure 5D). Specifically, we check that the intensity values of
the smoothed profile (Figure 5D, violet curve), orthogonal to the
chosen profile (Figure 5D, green curve) within the half radius
(Figure 5D, dotted vertical lines), is smaller than a threshold.
This threshold is set to the maximum of the chosen profile
within the range plus σ . If not dark enough, the SWC point
is invalid.

If the SWC point passes the validity test, we set its radius to the
half width of the inverse peak in the chosen profile. Its xy position
is adjusted to that of the inverse peak, and z position is adjusted to
the depth of the nearby intensity minimum in z (Figure 4D). To
ensure that this adjusting process converges, we adjust each SWC
point three times iteratively. If the final xy position shifts from the
original position more than twice of the original radius, we mark
the SWC point invalid since it is most likely created erroneously.
Finally, if the final radius of the SWC is smaller than 0.2 µm or
larger than 10 µm, the SWC is most likely due to noise and is
marked invalid.

Mark Pixels Occupied
As the SWC points are created, we mark pixels in the tiff stack
in the vicinity of the SWC points as occupied. The pixels around
two connected SWC points, formed by two half cylinders and a
trapezoidal prism, are marked as occupied (Figure 6A). Before
creating a new SWC point, we check whether its center point
is marked as occupied; if so, no SWC point is created. This

avoids creating redundant SWC points for the same piece of
dendritic branch.

Thick Dendrites and Soma
The widths of dendrites can vary several-fold from the thin
terminal dendrites to the thick apical dendrite near the soma.
The thick dendrites and the soma can be missing from the
binary mask, which is created with the valley detector tuned
for detecting thin dendrites. Therefore, only edges of the thick
dendrite and soma are captured in the mask, leading to invalid
SWC points that are eliminated. To solve this issue, we separately
detect the presence of thick dendrites and soma. The thick
dendrites and soma are typically well-stained and show up as
the darkest locations in the 2D projection. We use this fact to
decide whether there are thick dendrites and soma that are not
covered by existing SWC points. If the lowest intensities in the
pixels covered by the existing SWC points are brighter than the
lowest intensities in the 2D projection, we decide that the binary
mask missed the soma or thick dendrite. We create a binary mask
on a 2D projection, excluding pixels around the existing SWC
points, by thresholding the pixel intensities of the 2D projection.
New SWC points are added based on this new mask.

Extending SWC Points in 3D
The SWC structure created with 2D projections can contain
errors. Typically the binary masks can be incomplete or incorrect
in some parts due to weak signals, occlusions produced by branch
crossing, or mergers of closely parallel branches. This leads to
gaps in the SWC structure representing continuous dendritic
branches. To bridge these gaps, we extend the SWC points in 3D
(the tiff stack) from the end points in the SWC structure.
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FIGURE 5 | Checking the validity of an SWC point. (A) A patch of image around an SWC point to be examined. The image is taken from the z-plane of the SWC

point. Profiles of the intensities along eight directions are taken (straight lines; colors indicate angles). The green line is the profile chosen to adjust the SWC point. The

red circle indicates the radius of the SWC point. (B) The profile (black, raw; green, smoothed) along the green line in (A). The dotted gray line is the baseline, and the

solid gray line is the threshold. An inverse peak is judged valid if the flanks of the smoothed profile go above the baseline, and the minimum value goes below the

threshold. (C) Smoothed profiles for all eight directions. (D) The chosen profile (green) and the profile at the orthogonal direction (violet). The vertical lines are at the half

radius points. Note that the center of the profiles are slightly shifted compared to those in (C). For the SWC to be valid, the minimum intensity of the profile at the

orthogonal direction must be below the threshold (gray line) within the vertical lines. (E) Smoothed derivative of the smoothed profile in (B). The vertical lines indicate

the local maxima of the derivatives. The distance between the vertical lines is the width of the peak. (F) Smoothed derivatives of the profiles for all eight directions. The

profile with the minimum width is chosen.

To minimize interference from noise, we first delete isolated
SWC points that are not connected to any other SWC points.
We then mark pixels near the existing SWC points as occupied
(Figure 6B, red circles) to ensure that the extension does not
create duplicate SWC points.

From an end SWC point (Figure 6B, yellow circle), we search
for the next candidate SWC point. We draw an arc of radius 3
µm or twice the radius of the end point, whichever is greater,
in the plane of the end point (Figure 6B, blue arc). The arc
spans from −π/3 to π/3 (Figure 6B, black lines) relative to

the line from the end point to its previously connected SWC
point (Figure 6B, yellow line). The shortest intensity-weighted
distances from the points on the arc to the end point are
computed (Figure 6C, black line). With the smoothed profile of
the distances, the point with the minimum distance is selected
(Figure 6C, green line), and the shortest distance path from
this point to the end point is found, which should follow along
the neurite (Figure 6B, white line). The depth of the neurite is
found using the xy-path technique (Figure 4C) along the shortest
distance path.
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FIGURE 6 | Mark pixels as occupied and extending SWC structure in 3D.

(A) Mark pixels in tiff stack as occupied. The pixels around two connected

SWC points (red spheres), formed by two half cylinders and a trapezoidal

prism, are marked as occupied. (B) The candidate point for extension is

searched in the plane of an end SWC point (yellow circle). Red circles are the

SWC points that are connected to the end point. The search is done along a

shortest distance path running through the neurite (white line). This path is

determined by building the intensity-weighted shortest distance profile along

an arc (blue line) enclosed by two black lines. The valid SWC point closest to

the end point is selected as the new SWC point (orange circle). (C) The profile

of the shortest distances along the arc [blue line in (B)]. The green line is the

smoothed version. The angle is measured relative to the line connecting the

end point to its connected SWC point [yellow line in (B)]. The minimum

position in the smoothed profile is selected as the starting point of the shortest

path shown in (B).

The candidate SWC point for extension (Figure 6B, orange
circle) is placed on the shortest distance path, starting from
the end point marching toward the arc. We test the validity
of the candidate SWC point, during which the xy position
and radius are adjusted. To cover weak branches, the test is
made less stringent by accepting shallower inverse peaks in the
intensity profiles used for the test (Figures 5B,C). If accepted, the
extension process continues from the new SWC point as the end
point. If the candidate point is marked occupied, the extension
stops, and the possibility of connecting the end point to the
existing SWC points that marked the occupation are evaluated
(see below). The extension stops if the test fails for all points along
the shortest distance path.

Connecting Broken Segments
After extending SWC points in 3D, a continuous branch can still
be represented with broken segments of SWC points, especially
if the underlying signal is broken or there are closely crossing
branches (e.g., Figures 2B,C). We connect these segments with
heuristic rules based on the distances between the end points,

in order to recover the branch continuity (Appendix 2). After
connecting the end points, the SWC structure for the tiff stack
is complete.

The results for our example tiff stack are shown in
Figures 7A–E, in which the SWC points are overlaid with the
underlying image, and in Figure 7F, in which the SWC structure
is shown from four different view angles in 3D to reveal more
details. For this particular tiff stack, the automated reconstruction
is mostly accurate, except that an elongated piece of dirt is
mistaken as a neurite, and a close crossing of two branches
is incorrectly connected. These errors need to be corrected
manually (see below).

Subdivision in z

The 2D projection can be complicated when there are many
branches in one tiff stack, which often leads to missed branches
due to occlusions. One way of mitigating this problem is to divide
the tiff stack in z into several slabs with equal heights in z. SWC
points are created separately for each slab as described above,
and then combined for the entire stack. Extension from the
end points is done with the entire stack. When branches extend
across the boundaries between subdivisions of tiff stacks, they
are automatically connected by extension from the end points,
as described above.

ShuTu allows the user to decide how many subdivisions
(slabs) are necessary based on the complexity of the morphology
and the thickness of the tiff stacks. The user should keep in mind
that a large number of subdivision slows down the automated
tracing. In our example neuron, we divided all tiff stacks into
eight slabs.

Combining SWCs
The SWCs determined in individual tiles of tiff stacks are
combined to form the SWC of the entire neuron. The positions
of SWCs are shifted based on the relative coordinates obtained
in the stitching process. The SWC points of individual stacks
are read in sequentially. To avoid duplicated SWC points in
the overlapping regions of adjacent stacks, pixels near the SWC
points that are already read in are marked occupied. If the
position of SWC points are at the marked pixels, they are deleted.
After reading in the SWC points of all stacks, we extend the
end points and connect them if they are nearby. Isolated short
branches (< 20 µm) and small protrusions (<5 SWC points)
from main branches are deleted to reduce noise in the SWC
structure. The resulting SWC structure for the example neuron
is shown in Figures 8A–D.

The entire process of automated reconstruction of the
example neuron took about 4 h on our basic desktop system
using three CPU cores (see Materials and Methods for the
system specs). With more powerful computers, the time can be
further reduced approximately linearly with the number of CPU
cores used.

Manual Editing and Error Correction
The SWC structure created by the automatic algorithm requires
editing, such as removing noise, tracing thin or faint dendrites,
connecting ends, and correcting mistakes in the radii and
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FIGURE 7 | The SWC structure overlaid on the image. (A) The SWC structure projected on to the image of 2D projection. Red circles are SWC points. Connections

between them are indicated with red lines. (B–E) SWC structure overlaid at the specific planes in the tiff stack, zoomed in to show more details. Arrows indicate the

corresponding regions in the 2D projection. (F) The SWC structure viewed from four different angles to reveal the 3D structure. The viewing angles are indicated with

the directions of xyz coordinates.

positions of the SWC points and in the connections between
them. We have designed ShuTu to make these operations
easy for the user. In this section we highlight a number of
editing techniques.

Inspecting the Reconstruction
The SWC structure can be examined in three modes: Tile
Manager, Stack View, and 3D View (Figure 9). In Tile Manager,
the SWC structure is overlaid with 2D projection of the entire
neuron (Figure 9A). In this view, it is easy to identify missing,
discontinuous, or incorrectly connected branches.

Double clicking on one tile in Tile Manager loads the tiff
stack into Stack View (Figure 9B), in which the SWC structure
is overlaid with the image. The radii, depths, and connectivity of
the SWC points can be examined in detail by scrolling up and
down through the z dimension of the tiff stack.

From Stack View, a 2D projection can be created by clicking
on the Make Projection button (Figure 10). There is an option
to subdivide the stack into multiple slabs in z, in which
case separate 2D projections are created. Subdivision is useful
when the branching patterns are complicated. Mistakes in the
reconstruction can be easily spotted in ProjectionView, including
missed branches, broken points, incorrect connections, and
inclusion of noise (Figure 10). Incorrect positions and diameters
for the SWC points are easy to identify as well.

In 3D View, the SWC structure can be rotated and shifted in
order to reveal incorrect connections, especially large jumps in z,
which can be obscure in other views.

Editing can be done in Stack View, Projection View, and 3D
View. In all cases, after any editing, the SWC structure is updated
in all views. A selected point can be deleted or moved and its
radius can bemodified. A selected point in Projection View or 3D
View can also be located in Stack View for further examination
and modification using the tiff stack.

Adding SWC Points
In Stack View, SWC points can be added in three ways. The
first method is smart extension. The user selects an SWC point
on a branch that needs extension, finds a target point on the
branch and locates the focus plane in z, and then clicks on the
target. SWC points will be added along the branch from the
selected SWC point to the target point (Figure 11A). The path is
computed with the shortest distance algorithm, and the radii and
positions of the SWC points are automatically calculated using
the automated algorithm described above. The second method
is manual extension. It is the same as the smart extension, except
that the only point added is at the target point and its radius needs
to be adjusted manually. The third method is mask-to-SWC
(Figure 11B). In Projection View, amask along a branch is drawn
by selecting the start and end points. The path is automatically
computed with the shortest-distance algorithm. The mask can
also be drawn manually. After the mask is completed, it is
converted to SWC points along the branch. The positions and
radii of the SWC points are computed automatically.

These three ways of adding SWC points are complimentary.
When the branch to be reconstructed is long, the mask-to-SWC
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FIGURE 8 | Combining SWCs from the stacks for the entire neuron. (A) 2D projection of the entire neuron. Individual tiff stacks are stitched together to obtain their

relative coordinates. The stack in Figure 7 is highlighted with a black rectangle. (B) The SWC of the entire neuron is obtained by combining the SWCs of individual tiff

stacks. The SWC points are overlaid onto the 2D projection. (C) 3D view of the SWC structure. The 3D box corresponds to the highlighted stack in (A). (D) The 3D

view from a different angle.

method is efficient. However, it requires that the underlying
signal is strong enough, otherwise the computation of the path
and the depths can be inaccurate. When the branch to be
covered is short, the smart extensionmethod is efficient, although
it also requires a relatively strong signal. Manual extension
always works.

ShuTu users can reconstruct the entire neuron with one of
these three methods. The extension methods can be used after
creating a single seed SWC point. However, the process is tedious
because the focus plane must be located in every click. The
mask-to-SWC method traces branches in 2D projections, and is
therefore more efficient.

Modifying Connections
The end points in the SWC structure are highlighted with
blue or yellow colors. In some cases, it is necessary to

connect nearby points that have been incorrectly identified
as end points. This can be done by selecting two end
points and connecting them. If the distance between the two
points are more than the sum of their radii, SWC points
can also be added automatically while bridging the gap. A
selected end point can also be automatically connected to its
nearest neighbor.

Making connections between two points are denied if they are

already connected. If this happens to two nearby points that the

user would like to connect, the user should look for a “loop” in

the SWC structure connecting these two points due to incorrect
connections made elsewhere. Selecting the two points highlights
the loop. After breaking the incorrect connections, the two points
can be connected.

Incorrect connections can be broken after selecting two
connected SWC points. The branching points are highlighted
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FIGURE 9 | Three views for examining the SWC structure. (A) Tile manager. 2D projection of the stitched stacks is superimposed with the 2D projection of the SWC

structure. (B) Stack view. One stack is loaded, with the SWC points in the stack overlaid onto the image. The 2D projection view of the stack can be created within

this window. (C) SWC view. The 3D structure can be viewed from different angles and edited.

with green; these points need to be examined carefully for
incorrect connections, especially when branches cross.

All SWC points connected to a selected point can be
highlighted (Figure 12A). This is useful for finding broken
connections in the SWC structure. Structures with short total
length can also be selected (Figure 12B), and can be deleted with
a single command. This is useful to reduce noise in the automated
reconstruction. At the end of the reconstruction, all SWC points
that belong to the neuron should be connected. At this point, all
remaining points (presumably noise) can be deleted by selecting
all connected points in the neuron and deleting the unselected
points with a single command.

Reconstruction Efficiency
To quantify the efficiency of reconstructing neurons through the
automatic algorithm andmanual editing, we counted the number
of editing operations (NEO) required for achieving the final
reconstructions, starting from the one generated by the automatic
algorithm. The results for the example neuron are shown in
Figure 13. The SWC points that are added in the editing phase
are shown in red, and those from the automatic reconstruction

are shown in green (Figures 13A,B). The added SWC points
are about 5% of the total SWC points in the structure. The
NEO is 439. Among the editing operations, extensions are
dominant. Correcting connection mistakes are sizable as well.
The manual time spent in repairing the automatic reconstruction
was around 1.5 h.

The efficiency of reconstruction depends on the image

quality and the complexity of the neuron morphology. For
neurons with sparse processes, the automated reconstruction
captures most of neuronal structure, and manual editing is
not intensive. For the example shown in Figure 14A, which is
another mouse CA3 pyramidal neuron, simpler than the one
shown in previous figures, the NEO is 88, and the time spent
in editing was ∼20 min. In contrast, when the processes are
dense, the automated reconstruction contains many omissions
and mistakes, so manual editing takes more effort. An example
is shown in Figure 14B, which is a rat CA1 pyramidal neuron;

the NEO is 812, and the time spent in editing was ∼1.9 h.

Another example of a complex neuron is shown in Figure 14C,
which is a mouse Purkinje cell labeled with fluorescent dye and
imagedwith Zeiss 880 confocalmicroscope at 63×magnification.
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FIGURE 10 | In the Stack View, clicking on the Make Projection button creates the 2D projection of the tiff stack and the SWC structure. It is easy to spot mistakes in

this view. SWC points can be removed and their properties changed. The connections between SWC points can be modified. Selecting one SWC point and pressing

z locates the points in the Stack View for further examination and modification.

The increased complexity decreases the quality of automated
reconstruction; ∼2.4 h of editing was required and the NOE is
1,190. This example also shows that our software is not restricted
to tracing biocytin-labeled neurons.

Comparison to Other Algorithms for
Automatic Reconstruction
To assess the performance of our automated algorithm relative to
other algorithms, we compared automatic tracing results of three
approaches: our own, neuTube (Zhao et al., 2011; Feng et al.,
2015), and Vaa3D (more specifically, Vaa3D-APP2) (Xiao and
Peng, 2013). Among many available automatic reconstruction
algorithms (Acciai et al., 2016), we selected neuTube and Vaa3D
for comparison because they are widely known and adopted by
the community.

We selected a tile covering part of the basal dendrites in
the biocytin-filled neuron shown in Figure 1. Since neuTube
and Vaa3D are designed for tracing dark-field (fluorescent)
images, we converted the original bright-field image to a
dark-field image. We tested several preprocessing methods for
this purpose, including directly inverting the image intensities,
local background subtraction provided by Vaa3D plugins (Peng
et al., 2010), and adaptive image enhancement developed for
neuron tracing (Zhou et al., 2015). We found that only the
local background subtraction method, which computes the

background of any given location by averaging its neighboring
samples within a certain range, produced acceptable automatic
reconstructions when the preprocessed image was supplied to
neuTube or Vaa3D. In each program, we tuned adjustable
parameters in the open-source code to obtain the best results.

As shown in Figure 15, our automated algorithm produced
a reconstruction that required much less manual editing
and corrections than neuTube or Vaa3D. Our automated
reconstruction covered more neurites (Figures 15A–C). After
manual editing and corrections, the percentages of SWC points
created by the automated reconstructions and retained in the
final reconstructions were 95% of the total SWC points for our
algorithm, 72% for neuTube, and 70% for Vaa3D. The NEO
values were 139, 370, and 534, respectively (Figure 15D); and
the estimated manual time spent on editing and corrections were
17, 32, and 52 min, respectively (Figure 15E). For neuTube,
most manual time was spent on manually tracing missed faint
branches. For Vaa3D, besides the missing branches, additional
time was required to delete erroneous traces (see Figure 15C);
furthermore, the estimates of the branch radii were mostly far
off, and adjusting the radii of the SWC points also contributed to
the manual time. Comparisons of the automated reconstructions

to a fully manual reconstruction of the tile further supported

that our algorithm captures the dendrites more accurately than
neuTube or Vaa3D (Supplementary Material).
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FIGURE 11 | Creating SWC points. (A) In Stack View, an SWC point is selected. Find the target point by finding the focus plane of the branch. Clicking on the target

point creates SWC points connecting the target point to the selected point along the branch. (B) In Projection View, pressing r starts mask creation. Click on the

starting point and Shift-click on the end point along a branch creates a mask. Clicking on the Mask → SWC button creates SWC points along the mask.

FIGURE 12 | (A) In 3D View, selecting one SWC point and pressing h-5

selects all SWC points connected to the selected. This operation is useful for

detecting broken connections. (B) Pressing h-7 selects all branches with total

length smaller than a chosen threshold. This operation is useful for deleting

noise.

DISCUSSION

We have demonstrated how ShuTu can be used to reconstruct
neuron morphology by converting microscope images to
structures described by a collection of SWC points. Our

goal is to provide a practical system that can be readily
implemented and used in labs who need accurate dendritic
reconstructions of neurons, often studied and stained following
recordings with patch-clamp electrodes. As an open-source
software package, ShuTu can be continuously improved by the
community. We have also provided raw images of the example
neurons (Jin, 2019), which should be useful for testing and
improving the software.

Software for automated reconstruction is often evaluated
by comparing automated reconstructions to manual
reconstructions (Peng et al., 2015; Acciai et al., 2016). We
have not done this systematically, because of our assertion that
all automated reconstructions, including those produced by
ShuTu, are error prone. Our approach was to develop software
that used automated algorithms only as an initial step to assist
manual reconstruction and minimize the amount of editing
time required by the user. The objective, therefore, is the same
as manual reconstructions; namely reconstructions that can be
considered “gold standard” (Peng et al., 2015), but are achieved
in far less time than fully manual approaches.

To achieve this objective, we complemented our automated
reconstruction algorithms with editing functions in ShuTu’s
graphical user interface (GUI). These functions improve the
efficiency of editing, and provide a tool for counting the number
of editing operations (NEO). Our software should be judged
on its ability to produce gold standard reconstructions while
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FIGURE 13 | Reconstructed neuron after editing. (A,B) Two different views of

the reconstructed neurons. The SWC points from the automatic reconstruction

are in green, and those added in the editing process are in red. (C) Top

operations done in the editing process and the total number of edits.

minimizing NEO. For example, our automatic reconstruction
algorithm can be aggressive in finding neurites, including faint
ones. This introduces noise into the automated reconstruction
(and thus apparently “bad” initial reconstructions), but the noise
can be easily edited out after genuine dendritic branches are
annotated (Figure 12).

There are many parameters in our automated reconstruction
algorithm. Users should experiment with these parameters, as the
optimal settings may depend on properties of the images, which
are likely to vary depending on staining and imaging procedures.
Among the most important parameters are the distances between
pixels and between the successive planes, which are determined
by the image acquisition process. Also important is the number
of subdivisions of one tiff stack. Since our algorithm relies
on 2D projections, subdivision reduces overlap of neurites
from different depths, thus improving reconstruction quality.
Checking the validity of each SWC point is also critical, so the
users should pay close attention to adjusting these parameters.
Appendix 2 describes other important parameters and technical
details of the automatic reconstruction algorithm.

There are a number of open-source software packages for
reconstructing neurons, most notably Vaa3D (Peng et al., 2014)
and neuTube (Feng et al., 2015). Vaa3D has extensive capabilities

for processing images from various sources (Peng et al., 2014).
In contrast, we focused on optimizing our software for the
particular application of neurons stained with a dark reaction
product following patch-clamp recording. Although ShuTu can
work for neurons stained in other ways (see Figure 14C), we
have no attempt to optimize it for use with multiple staining
and imaging procedures. In addition, ShuTu was developed with
a philosophy that perfect automatic reconstruction is difficult,
if not impossible. Therefore, we emphasized the importance of
manual annotation and error correction. In keeping with this
philosophy, ShuTu includes a user-friendly GUI to facilitate
these processes.

Another open-source software package for neuron
reconstruction—neuTube—also has a strong 3D capability
for manipulating SWC structure (Feng et al., 2015). As the
GUI of ShuTu is based on the GUI of neuTube (T. Zhao is
a contributor to both), many of the features of ShuTu are
adaptations of neuTube. However, we should emphasize that
the algorithm used for automated reconstruction in ShuTu is
novel and unrelated to neuTube. Additionally, ShuTu includes
several important extensions of the GUI. NeuTube was designed
to deal with a single tiff stack. As such, it can only be used for
reconstructing neurons fully contained in a single tiff stack.
ShuTu is a complete solution that includes the capability to
deal with multiple tiff stacks, including modules for processing
and stitching the images. In the interactive mode, the neuron
structure is represented in multiples ways that are all linked
(Figure 9), thus improving the ease and accuracy of editing the
SWC structure.

Our automatic reconstruction algorithm is specifically
designed for meeting challenges of tracing from images obtained
from biocytin-filled neurons. For this purpose, it outperforms
neuTube and Vaa3D (Figure 15). There are some caveats,
however, as neuTube and Vaa3D were developed to trace
neurons with fluorescent images. Although we preprocessed
images to optimize the application of Vaa3D and neuTube to
biocytin-filled neurons, there could be some other preprocessing
methods that lead to better results. Also, the performance of
the algorithms may strongly depend on images and neuron
types. For comparing automatic reconstruction algorithms of
neurons, a better approach could be something like DIADEM
(Brown et al., 2011), in which the creators themselves tune
the parameters for a common dataset and a diverse group of
users edit them and measure NEOs on a suitable GUI platform,
such as ShuTu.

Commercial solutions for neuron reconstruction also exist
(e.g., Neurolucida 360, MBF Bioscience; Imaris FilamentTracer,
Bitplane). Detailed comparison of ShuTu to these other software
packages is difficult, as it requires mastery of all of them to
be fair. We encourage authors and users of other software
packages to test ShuTu on their dataset or test their favorites on
the images used in this work. We welcome feedback from the
user community.

Staining neurons with biocytin is common in patch-clamp
experiments. However, methods for reconstructing neurons
based on biocytin are limited. When dealing with bright-field
images like the biocytin data, a common strategy is to apply

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Jin et al. ShuTu

FIGURE 14 | Three examples of reconstructions. Shown for each neuron are the 2D projection of the images, automated reconstruction on top of the 2D projection,

and the final reconstruction (blue, soma; red, apical dendrite; green, basal dendrite; gold, axon). (A) A pyramidal neuron in the mouse CA3 region imaged at 100×

(biocytin). (B) A pyramidal neuron in the rat CA1 region imaged at 63× (biocytin). (C) A mouse Purkinje cell imaged at 63× with confocal microscope (fluorescence).

some preprocessing method first (Narayanaswamy et al., 2011;
Türetken et al., 2011; Zhou et al., 2015), making the images
friendly for automatic reconstruction. Preprocessing, however,
is often computationally intensive and does not guarantee good
performance. ShuTu is specifically tailored to deal with inherent
problems with images from biocytin filled neurons and does not
require preprocessing.

ShuTu is not restricted to biocytin-filled neurons. We
have shown that it can also handle images from confocal
and fluorescent microscopy, simply by inverting the images.
However, we made no attempt to optimize ShuTu for this
application. For now, we have chosen to leave this enhancement
to future iterations (by us or others) and instead optimize
ShuTu for one common method of staining and imaging
patch-clamped neurons.

Improving image quality will inevitably improve the efficiency
and accuracy of neuron reconstruction. Users should ensure that
high quality images are obtained. Tissue fixation and clearing

processes can also influence the accuracy of the reconstructed
neurons by causing tissue shrinkage or influencing image
quality. To be accurate, these factors need to be quantified
for specific experimental conditions and the dimensions of
the reconstructed neurons need to be adjusted to account for
shrinkage and distortion.

Accurate estimates of dendritic diameter are important for
computational modeling of neurons (Anwar et al., 2014; Psarrou
et al., 2014). Our automated algorithm works quite well in
determining the diameters, as shown in Figures 7B,C. Manual
adjustments of the diameters are rarely necessary during the
manual editing stage. However, systematic biases can exist,
especially if spines are densely stained and blurred in the images,
for example in the Purkinje neuron shown in Figure 14C. Users
need to account for these biases before using the SWC structures
for simulations.

ShuTu has some limitations. It is not designed to trace axons,
which are often too faint following biocytin staining in slices,
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FIGURE 15 | Comparisons of automated reconstructions from ShuTu, neuTube, and Vaa3D. (A) Automated reconstruction generated by ShuTu on one image tile (red

circles) overlaid on the 2D minimum-intensity projection of the tile (top). The tile covers part of the basal dendrites of the neuron shown in Figure 1. The SWC structure

after manual editing (below). Green indicates the SWC points automatically generated; red indicates those added during the editing. (B) Automated reconstruction

generated by neuTube. (C) Automated reconstruction generated by Vaa3D. (D) Comparison of the NEO (number of editing operations) for the three methods.

(E) Comparison of the estimated manual editing time for the three methods.

and therefore difficult to trace automatically (and in many cases
even manually). ShuTu also provides no mechanism for marking
spines. It is possible that editing operations currently requiring
human judgements, such as when dendritic branches closely
cross each other, could be automated in the future using machine
learning approaches (Turaga et al., 2010).

In conclusion, we have shown that ShuTu provides a practical
solution for efficient and accurate reconstruction of neuron
morphology. The open-source nature of the software will allow
the research community to improve the tool further, and
increased efficiency in neuronal reconstruction should facilitate
more studies incorporating quantitative metrics of dendritic
morphology and computer simulations of dendritic function.

MATERIALS AND METHODS

Whole-Cell Recording and Neuron Staining
Acute hippocampal slices were prepared from mice and rats
(17–30 days old). After animals were deeply anesthetized with
isoflurane, they were decapitated and the brain rapidly removed
into chilled cutting solution consisting of (in mM) 215 sucrose,
2.5 KCl, 20 glucose, 26 NaHCO3, 1.6 NaH2PO4, 1 CaCl2, 4

MgCl2, and 4 MgSO4. Hippocampi were dissected out and
cut into 400 µm thick transverse sections on a Leica VT-
1200S vibrating microslicer (Leica, Ltd., Germany). The cutting
solution was slowly exchanged with artificial cerebrospinal fluid
(ACSF) containing (in mM) 124 NaCl, 2.5 KCl, 10 glucose, 26
NaHCO3, 1.0 NaH2PO4, 2.0 CaCl2, and 1.0 MgCl2. The slices
were incubated at room temperature for at least 1 h before
recording, and then were transferred as needed to a submersion-
type recording chamber perfused with ACSF at 2 ml/min. For
rat hippocampal slices, the cutting solution contained (in mM)
204.5 sucrose, 2.5 KCl, 1.25 NaH2PO4, 28 NaHCO3, 7 dextrose,
3 Na-pyruvate, 1 Na-ascorbate, 0.5 CaCl2, 7 MgCl2, and the
ACSF contained (in mM) 125 NaCl, 2.5 KCl, 1.25 NaH2PO4,
25 NaHCO3, 25 dextrose, 3 Na-pyruvate, 1 Na-ascorbate, 1.3
CaCl2, 1MgCl2. 350-µm-thick slices were sectioned at an oblique
angle. After 30–60 min of recovery in ACSF at 35–37◦C, the
chamber was maintained at room temperature. Both cutting
and ACSF solutions were saturated with 95% O2 and 5%
CO2 (pH 7.4).

Whole-cell recordings were obtained by visualized patch
techniques under IR-DIC optics. The recording pipette resistance
ranged between 4 and 6 M�. Series resistance (6 - 15M�) and

Frontiers in Neuroinformatics | www.frontiersin.org 16 October 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Jin et al. ShuTu

input resistance were monitored throughout each voltage-clamp
or current-clamp recording. Recordings with >10% change
in series resistance were excluded. For mice, the intracellular
pipette solution consisted of (in mM) 135 K-gluconate, 5 KCl,
1 CaCl2, 0.1 EGTA-Na, 10 HEPES, 10 glucose, 5 MgATP, 0.4
Na3GTP, and 0.1% biocytin, pH 7.2, 280–290 mOsm; for rats,
the solution consisted of (in mM) 130 K-gluconate, 10 KCl,
10 Na2-phosphocreatin, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 50
µM Alexa Fluor 594 (Invitrogen, Waltham, MA), and 0.2%
biocytin, pH 7.2, 295 mOsm. Resting potential ranged from
−69 to −58 mV. Maximal recording time after dissection was
6 hr. Recording temperature was set to 32.0 ± 0.1 C◦ for
mouse slices and to 33–35◦C for rat slices using a TC-344A
single-channel temperature controller (Warner Instruments, Inc,
Hamden, CT, USA). All experiments were executed with a
Dagan BVC-700A amplifier, digitized (3–5 kHz) using an ITC-16
analog-to-digital converter (Instrutech) or BNC-2090 and BNC-
2110 boards (National Instruments, Austin, TX), and analyzed
using custom-made software for IgorPro (Wavemetrics Inc., Lake
Oswego, OR, USA). All chemicals were purchased from Sigma-
Aldrich (St. Louis, MO, USA), Fisher Scientific (Fair Lawn,
NJ) or Fluka (St. Louis, MO). Biocytin was purchased from
Sigma-Aldrich. Neurons filled with biocytin were fixed (12–24
h) with paraformaldehyde (4%) after recording, then washed in
1X PBS solution. Biocytin staining was carried out with Vector
PK4000 and SK4100 kits (Vector Laboratories, Burlingame, CA,
USA). Tiled z-stack image acquisition was performed using a
Zeiss AxioImager microscope with an AxioCam MRc camera
(Zeiss) and ZEN software (blue edition; Zeiss) at 100× or 63×
magnification.

Sparse labeling of cerebellar Purkinje cells was achieved by
in utero ventricular viral injection (100 nL per ventricle) at
embryonic day 14 (E14) with an adeno-associated virus (Pseudo
type 2.1) carrying a GFP payload expressed under the CAG
promoter. Once animals reached post-natal day 30 (P30) they
were transcardially perfused with 4% paraformaldehyde fixative.
Fixed brains were then sectioned at 100µm thickness (horizontal
plane) using a Leica micro-slicer and mounted for microscopy.
Tiled z-stack image acquisition was performed using a Zeiss 880
confocal microscope at 63×magnification.

System Requirements and Installation
ShuTu consists of two parts: one for processing images and
automated reconstruction, and the other for viewing and editing
the morphology using graphical user interface (GUI). The
software requires installation of Open MPI and C compiler.
The software package was tested on a desktop computer with
Intel Core i7-4770 CPU@3.40GHz CPU and 16 GB memory,
running Ubuntu 14.04 LTS. These are typical settings for
current high-end desktop computers. Multiple processors are
desirable since the algorithms are designed to utilize multiple
processors to speed up computation. However, the memory
usage must be monitored to make sure that the demand on
memory does not exceed 100%. The number of processors used is
specified as a parameter for the command line when running the
code for automated reconstruction (see the section “Automated
reconstruction” below).

ShuTu can be downloaded from

http://personal.psu.edu/dzj2/ShuTu/,

or

https://www.janelia.org/shutu.

An installation script is provided for Ubuntu and Mac OSX
systems. This download includes all source codes for processing
images and automatic reconstruction. It also includes the GUI
program for viewing and editing the morphology. The source
code for the GUI program is available at

https://github.com/tingzhao/ShuTu.

On Windows 10, one can install the Ubuntu App and proceed
as in Ubuntu, except that the GUI program is downloaded and
installed separately and runs in Windows system.

In the directory of ShuTu, one can run

sudo sh build.sh,

which checks and installs necessary software including Open
MPI. The C programs are also compiled.

Image Acquisition and Processing
The software works with tiles of tiff stacks covering the entire
neurons. Nearby tiles overlap, typically by 20%, to help fine
tune the relative positions of the tiles (“stitching”). The names
of the tiff stacks use the convention of a common string
(filenameCommon followed by a number and .tif). With
the x, y positions of the tiles specified, one can use the program
stitchTiles to stitch the tiles. The results are stored in file
filenameCommon.json.

Modern microscopes often allow automatic generations
of overlapping tiles of tiff stacks. In our case, we imaged
hippocampal neurons with Zeiss Axio Imager with AxioCam and
Zen blue software. Once the boundary in the field of view (XY)
and the range of the depths (Z) that contain the neuron are set,
the images at each tile position and depths are automatically
taken, and the positions of the image are stored in an xml file.
The filenames of these images contain information about the
tile number and depth. Using them, we assemble all images at
different depths for each tile into one tiff stack. The command is

mpirun -n numProc ./createTiffStacksZeiss
dirData filenameCommon

Here numProc is the number of processors to be used; and
dirData is the path to the directory in which the xml file
resides. The images of the planes are stored in a subdirectory.
filenameCommon is the common part of the names given by
the user to the created tiff stacks.

The user can generate the overlapping tiff stacks in
other ways. The files should be named in the format of
filenameCommon1.tif, filenameCommon2.tif, etc.

The tiff stacks are preprocessed using the command

mpirun -n numProc ./processImages dirData
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If the images are dark-field, the command should be

mpirun -n numProc ./processImages dirData 1

In this case, the images are inverted into bright-field images.
The original images are renamed by adding .org.tif to the
end of the original file names, and are moved to a directory
OriginalImages.

Stitching the images is done with program stitchTiles. It
is assumed that in dirData there exists the xml file, generated
by the Zen Blue software during automatic image acquisition;
or a text file tileSequences.txt, with the following format
explained with an example:

80
1, 2, 3, 4
1, 5
5, 6, 7, 8
6, 9
9

The first line is a single number specifying the shifts in
percentages (100% overlap). The second line specifies the tile
numbers of the first row scanning from left to right. The third
line specifies two connected tiles in the first row and the second
row. The fourth line specifies the tile numbers in the second row.
This continues until the last row is specified. With one of these
files in the directory, the command for stitching is

mpirun -n numProc ./stitchTiles dataDir

After stitching is done, one can proceed to reconstruct the
neuron semi-automatically using the GUI program of ShuTu
(see Appendix 1). Another choice is to run the automatic
reconstruction algorithm to create a draft reconstruction and edit
it using the GUI program (see below).

In stitching, the precise offsets of nearby tiles are computed by
maximizing phase correlation (Zitova and Flusser, 2003). Using
the maximum spanning tree algorithm (Graham and Hell, 1985),
a tree graph connecting all tiles and maximizing the sum of phase
correlations along the connected nearby tiles is computed and
used to set the relative coordinates of all tiles.

If the entire neuron is contained in a single tiff stack, the above
processing steps should be skipped.

Automated Reconstruction
The code for automated reconstruction is parallelized with MPI
protocol, and runs with the command

mpirun -n numProc ./ShuTuAutoTrace dataDir
ShuTu.Parameters.dat,

where ShuTu.Parameters.dat is a text file that

contains the parameters. This creates an SWC file

filenameCommon.auto.swc in dataDir, which can
be loaded in ShuTu for manual editing (File→Load SWC).

To automatically reconstruct neurites in a single tiff stack, one
can run

./ShuTuAutoTraceOneStack dataDir/filename.
tif ShuTu.Parameters.dat.

The resulting SWC file is stored in
filename.tif.auto.swc in dataDir. This should
be used if the entire neuron is stored in a single tiff stack. It is

also useful for tuning the parameters. Note that if the image is

dark field, one needs to edit the parameter file and set the image

type parameter to 1.
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